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Visual category learning (VCL) involves detecting which features are most relevant for
categorization. VCL relies on attentional learning, which enables effectively redirecting
attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant
features. When features relevant for categorization are not salient, VCL relies also on
perceptual learning, which enables becoming more sensitive to subtle yet important
differences between objects. Little is known about how attentional learning and perceptual
learning interact when VCL relies on both processes at the same time. Here we tested
this interaction. Participants performed VCL tasks in which they learned to categorize novel
stimuli by detecting the feature dimension relevant for categorization. Tasks varied both
in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency
tasks), and in feedback information (tasks with mid-information, moderately ambiguous
feedback that increased attentional load, vs. tasks with high-information non-ambiguous
feedback). We found that mid-information and high-information feedback were similarly
effective for VCL in high-saliency tasks. This suggests that an increased attentional load,
associated with the processing of moderately ambiguous feedback, has little effect on VCL
when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning;
but when the feedback was highly informative participants were able to ultimately attain the
same performance as during the high-saliency VCL tasks. However, VCL was significantly
compromised in the low-saliency mid-information feedback task.We suggest that such low-
saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’
where two interdependent learning processes have to take place simultaneously.
Keywords: category learning, categorization, attentional learning, perceptual learning, visual perception, feedback

processing, feature saliency, perceptual expertise

INTRODUCTION
The human brain is capable of managing effectively an immense
amount of visual information, rendering it rapidly into a reliable
and meaningful representation of objects and events. The cog-
nitive process enabling this is Visual Category Learning (VCL),
which involves the detection of object features that are most
relevant for categorization. In many learning scenarios VCL
requires supervision that may involve the processing of labeled
exemplars (Lupyan et al., 2007; Davis et al., 2012; but see also
Sloutsky et al., 2007), or being informed that few objects are
from the same-category or from different categories without the
use of labels (Namy and Gentner, 2002; Hammer et al., 2009a,b;
Mathy et al., 2013). Deducing associations between category
labels and exemplars, or the categorical relation between few
objects, can be accomplished by feedback that follows the
learner decision, indicating whether the decision was correct
or not (Love, 2002; Maddox et al., 2003; Daniel and Pollmann,
2010; Antzoulatos and Miller, 2011; Lopez-Paniagua and Seger,
2011).

In everyday life scenarios, information provided by feedback
during VCL may often be suboptimal, or even misleading. Thus,

multiple learning experiences are required to ultimately enable
categorizing objects based only on those attributes that are most
relevant for categorization (Hammer et al., 2007, 2008). Another
challenge characterizing some VCL scenarios is low-saliency and
poor representation of features that are relevant for categoriza-
tion, which may result in such features being overlooked. Facing
these challenges, VCL relies on two fundamental processes. The
first process is attentional learning, which enables the volitional
allocation of attention to relevant features, while ‘filtering out’
distracting salient features that have little relevance for categoriza-
tion (Rehder and Hoffman, 2005; Sloutsky and Fisher, 2008; Blair
et al., 2009; Hoffman and Rehder, 2010; Sloutsky, 2010; McCole-
man et al., 2014). The second process is perceptual learning, which
enables becoming more sensitive to subtle, initially hard to detect
differences between objects from different categories (Shiffrin and
Schneider, 1977; Goldstone, 1994, 1998; Goldstone et al., 2001;
Roelfsema et al., 2010). Although previous studies showed that
both attentional learning and perceptual learning contribute to the
reduction of categorization errors, to-date no study systematically
tested VCL tasks in which these two processes have to take place
simultaneously.
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Attentional learning involves improving the ability to allocate
attention to important sensory information, within a given con-
text, while ignoring task-irrelevant information (Nosofsky, 1984;
Nosofsky and Palmeri, 1996; Kruschke and Blair, 2000; Sloutsky
and Fisher, 2008; Smith et al., 2010). This often results in a rivalry
between bottom-up processes where salient features attract more
attention than less salient ones (Itti et al., 1998), and top-down
processes driven by prior knowledge and expectations regarding
which stimuli features have been found to be important in the
past (Koch and Tsuchiya, 2007; Baluch and Itti, 2011; but see also
Awh et al., 2012). These two attention processes are likely based
on two primary brain networks: (i) The ventral attention network
acts as a bottom-up saliency detection system enabling the invol-
untarily reorientation of attention to unexpected salient stimuli in
the environment (Corbetta et al., 2008; Vossel et al., 2014). (ii) The
dorsal attention network enables short-term circulation of infor-
mation that is with current subjective importance, and top-down
volitional direction of attention to chosen stimulus features (LaBar
et al., 1999; Awh and Jonides, 2001). The nature of the interaction
between these two attention brain networks is not fully under-
stood. However, this interaction is thought to depend on context,
the maturation of prefrontal executive brain regions, and subjec-
tive experiences (Gazzaley and Nobre, 2012; Weissman and Prado,
2012; Hammer et al., submitted).

Perceptual learning often results in increased sensitivity and
long-lasting improvement in the ability to respond to previously
undetected or poorly represented features (Ahissar and Hochstein,
1997; Goldstone, 1998; Fahle and Poggio, 2002). There is an ongo-
ing debate regarding the role of top-down attention control in
mediating visual perceptual learning. Presently, most behavioral
studies suggest that effective perceptual learning requires inten-
tional direction of attention to the features being learned (Ahissar
and Hochstein, 1993; Schoups et al., 2001). Such attentional con-
trol may be mediated by corrective feedback that enables the
perceiver to realize that two stimuli that were initially confused
as being the same are in fact different. In turn, this process may
trigger attentional search for visual features that enables differen-
tiating between objects and object categories, eventually resulting
in an increased sensitivity to these features (Herzog and Fahle,
2002; Aberg and Herzog, 2012). Others suggest that in some
scenarios stimulus-reward pairing may result in “task-irrelevant”
perceptual learning, or unintended changes in stimuli represen-
tation that may affect later behavior. This may happen when
an ‘unattended task-irrelevant’ sensory feature is being associ-
ated with a rewarding outcome (Seitz et al., 2009; Roelfsema et al.,
2010).

The perceived feature saliency, and thus the degree to which an
object attribute attracts attention, may be altered due to changes
in representation such as those that follow perceptual learning.
On the other hand, perceptual learning may require effective top-
down attention control enabling prolonged focusing of attention
to a specific feature (Goldstone and Steyvers, 2001; Serences and
Yantis, 2006; Seitz et al., 2009). Arguably, when the objects of
interest are complex and differ in multiple low-saliency features,
VCL is less likely to be effective without informative guidance
(Hammer, submitted). These suggest that perceptual learning and
attentional learning do not only affect VCL independently, but

they may have a complex context-dependent interaction, where
the two learning processes rely on one another and cannot take
place at the same time, effectively. Here we tested this interac-
tion by systematically manipulating feature saliency and feedback
information. We expected that low-saliency of features relevant
for categorization would increase the reliance of VCL on per-
ceptual learning. We expected that ambiguous feedback would
hinder VCL by reducing the odds that attention would be exclu-
sively directed to the task-relevant feature dimension in successive
learning trials. Consequently, VCL tasks with low-saliency fea-
tures and ambiguous feedback would rely both on perceptual
learning and attentional learning, where the two processes have
to take place simultaneously. Such scenarios, where two interde-
pendent learning processes have to take place simultaneously, may
involve a ‘cognitive loop paradox’ with a distinct negative impact
on VCL.

We define feature saliency in terms of the physical dissimilarity
between objects along a given feature dimension, in a given con-
text (Diesendruck et al., 2003; Hammer and Diesendruck, 2005;
Chen et al., 2013). For example, when categorizing Dobermans
(large dogs) and Chihuahuas (small dogs), body-size is a high-
saliency feature dimension due to salient dissimilarities in body
size between these two categories of dogs. On the other hand, when
categorizing Labradors and Labradoodles (both are mid-large size
dogs), body-size is a low-saliency feature dimension due to high
similarities in body size between the two categories of dogs. Note
that when two stimuli are perceived as substantially dissimilar from
one another across a particular feature dimension, this feature
dimension may attract more attention and may a-priori be consid-
ered as having higher diagnostic value than a low-saliency feature
dimension (Rosch and Mervis, 1975; Tversky, 1977; Nosofsky,
1986; Kruschke, 2003; Chin-Parker and Ross, 2004).

In the current study, in each VCL task stimuli differed from
one another in three feature dimensions (e.g. the body width,
limbs shape and horns thickness of novel creature-like stimuli)
where only one feature dimension was relevant for categoriza-
tion. In each of the VCL tasks we kept feature saliency similar
across the three feature dimensions, making them similarly likely
to be a-priori perceived as relevant for categorization. We con-
trasted between high-saliency VCL tasks and low-saliency VCL
tasks, investigating how feedback information is being used in
these two learning scenarios. High-saliency tasks simulate sce-
narios where the categorized objects may differ in several salient
attributes, only some of which are important for categorization.
Low-saliency tasks simulate scenarios where a greater degree of
perceptual expertise is required for detecting fine yet important
differences between objects. We argue that in this later scenario,
introducing highly informative feedback would be critical for VCL
to be effective.

We determined the quantity of feedback information as the
degree of ambiguity in each learning trial, where ambiguous
feedback did not provide all the information needed for deci-
sive detection of the task-relevant feature dimension in a single
learning trial. Ambiguous feedback should not be confused with
an inherently incorrect or misleading feedback. Here, in each
trial two stimuli were presented simultaneously and the par-
ticipant had to decide if the two were from the same-category
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or from different-categories. In high-information learning trials,
same-category pairs were identical in the task-relevant feature
dimension and differed in the two irrelevant feature dimen-
sions, whereas different-categories pairs were different only in the
task-relevant feature dimension and were identical in the two irrel-
evant feature dimensions. This enabled detecting the task-relevant
feature dimension using the feedback from a single trial. In mid-
information learning trials same-category stimuli were identical
in the task-relevant feature dimension but also in one of the irrel-
evant feature dimensions. In different-categories trials the two
stimuli were different in the task-relevant feature dimension and
one of the irrelevant feature dimensions. Across multiple trials,
the objective category relation between paired stimuli (as it could
be deduced from the feedback) was not consistently associated
with the irrelevant feature dimensions, but was consistently asso-
ciated with the relevant feature dimension. Thus, inferring the
relevant feature dimension (the categorization rule) was feasible
but required integrating information across more trials. These
principles are illustrated in Figure 1.

We hypothesized that ambiguous feedback would significantly
compromise VCL in low-saliency conditions. In such conditions
perceptual learning is more likely to be required not only for
increasing sensitivity to important between categories differences,
but also for improving the capacity to detect such fine differences,
to begin with. In low-saliency VCL conditions features relevant
for categorization are not well represented in sensory cortices and
thus are likely to be left unattended during early learning trials,
specifically when other features may initially be perceived as sim-
ilarly important (Nosofsky and Palmeri, 1996; Goldstone, 1998;
Goldstone et al., 2001). We expected that in such low-saliency
conditions ambiguity in feedback would result in prolonged and
extensive effort for detecting and isolating task-relevant feature
dimensions, since this has to take place simultaneously with
becoming more sensitive to differences between stimuli in these
feature dimensions (Treisman and Gelade, 1980; Borji and Itti,
2013). In fact, frequently switching attention between several
low-saliency feature-dimensions across learning trails, due to
ambiguous feedback, can in some extreme scenarios utterly block

perceptual learning. Such frequent attention switching may hinder
the buildup of brain activation associated with the task-relevant
features, preventing it from reaching the threshold required for sig-
nificant changes in representation to take place (Goldstone, 1994;
Gilbert et al., 2001; Kruschke, 2001).

On the other hand, we hypothesized that salient differences
between stimuli would be easily detected. In such conditions
it is possible to value the importance of each feature dimen-
sion by systematic volitional switching of attention between
feature dimensions, even when the feedback is ambiguous. It
is important to clarify that we expect ambiguous feedback to
increase attentional load regardless of features saliency; but, we
suggest that when features relevant for categorization are with
high-saliency, and the feedback is not too ambiguous, such
an increase in attentional load would not be necessarily evi-
dent in compromised VCL performances, or would have only
small negative effect on VCL. When a feature dimension dif-
ferentiating between categories would be with low-saliency yet
the feedback would be informative, attention could be effectively
directed to this feature dimension in multiple successive learning
trials, enabling effective perceptual learning. We suggest that low-
feature saliency is always expected to increase the dependency on
perceptual learning, and thus would always inhibit VCL. Never-
theless, when the available feedback is informative, VCL would
become reasonably manageable even under some low-saliency
conditions.

MATERIALS AND METHODS
PARTICIPANTS
Sixty paid adults (36 females), with normal or corrected to normal
vision, participated in the experiment. Participants gave informed
written consent in accordance with a protocol approved by the
Stanford University Institutional Review Board.

EQUIPMENT AND SETTING
Psychtoolbox (MATLAB®) was used for stimuli presentation on a
1920 × 1200 pixels computer display and for the recording of par-
ticipants’ responses. Participants’ heads were located about 70 cm

FIGURE 1 | Learning to categorize puppies by comparing and contrasting

paired-examples.The most salient feature dimensions differentiating the
seven puppies are fur color and fur length. Being informed that two puppies
are from the same category can be useful for detecting which feature
dimension is most important for categorization. For example, comparing
Labradoodle-3 with Labradoodle-1 or Labradoodle-2, or Labrador-1 with
Labrador-2, while being informed about their categorical relation, is informative
for learning that salient differences in fur color are not important for
categorizing these dogs, and thus fur length is more likely to be important. On
the other hand, comparing Labradoodle-1 with Labradoodle-2 does not enable
inferring which feature is most important. Being informed that two puppies are

from distinct categories is also useful for VCL, enabling detecting differences
between categories. For example, comparing Labradoodle-3 with Labrador-1,
or Labrador-2 with Labradoodle-1 or Labradoodle-2, is informative by
highlighting the between categories differences in fur length. On the other
hand, comparing Labradoodle-3 with Labrador-2, or Labrador-1 with
Labradoodle-1 or Labradoodle-2, is less informative since such comparison is
less constraining, enabling deducing that fur color and/or fur length are
important for categorization.The labeled examples allow learning that fur
length is most relevant for categorization, which in turn allows properly
categorizing the two rightmost puppies despite their distinct color (see
Hammer et al., 2008 for a formal discussion).
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(∼2 feet) from the computer screen such that each one of the two
simultaneously presented stimuli occupied approximately 14◦ of
the visual field.

STIMULI
We used four distinct sets of novel creature-like stimuli. In each
set stimuli varied in three feature dimensions, produced from
one standard object and three morph-target objects. Each morph-
target differed from the standard in one feature dimension (e.g.,
shape of head or limb size). Stimuli were generated by morphing
between the standard object and each of the three morph-targets
using morphing values with steps of 11% (0% to 99%; total of
10 morph levels within each feature dimension). For the experi-
mental VCL tasks, from each stimuli set eight stimuli were used
in each saliency-condition so that stimuli differed in three binary
feature dimensions. In VCL tasks with high-feature saliency the
selected stimuli differed from one another in high morph values
within each feature dimension (77% or higher). In low-saliency
VCL tasks stimuli differed in substantially lower morph values
(33% or lower). The selection of stimuli to be used in the exper-
iment was determined based on pilot tests assuring that within
each stimuli-set differences in the three feature dimensions were
similarly likely to be detected when contrasting between paired
stimuli that differed in a single feature dimension. Low-saliency
differences were initially less likely to be detected (see Results for
pre-learning performances). Due to the nature of stimuli (complex
3D renderings), fully equalizing feature saliency across the three
feature dimensions and across all stimuli sets was not practicable,
but the use of four stimuli sets and the counterbalancing across
conditions insured that this would not have significant impact on
the results (Figure 2; Appendix A in the online supplemental).

In each VCL task there were two predetermined categories.
Stimuli in each category had an identical value on one feature
dimension (the diagnostic task-relevant feature dimension) and
differed in the other two (irrelevant) feature dimensions.

DESIGN
Experimental conditions differed in feature saliency (high-saliency
vs. low-saliency) and two primary levels of feedback information

(high-information vs. mid-information). In addition to these four
experimental conditions, we tested participants in two types of
control tasks: No-information tasks where feedback was provided
but it was not informative, and unsupervised categorization tasks
with no feedback. These allowed assessment of the contribution
of feedback information to VCL in the primary experimental con-
ditions. The control VCL tasks also varied in levels of feature
saliency.

Each participant performed four VCL tasks in four pseudo-
randomly selected conditions (out of four possible experimental
conditions and four possible control conditions). For each par-
ticipant, each VCL task was based on a different stimulus set, and
thus the participant had no prior experience with the stimuli at the
beginning of each task. Tasks were counterbalanced so that each
one of the four stimuli sets was used a similar number of times
in each one of the four experimental conditions and four control
conditions.

Each VCL task included seven blocks of 24 trials each, where
four test-blocks (T1, T2, T3, T4) alternated with three learning-
blocks (L1, L2, L3). In each trial two creatures were presented
simultaneously for 2.2 seconds during which the participant had
to decide if the two belong to the same category or to differ-
ent categories by pressing one of two keys. This was followed
by 0.8 seconds inter-trial interval during which the feedback was
presented. In learning-blocks in the high-information and mid-
information experimental conditions, and the no-information
control condition, a green square indicated a correct categoriza-
tion decision and a red square an incorrect/error decision. In the
unsupervised ‘learning-blocks,’ and in the test-blocks, a yellow
square indicated an on-time response (Figure 3).

Participants were instructed that in each VCL task they have
to categorize the creatures into two distinct subspecies based on
one critical attribute (the task-relevant feature dimension), which
can be inferred from the feedback. Participants were told that if
they find the feedback to be ineffective, they should guess which
feature dimension is most likely to be task-relevant. Participants
were told that two creatures of the same subspecies should be
identical in this feature dimension, and two creatures from dis-
tinct subspecies should differ in this feature dimension. Prior

FIGURE 2 | Stimuli examples. Low-saliency pairs (A) and corresponding high-saliency pairs (B) from each one of the four stimuli sets. Each paired stimuli
differ in all three varying feature dimensions (see also Appendix A in the online supplemental).
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FIGURE 3 | (A) An illustration of a learning trial with feedback indicating
correct categorization decision (signified to the participant by a small
green square presented after the execution of the categorization
decision and stimuli offset). In each trial paired stimuli were presented
for 2.2 seconds, during which the participant had to decide if the two
creatures were from the same-category or different-categories. Feedback
was presented during the following 0.8 seconds. (B) An illustration of a
learning trial with feedback indicating incorrect categorization decision

(signified by a small red square). (C) An illustration of a trial without
informative feedback (a small yellow square signified an on-time
response). Such trials were in the test-blocks and in the ‘learning-blocks’
in the unsupervised categorization control tasks. (D) Schematics of the
composition of a single VCL task. Each VCL tasks lasted 8.5 minutes
and included four test-blocks that alternated with three learning-blocks.
In the unsupervised categorization tasks there were only seven test
blocks. Each block included 24 trials.

to performing the experimental tasks, the participant performed
short warm-up tasks simulating the experimental conditions she
was expected to perform (using dedicated stimuli sets that were
not used in the experimental tasks). This allowed familiariz-
ing participants with the experimental setting (but not with the
stimuli used for the experimental tasks). The duration of each
VCL task was 8.5 minutes, with a few minutes break between
tasks. The overall duration of an experimental session was
60–75 minutes.

In high-saliency VCL tasks both the within-category
and between-categories differences were with high-saliency
(Figure 4A), and in low-saliency tasks both the within-
category and between-categories differences were with low-
saliency (Figure 4B).

In learning trials with high-information feedback, paired same-
category creatures were identical in the relevant feature dimension
and differed in the two irrelevant feature dimensions (upper pair
in Figure 4C). Paired different-categories creatures differed in
the relevant feature dimension and were identical in the two
irrelevant ones (lower pair in Figure 4C). That is, each high-
information learning trial either indicated all the within-category
variability (same-category pairs), or pinpointed the diagnostic
feature dimension differentiating between-categories (different-
categories pairs). High-information learning trials can be also
formulated as trials in which the task-relevant feature dimen-
sion and the irrelevant feature dimensions were anti-correlated
(correlation of −1): Where ‘A’ denotes the relevant feature dimen-
sion, ‘B’ and ‘C’ the irrelevant feature dimensions and ‘X ’ the
categorization decision outcome, the only possible inferred trial-
by-trial causality in the high-information condition was (four

representative trials): (A → X) ∩ (A → X) ∩ (A → X) ∩
(A → X) · · ·

In the learning trials with mid-information feedback, paired
same-category creatures were identical in the relevant feature
dimension and one of the two irrelevant feature dimensions
(randomly alternating between the two across different trials;
upper pair in Figure 4D). Paired different-categories crea-
tures differed in the relevant feature dimension and one of
the irrelevant feature dimensions (again, alternating between
the two across trials; lower pair in Figure 4D). That is, in
each trial there was a degree of ambiguity regarding which
feature dimension is relevant for categorization, forcing the
use of information from several trials in order to confi-
dently learn the categorization rule. Mid-information learning
trials can be also formulated as trials in which there was
partial correlation between the task-relevant feature dimen-
sion and each one of the two irrelevant feature dimensions:
(A ∪ B → X) ∩ (A ∪ C → X) ∩ (A ∪ C → X) ∩
(A ∪ B → X) · · ·

In the learning trials with no-information feedback, paired
same-category creatures were identical in all feature dimensions
(upper pair in Figure 4E), whereas paired different-categories
creatures differed in all feature dimensions (lower pair in
Figure 4E). Here the degree of ambiguity was such that the catego-
rization rule could not be inferred even by integrating information
across an infinite number of trials. No-information learning tri-
als can be formulated as trials in which the correlation between
the task-relevant feature dimension and the two irrelevant feature
dimensions is maximized (+1). In such scenarios decisively infer-
ring that a single feature dimension is relevant for categorization
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FIGURE 4 | Creature-pairing compositions. (A) Example of high-saliency
feature dimensions. (B) Example of low-saliency feature dimensions.
(C) Examples of same-category (upper) and different-categories (lower)
high-information pairs (using the high-saliency stimuli). The portion of
feature dimensions detected as relevant based on a given trial determined
the quantity of information provided in this trial. Here, the only feasible
‘hypothesis’ that could be considered by the participant was that the
creatures’ body width is relevant for categorization (− log2 1/3 = 1.585 bits).
(D) Examples of same-category (upper) and different-categories (lower)
mid-information pairs. Based on these examples, either the creatures’ body
width or their limbs could be relevant for categorization
(− log2 2/3 = 0.585 bits). (E) Examples of same-category (upper) and

different-categories (lower) pairs with no-information (control task). Based
on these examples, the creatures’ body width, their limbs or their horns
could be relevant for categorization (− log2 3/3 = 0 bits). In learning-blocks,
the category relation between the paired stimuli could be deduced from
the feedback that followed a categorization decision. The tables at the
bottom describe the possible hypothesis space. When all feature
dimensions are salient and participants are informed that only one feature
dimension is task-relevant, VCL requires the participant deciding which of
the 3 hypotheses (H1–H3) is correct. When features are not salient, and the
participant is more likely to be unaware of any between-stimuli differences,
VCL require the participant rejecting the null hypothesis stating, “all
creatures are the same”.

was impossible: (A∪B∪C → X)∩(A∪B∪C → X)∩(A∪B∪C →
X) ∩ (A ∪ B ∪ C → X) · · · (see Schulz et al., 2007 and Shafto
et al., 2008 for a similar formulation of ambiguity in induction
tasks).

In the unsupervised ‘learning-blocks’ composition of paired
stimuli was the same as in the test blocks, where paired stimuli
always differed in two feature dimensions. In each test-block trial,
paired creatures always differed in two feature dimensions. Same-
category pairs differed in the two irrelevant feature dimensions
and were identical in the relevant one (such as in the upper pair
in Figure 4C). Different-categories pairs differed in the relevant
feature dimension and in one of the irrelevant feature dimen-
sions, and were identical in the other irrelevant feature dimension
(such as in the lower pair in Figure 4D). This prevented partic-
ipants from making same/different categorization decision based

on overall similarity between stimuli, and it ensured that all
pair-wise correlations between the three feature dimensions are
identical (the relevant feature dimension could not be inferred
from the stimuli presentation statistics).

PERFORMANCE MEASUREMENTS
We define a“Hit”as correctly identifying two creatures as members
of the same-category, and a “False-Alarm” as incorrectly identify-
ing two creatures of different-categories as members of the same-
category. Based on the Hit and False-Alarm rate we calculated
the participant’s accuracy using the non-parametric measure A-
prime (Grier, 1971; Stanislaw and Todorov, 1999). A-prime = 0.5
indicates chance-level performance and A-prime = 1.0 indicates
perfect performance. A-prime scores close to 0.0 indicate high
sensitivity to category identity but with consistently reversed
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responses (i.e., categorizing items from two categories as belonging
to the same category, and categorizing items from the same
category as belonging to different categories). Hit rate and
False-Alarm rate are defined as:

H = Hit rate = Hits

Hits + Misses

F = False Alarm rate = False Alarms

False Alarms + Correct Rejections

A-prime is defined as:

A′ = 0.5 + sign(H − F) × (H − F)2 + |H − F|
4 × max(H , F) − 4 × H × F

KEY PERFORMANCE BENCHMARKS
Participants’ learning capabilities were evaluated based on sev-
eral benchmarks accounting for the constraints of stimuli pairing
in learning and test blocks, and the correlations between fea-
ture dimensions: making random same/different decisions would
yield chance performance, A-prime = 0.5; categorizing based on
the relevant feature dimension would yield perfect performance,
A-prime = 1; systematically referring to an irrelevant feature
dimension during a test block or during an unsupervised‘learning-
block’ would yield an A-prime = 0.12 (with Hit rate = 0 and
False-Alarm rate = 0.5); systematically referring to an irrelevant
feature dimension during a learning block with mid-information
feedback would yield an A-prime = 0.5; due to the anti-correlation
between the task-relevant feature dimension and the irrelevant
feature dimensions, in high-information learning-blocks, system-
atically referring to an irrelevant feature dimension would yield
an A-prime = 0 (see Appendix B, in the online supplemental, for
data exclusion criteria).

RESULTS
OVERVIEW
There are two main objectives for the analysis: (i) Showing that
the negative impact of ambiguous feedback on VCL is context

dependent, most likely to be manifested in low-saliency con-
ditions; (ii) Showing that participants’ performances in both
low-saliency VCL tasks (mid-information and high-information)
depended more on perceptual learning than their performances
in the corresponding high-saliency VCL tasks.

PRE-LEARNING PERFORMANCE
A two-way ANOVA with feature saliency and feedback information
as independent variables, and categorization accuracy (A-prime)
in the pre-learning test block (T1) as the dependent variable shows
no significant interaction between feature saliency and feedback
information prior to learning F(1,92) = 1.48, p = 0.23, no sig-
nificant feedback information main effect F(1,92) = 0.39, and no
feature saliency main effect F(1,92) = 0.74. This analysis con-
firms that the initial mean categorization accuracy in the four
experimental conditions was the same (Figure 5A). A two-way
ANOVA with feature saliency and feedback information as inde-
pendent variables, and Hit rate in the pre-learning test block
(T1) as the dependent variable shows, as well, no significant
interaction between feature saliency and feedback information,
F(1,92) = 2.35, p = 0.13, no significant feedback information
main effect, F(1,92) = 1.29, p = 0.26, and no feature saliency
main effect F(1,92) = 1.52, p = 0.22.

Differences between experimental conditions in pre-learning
categorization patterns were evident in False-Alarm rates (the
participants’ tendency to incorrectly identify two creatures as
belonging to the same category). A two-way ANOVA with fea-
ture saliency and feedback information as independent variables,
and participants’ False-Alarm rate in the pre-learning test block
(T1) as the dependent variable, shows no significant interac-
tion between feature saliency and feedback information prior
to learning F(1,92) = 0.35, no significant feedback information
main effect F(1,92) = 0.19, but a significant feature saliency
main effect F(1,92) = 28.40, p < 0.00001, η2

p = 0.24. Specifi-
cally, the initial False-Alarm rate was greater in the low-saliency
conditions (Mean = 0.61 ± SD = 0.20), where between stim-
uli differences were harder to detect, than in the high-saliency
conditions (0.36 ± 0.24). This difference in False-Alarm rate was

FIGURE 5 | (A) Mean (error bars are SE of the mean) pre-learning A-prime
scores in the high-information and mid-information feedback conditions
(high-saliency vs. low-saliency). (B) Receiver Operation Characteristics
(ROC) diagram for the high-saliency conditions (blue-purple

circles = high-information; light blue triangles = mid-information). Each
circle/triangle represents a single case. (C) ROC diagram for the
low-saliency conditions (red circles = high-information; orange
triangles = mid-information).
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associated with participants’ response bias but had little impact on
their overall categorization accuracy (A-prime score) due to cor-
responding differences in Hit rate (though these were statistically
insignificant).

In the high-saliency conditions we find that most partici-
pants either exhibited high Hit rate and low False-Alarm rate
indicating that they guessed the right feature dimension prior
to the first learning-block, or near zero Hit rate and near 0.5
False-Alarm rate, which indicates participants that persistently
categorized stimuli based on one of the two irrelevant feature
dimensions. This suggests that in high-saliency conditions par-
ticipants became quickly aware to the difference between stimuli.
This is presented in Figure 5B as the area not confounded by the
0.85 > A-prime > 0.15 arches on the Receiver Operation Char-
acteristics (ROC) diagram. A-prime scores higher than 0.85 or
lower than 0.15 roughly match higher than 80% or lower than
20% correct, respectively (80% correct indicates cases with <6
errors in the first test-block). These indicate cases where a par-
ticipant rapidly detected differences in one of the three feature
dimensions in which stimuli varied. In the low-saliency condi-
tions, on the other hand, many participants had both high Hit
rate and high False-Alarm rate, where the vast majority of partici-
pants had closer to chance level performance (Figure 5C). That is,
in the pre-learning phase, in low-saliency conditions, participants
were much more likely to perceive paired creatures as belonging
to the same-category, presumably due to not yet detecting the
low-saliency differences in either the relevant or irrelevant feature
dimensions.

Table 1 shows the number of participants who exhibited
high persistency in categorizing stimuli based on a specific fea-
ture dimension in the pre-learning phase, in each condition.
A Fisher exact test shows that the portion of cases exhibit-
ing high persistency in categorizing stimuli based on a specific
feature dimension in the high-saliency conditions (28/48) was
significantly higher (more than three times higher) than in
the low-saliency conditions (9/48), p = 0.0001 (two-tailed).
There were no significant differences in performance pattern
between the mid-information and high-information conditions

Table 1 | Number of participants who showed accuracy levels of

A-prime > 0.85 or A-prime < 0.15 in the pre-learning stage (24

participants in each condition).

Condition A′ > 0.85 A′ < 0.15 High

persistency

High-saliency High-info 6/24 9/24

Mid-info 5/24 8/24

Total 11/48 17/48 28/48

Low-saliency High-info 2/24 4/24

Mid-info 0/24 3/24

Total 2/48 7/48 9/48

These A-prime values indicate participants that were highly persistent in cate-
gorizing creatures based on the predetermined feature dimension or one of the
two irrelevant feature dimensions, respectively. An A-prime score of 0.85 roughly
matches d-prime (d ′) = 1.5, and is at about 80% correct.

in either feature saliency level, both p > 0.4 (two-tailed, Fisher
exact).

INTERACTIVE IMPACT OF FEEDBACK INFORMATION AND FEATURE
SALIENCY ON VCL DYNAMICS
We first compared the learning trajectories from the four condi-
tions by accounting to the mean performances (A-prime scores)
in the test and learning blocks combined (T1, L1, T2, L2, T3,
L3, T4). A three-way ANOVA with feature saliency (low-saliency
vs. high-saliency) and feedback information (mid-information
vs. high-information) as independent between-subjects variables,
test/learning-phase (T1, L1, T2, L2, T3, L3, T4) as a repeated
measure variable, and performance (A-prime) as the dependent
variable, shows a three-way interaction evident as a significant
feature saliency by feedback information by learning-phase lin-
ear contrast (contrasting between the learning trajectories of the
four conditions, assuming a simple linear model), F(1,92) = 3.77,
p = 0.055, η2

p = 0.04. Additionally, this ANOVA shows a signifi-
cant main effect of feature-saliency, F(1,92) = 10.23, p < 0.002,
η2

p = 0.10 (high-saliency > low-saliency), and a trend toward a
significant main effect of feedback information, F(1,92) = 3.67,
p = 0.059, η2

p = 0.04 (high-information > mid-information). This
ANOVA also shows that differences between the learning trajec-
tories of the two feature saliency conditions are best explained
by a cubic contrast, F(1,92) = 10.42, p < 0.002, η2

p = 0.10,
indicating that differences between saliency conditions were max-
imized in the second test block (T2; unlike a linear contrast
which indicates a monotonic change in differences between con-
ditions as the VCL task progresses). There were no significant
polynomial contrasts between the learning trajectories of the
mid-information and high-information feedback conditions, all
p > 0.15.

Post hoc analyses show that the above three-way interaction
primarily results from slower learning and overall lower cat-
egorization performances in the low-saliency mid-information
condition. A two-way ANOVA comparing the two low-saliency
conditions, with feedback information as an independent vari-
ables, learning-phase (T1, L1, T2, L2, T3, L3, T4) as a repeated
measure variable, and performance (A-prime) as the depen-
dent variable, shows a significant linear contrast between the
mid- and high-information feedback conditions, F(1,46) = 5.28,
p < 0.03, η2

p = 0.10, a trend towards a significant feedback
information simple main effect when accounting to all blocks,
F(1,46) = 3.41, p = 0.071, η2

p = 0.07, and a significant feed-
back information simple main effect when accounting only to
the blocks starting from T2 (following the first learning block),
F(1,46) = 4.84, p < 0.04, η2

p = 0.09. This indicates faster learn-
ing (steeper ascending slope) and overall better performance in
the low-saliency high-information condition than in the low-
saliency mid-information condition (Figure 6B). A two-way
ANOVA compering the two mid-information conditions shows
that mean performance in the low-saliency mid-information
condition was lower than in the high-saliency mid-information
condition. This was evident as a significant quadratic contrast,
F(1,46) = 8.15, p < 0.007, η2

p = 0.15, and a significant fea-
ture saliency simple main effect, F(1,46) = 6.35, p < 0.02,
η2

p = 0.12.

Frontiers in Psychology | Cognition February 2015 | Volume 6 | Article 74 | 8

http://www.frontiersin.org/Cognition/
http://www.frontiersin.org/Cognition/archive


Hammer et al. Visual category learning

FIGURE 6 | (A) Mean (error bars are SE of the mean) A-prime scores in all
blocks (T1, L1, T2, L2, T3, L3, T4) in the high-saliency conditions. (B) Mean
A-prime scores in all blocks in the low-saliency conditions. (C) Mean

post-learning A-prime scores (mean of T2, T3, and T4) in the
high-information and mid-information feedback conditions (high-saliency vs.
low-saliency).

In the high-saliency conditions there was no difference between
the mid-information and high-information feedback condi-
tions, F(1,46) = 0.67, indicating that learning in high-saliency
conditions was not significantly affected by the feedback ambigu-
ity manipulation (Figure 6A). Importantly, we found that learning
in the high-saliency high-information condition was better than
in the low-saliency high-information condition. This was evi-
dent as a significant linear contrast, F(1,46) = 6.34, p < 0.02,
η2

p = 0.12, and a significant feature saliency simple main effect,

F(1,46) = 3.88, p = 0.055, η2
p = 0.08, indicating faster learning

and overall better performance in the high-information high-
saliency condition than in the high-information low-saliency
condition. That is, perceptual learning played a significant role
in both low-saliency conditions. Nevertheless, unlike the low-
saliency mid-information condition where learning was fairly
impaired throughout the entire task, in the low-saliency high-
information condition later-phase performances matched the
performances observed in the two high-saliency conditions (see
also Figure 7).

The following analysis is based only on the mean performances
in the four test blocks, where the composition of trials in the two

feedback information conditions (for each given feature saliency
level) was identical. This analysis shows that the exceptionally
lower performance in the low-saliency mid-information VCL
condition was evident as lower mean performance in all post-
learning test trials (T2, T3, T4). A three-way ANOVA with feature
saliency (low-saliency vs. high-saliency) and feedback information
(mid-information vs. high-information) as independent variables,
learning-phase (pre-learning [T1] versus post-learning [T2, T3,
T4]) as a repeated measure variable, and categorization accu-
racy (A-prime) as the dependent variable, shows a significant
three-way interaction between feature-saliency, feedback infor-
mation, and learning-phase, F(1,92) = 4.29, p < 0.05, η2

p = 0.045
(Greenhouse–Geisser corrected).

Post hoc analyses show that the post-learning mean perfor-
mance in the low-saliency mid-information condition was lower
than all other conditions, whereas the mean performance in the
three other conditions was largely matched (Figure 6C). When
contrasting between the two high-saliency conditions we found
no simple main effect of feedback information, F(1,46) = 0.02,
but we did find a simple main effect of feedback information
when contrasting the two low-saliency conditions, F(1,46) = 4.84,

FIGURE 7 | (A) Differences in mean (error bars are SE of the mean) Hit rates in the learning blocks (L1, L2, L3) attributed to the saliency manipulation, in
the high-information (left) and mid-information (right) conditions. (B) Differences in mean False-Alarm rates (n.s. indicates p > 0.10).
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p < 0.04, η2
p = 0.09. When contrasting between the two

high-information conditions we found no significant simple main
effects of feature saliency, F(1,46) = 0.95, but we found a simple
main effects of feature saliency when contrasting the two mid-
information conditions F(1,46) = 6.79, p < 0.02, η2

p = 0.13.
Post-learning performances in all four conditions were above
chance (A-prime = 0.5), all p < 0.005. There were no sig-
nificant pre-learning (T1) simple main effects, all p > 0.15
(Figure 5A).

PERCEPTUAL LEARNING
To further investigate the role of perceptual learning in low-
saliency VCL, we looked at the impact of the feature saliency
manipulation on the participants’ Hit rate and False-Alarm
rate in the learning blocks of each feedback information con-
dition, taking advantage of the composition of these trials.
Specifically, in high-information learning trials the task-relevant
feature dimension was the only feature dimension discrimi-
nating between different-categories paired creatures, and thus
performance in these trials is less affected by having several
features with potential discriminative value competing for atten-
tion.

A three-way ANOVA with feature saliency (low-saliency vs.
high-saliency) and feedback information (mid-information vs.
high-information) as independent between-subjects variables,
learning-phase (L1, L2, L3) as a repeated measure variable, and
Hit rate as the dependent variable, shows a trend toward a
significant feature saliency by feedback information by learning-
phase linear contrast, F(1,92) = 3.19, p = 0.077, η2

p = 0.03,
a significant main effect of feature saliency, F(1,92) = 10.26,
p < 0.002, η2

p = 0.10 (high-saliency > low-saliency), and a sig-
nificant main effect of feedback information, F(1,92) = 5.26,
p < 0.03, η2

p = 0.05 (high-information > mid-information).
This ANOVA also shows differences between the learning tra-
jectories of the two feature saliency conditions evident as a
trend toward a significant linear contrast, F(1,92) = 3.36,
p = 0.07, η2

p = 0.03. There were no significant polyno-
mial contrasts between the learning trajectories of the mid-
information and high-information feedback conditions, all
p > 0.35. Largely, this ANOVA mirrors the effects observed
in the above analysis with A-prime as the dependent variable
(Figure 7A).

A three-way ANOVA with feature saliency (low-saliency vs.
high-saliency) and feedback information (mid-information vs.
high-information) as independent between-subjects variables,
learning-phase (L1, L2, L3) as a repeated measure variable, and
False-Alarm rate as the dependent variable, shows a trend toward
a significant feature saliency by feedback information by learning-
phase linear contrast, F(1,92) = 3.19, p = 0.098, η2

p = 0.03, and
a main effect of feature saliency, F(1,92) = 12.26, p < 0.001,
η2

p = 0.12 (low-saliency > high-saliency). There was no signif-
icant feedback information main effect, F(1,92) = 2.20, p = 0.14.
This ANOVA also shows a feature saliency main effect evident
as a significant linear contrast, F(1,92) = 7.59, p < 0.007,
η2

p = 0.08 (with a steeper descending slope in the low-saliency
tasks due to low False-Alarm rate in the high-saliency tasks, start-
ing at L1; a close to floor effect). There were no significant

polynomial contrasts between the learning trajectories of the
mid-information and high-information feedback conditions, all
p > 0.50 (Figure 7B).

Unlike the Hit rate, which was significantly affected both by
the feature saliency and feedback information manipulations, the
False-Alarm rate was primarily affected by the feature saliency
manipulation with substantially higher False-Alarm rate in low
saliency tasks. This indicates, as might be expected, that low-
saliency primarily (yet not exclusively) compromise VCL by
reducing the capacity to differentiate between stimuli from two
distinct categories.

CATEGORIZATION PERFORMANCE IN THE CONTROL TASKS
A three-way ANOVA with feature saliency (low-saliency vs.
high-saliency) and feedback-availability (no-information feed-
back vs. unsupervised categorization with no feedback) as
independent variables, learning-phase [pre-learning (T1) vs.
post-learning (T2, T3, T4)] as a repeated measure variable,
and categorization accuracy (A-prime) as the dependent vari-
able, shows no learning main effect (pre-learning to post-
learning), F(1,93) = 0.13, p > 0.7, or any other significant
main effect or interaction effect, all p > 0.1 (see Table 2).
This analysis confirms that the categorization accuracies and
the performance improvement observed in the four experimen-
tal conditions (mid-information and high-information) could
only be attributed to feedback information, and not to cumu-
lative experience with the stimuli. We note that in the con-
trol tasks participants had greater tendency not to respond
on time, or to exhibit stereotypical persistent response pattern
(“yea-sayers” or “nay-sayers”). Being relatively common, cases
with such performance patterns were not excluded from this
analysis.

DISCUSSION
We tested the interaction between feature saliency and feed-
back information in visual category learning (VCL) tasks as
a mean to explore interactions between perceptual learning
and attentional learning processes in different VCL scenar-
ios (high-saliency vs. low-saliency scenarios). We found that
in high-saliency tasks participants reached highest accuracies
within the first learning-block, surprisingly also in the mid-
information feedback VCL task where learning trial were ambigu-
ous (Figure 6A). In the low-saliency high-information feedback
condition we found that VCL required more learning trials

Table 2 | Mean (±SD) A-prime in the control tasks with no-information

feedback and unsupervised categorization tasks where no feedback

was provided.

Condition Pre [T1] Post [T2,T3, andT4]

High-saliency No-info 0.31 ± 0.30 0.31 ± 0.31

Unsupervised 0.38 ± 0.35 0.45 ± 0.41

Low-saliency No-info 0.40 ± 0.30 0.39 ± 0.37

Unsupervised 0.27 ± 0.15 0.23 ± 0.23

Here we find no pre-learning to post-learning performance changes.

Frontiers in Psychology | Cognition February 2015 | Volume 6 | Article 74 | 10

http://www.frontiersin.org/Cognition/
http://www.frontiersin.org/Cognition/archive


Hammer et al. Visual category learning

than in the high-saliency high-information condition. Nev-
ertheless, when having high-information feedback available,
participants ultimately reached the same categorization accuracies
observed in the two high-saliency tasks (Figures 6B and 7A,B-
left).

Importantly, as we hypothesized, we found that ambiguous
feedback substantially impaired VCL in low-saliency tasks, result-
ing in significantly lower categorization accuracies than those
observed in the three other experimental conditions (Figure 6C).
We suggest that in low-feature-saliency scenarios with ambiguous
feedback, learning is more difficult due to a “chicken-or-the-egg”
cognitive loop paradox. In such VCL scenarios there are two cog-
nitive challenges that need to be resolved: (i) becoming aware to
important feature-wise differences between stimuli and increas-
ing sensitivity to these differences, (ii) and determining which
feature-dimensions are relevant for categorization. The paradox is
that resolving each challenge depends on resolving the other chal-
lenge first. On the one hand, to be effective, perceptual learning
requires persistently directing attention to specific feature dimen-
sion (Goldstone, 1994; Gilbert et al., 2001; Kruschke, 2001); but
this is unlikely to happen when there is an ambiguity regard-
ing which feature dimension needs to be attended. On the other
hand, attentional learning requires using feedback information for
systematically valuing which feature dimension is important for
categorization, while ignoring irrelevant feature dimensions; but
attentional learning is likely to be compromised when there are
only vague impressions of any differences between the perceived
objects.

Challenges distinct to low-saliency VCL scenarios were already
evident as differences in performance patterns between the high-
saliency and low-saliency conditions prior to learning (T1): In
high-saliency conditions, most participants showed high persis-
tency in categorizing the creatures based on one of the three feature
dimensions in which the creatures varied (Table 1; Figure 5B).
The frequently observed A-prime > 0.85 or A-prime < 0.15
scores indicates that in high-saliency tasks, prior to learning,
most participants were likely to instantly detect at least one of
the three differentiating feature dimensions and to consistently
use it for categorizing the creatures. We can assume that in
the pre-learning phase, in high-saliency tasks, participants asked
themselves “which of these differentiating attributes is most rel-
evant for categorizing these creatures?” On the other hand, in
low-saliency conditions most participants performed closer to
chance level (A-prime = 0.5), where many participants had both
high Hit rate and high False-Alarm rate. This indicates that in
low-saliency tasks participants perceived most paired creatures as
being the same, presumably not detecting any differences (Table 1;
Figure 5C). Here many participants may have asked themselves
“do these creatures differ at all, and if yes, in what way?” These two
distinct starting points impose different constraints on the cog-
nitive strategies that participants could employ during later VCL
phases.

In high-saliency tasks, in the first learning block (L1), we
found that participants could use the feedback information
from few trials for quickly inferring if the feature dimension
by which they categorized the creatures prior to learning (T1)
is the relevant feature dimension. This was true even when

provided with mid-information feedback. If the feedback indi-
cated frequent errors, attention could be quickly redirected to
one of the other two salient feature dimensions by which crea-
tures varied. In high-saliency tasks there was little or no need
for perceptual learning to take place, and the primary cog-
nitive challenge in these tasks was testing hypotheses whether
one feature or the other is relevant for categorization. This
enabled the rapid inference of a generalized categorization
rule.

In low-saliency VCL tasks the detection of feature dimensions
in which the creatures varied was initially much harder than in
high-saliency tasks. Thus, it was most unlikely that during the
pre-learning test block (T1) the participants would form a solid
‘hypothesis space’ where there are few alternative categorization
rules to choose from. In the first learning block (L1), instead of
using the feedback for systematically testing which feature dimen-
sion is relevant for categorization, participants primarily used the
feedback for perceptual learning and for further detection of pos-
sibly other diagnostic feature dimensions. The feedback enabled
cumulating evidences indicating that apparently identical paired
creatures are in fact different. This forced participants to continue
searching for diagnostic feature dimensions, as it also enabled
them to validate if some vague perceived differences between crea-
tures represent concrete differences in a specific feature dimension
that deserve being further attended. This enabled increasing the
sensitivity to this feature dimension and to reduce categorization
error rate (Herzog and Fahle, 1997).

Being provided with mid-information feedback increased the
odds that few vague impressions of possibly differentiating fea-
ture dimensions would be simultaneously considered as relevant
for categorizing creatures. Not attending to only one low-saliency
feature dimension at a time was likely to compromise perceptual
learning, and thus it hindered the increase in sensitivity to partially
attended feature dimensions. In turn, not becoming sufficiently
sensitive to differences in a given feature dimension reduced the
participants’ confidence that this feature dimension has diagnos-
tic value, further reducing the odds that it would be frequently
attended, and thus further compromising perceptual learning.

It is also possible that in low-saliency tasks some participants
attended a specific feature dimension of the creatures (e.g., the
creatures heads) across multiple successive trials, even prior to
learning (T1). If this feature was one of the three feature dimen-
sions in which stimuli varied, this could result in the participant
becoming more sensitive to between-creatures differences in this
feature dimension even without receiving feedback (Petrov et al.,
2006; Liu et al., 2012). If the feature dimension relevant for cat-
egorization was consistently attended during T1, such accidental
direction of attention could enable faster learning. However, if one
of the two irrelevant feature dimensions was consistently attended
during T1, increased sensitivity to this feature dimension could
have stunted the learning of the task-relevant feature dimension,
resulting in slower VCL (Kruschke, 2003; Kruschke et al., 2005;
Bott et al., 2007; Blair et al., 2009).

In low-saliency tasks, providing participants with high-
information feedback in L1 could allow participants an opportu-
nity to confirm if the initially attended (yet still poorly represented)
feature dimension is the one relevant for categorization. However,
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due to relatively poor representation, this learning was not as fast
as learning in high-saliency conditions since it required either
slow increase in sensitivity to the earlier detected differences, or
the search for other low-saliency differences between creatures.
This should have been followed by further perceptual learning
for increasing sensitivity to the detected differences. If the feature
dimension most attended in T1 was one of the two irrelevant fea-
ture dimensions (the more likely scenario), the introduction of
mid-information feedback in L1 was likely to have an initial nega-
tive impact on VCL, reinforcing the impression that an irrelevant
low-saliency feature dimension is in fact relevant for categoriza-
tion. This could prevent the participant from searching for the
task relevant feature dimension.

Despite the suggested cognitive loop paradox, we found that
learning in the low-saliency mid-information condition was ulti-
mately feasible, with above chance mean performance (Figure 6C).
This can be explained, at least partially, by characteristics of the
current experimental design. First, low-saliency was not ‘too low’ –
based on the pre-learning (T1) performances in the low-saliency
tasks, it is clear that differences between paired creatures were
hard to detect (harder than in the high-saliency tasks) within the
short stimuli presentation time. Nevertheless, in the low-saliency,
high-information condition we found that participants eventu-
ally reached performance levels matching those observed in the
high-saliency conditions (though it required more learning tri-
als, Figures 6 and 7). This suggests that the current experimental
design does not fully exhaust perceptual learning capacities of
normal adults.

Secondly, in the current experimental design ambiguous feed-
back was not ‘too ambiguous’ – based on performances in the
high-saliency mid-information condition, it is clear that when
having a total of three feature dimensions in which stimuli vary,
and when in each given trial the task-relevant feature dimension is
competing for the participant’s attention with only one similarly
salient irrelevant feature dimension, feedback ambiguity is man-
ageable and in fact seem to have negligible evident impact on VCL
performances. This is clearly not expected to be the case in VCL
tasks with even more ambiguous feedback. Future studies may
investigate the interaction between feature saliency and feedback
information in more ‘extreme’ feedback ambiguity conditions. For
example, if increasing the total number of varying feature dimen-
sions to five, where in each trial the paired creatures differ in the
task-relevant feature dimension and a random combination of
three of the irrelevant feature dimensions, learning the categoriza-
tion rule may (would) take longer even in high-saliency conditions.
Moreover, in such scenarios it may become more likely that learn-
ing in low-saliencyVCL tasks would be utterly compromised due to
having attention being directed to the task relevant feature dimen-
sion even less frequently than in the mid-information conditions
that we tested here. In such scenarios it would become even less
likely that brain activation associated with task-relevant features
would reach the threshold required for significant changes in rep-
resentation to take place (Goldstone, 1994; Gilbert et al., 2001;
Kruschke, 2001).

The reported differences in performances between the low-
saliency mid-information condition and the low-saliency high-
information condition may contribute to the ongoing debate

regarding the role of attention control in perceptual learning, to
which we referred in more detail in the Introduction (Ahissar and
Hochstein, 1993; Schoups et al., 2001; Herzog and Fahle, 2002;
Seitz et al., 2009; Kourtzi, 2010; Roelfsema et al., 2010; Aberg
and Herzog, 2012). Here we show that VCL performance in the
low-saliency mid-information condition, where perceptual learn-
ing had to take place under conditions that required distributing
attention among few feature dimensions, was most impaired. Nev-
ertheless our data does not allow directly testing the degree to
which participants’ sensitivity to the relevant and irrelevant fea-
ture dimensions has been changed following learning, apart from
how these changes impacted categorization performances (which
are likely to reflect changes in representation of the task-relevant
feature dimension). Testing participants’ sensitivity to differences
between paired creatures in each feature dimension separately,
before and after VCL has been completed, may indicate if per-
ceptual learning took place, if it is restricted to the task-relevant
feature dimension, or if it is evident as increased sensitivity also to
task-irrelevant feature dimensions (we advise having a short pre-
learning sensitivity test, since extensive exposure to the stimuli
may facilitate unsupervised perceptual learning to some arbitrary
features in which stimuli vary).

Related to the above, we suggest that as much as ambiguous
feedback may compromise VCL, it is more likely to result in an
increased perceptual sensitivity to irrelevant feature dimensions.
This is due to greater correlations between the task-relevant fea-
ture dimension and the irrelevant ones, which is likely to result
in more frequent associations between irrelevant feature dimen-
sions and the feedback (or reward) that follows a categorization
decision. This may reinforce irrelevant feature dimensions more
frequently than in higher-information feedback conditions, where
only the task-relevant feature dimension is frequently reinforced.
For example, when ‘A’ denotes the relevant feature-dimension, ‘B,’
‘C,’ ‘D,’ and ‘E’ the irrelevant feature-dimensions and ‘X ’ the cate-
gorization decision outcome, in a scenario with trials composition
such as (A ∪ B → X)∩ (A ∪ D → X)∩ (A ∪ C → X)∩ (A ∪ E →
X) ∩ (A ∪ D → X) · · · there would be relatively sparse associ-
ation between each of the irrelevant feature-dimensions and the
decision outcome (25% of the trials; − log2 2/5 = 1.322 bits of
information per trial). On the other hand, in a scenario with trial
composition such as (A ∪ B ∪ C ∪ D → X) ∩ (A ∪ C ∪ D ∪ E →
X)∩(A∪B∪C∪D → X)∩(A∪B∪C∪E → X)∩(A∪B∪D∪E →
X) · · · (75% of the trials; − log2 4/5 = 0.322 bits per trial) it
would become more likely that at least some of the task-irrelevant
feature-dimensions would be reinforced following VCL.

That is, the administration of learning trials and their infor-
mativeness may greatly impact the effectiveness of VCL and, the
odds that VCL would result in evident changes in neural repre-
sentation of task-irrelevant feature dimensions (see Jiang et al.,
2007; Folstein et al., 2013, 2014, for related findings). More gen-
erally, we predict that in order to observe VCL associated with an
increased sensitivity to irrelevant feature dimensions, the VCL task
has to meet two requirements: (i) the number of irrelevant fea-
ture dimensions should be small, and (ii) assuming a given small
number of irrelevant feature dimensions, the feedback informa-
tion in VCL tasks should be minimized so to increase the odds
that attention would be distributed between these few irrelevant
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feature dimensions, so that at least some of these feature dimen-
sions would be frequently reinforced (see Watanabe and Sasaki,
2015, for a related discussion).

Finally, future studies may also investigate how VCL, under
different feature saliency conditions, can be optimized while
accounting for the fact that when categorizing same-category
stimuli, the information gained is not with the same use as the
information gained when categorizing different-category stimuli
(even when receiving the same information quantity). Specif-
ically, informative same-category stimuli comparison is most
effective for highlighting the permitted within category variabil-
ity, whereas informative different-categories stimuli comparison
highlights between categories differences (Hammer et al., 2009a,b,
2010; Kurtz et al., 2013; Carvalho and Goldstone, 2014). For this
reason, in high-saliency VCL tasks comparison of same-category
examples would be valuable for learning which feature dimen-
sions should be ignored (contributing to attentional learning).
On the other hand, comparison of same-category examples would
not have much value in low-saliency VCL tasks where the main
challenge is to detect important subtle differences between stim-
uli and to become more sensitive to these differences (requiring
perceptual learning). In such scenarios, informative comparison
of different-categories exemplars would be most critical to VCL.
These ideas have implications for understanding possible differ-
ences between general neurocognitive mechanisms of VCL, versus
those that are specifically critical for acquiring expertise (Scott
et al., 2008).

In sum, the current study, despite its limitations resulting from
not exploring a broader range of feature saliency and feedback
ambiguity, provides a methodological and theoretical framework
that if adopted may contribute to the understanding of how neu-
rocognitive mechanisms of perception, attention, reasoning and
learning are jointly being used, or failed to be used, in varying VCL
scenarios.
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