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Despite frequent calls for the overhaul of null hypothesis significance testing (NHST), this
controversial procedure remains ubiquitous in behavioral, social and biomedical teaching
and research. Little change seems possible once the procedure becomes well ingrained
in the minds and current practice of researchers; thus, the optimal opportunity for such
change is at the time the procedure is taught, be this at undergraduate or at postgraduate
levels. This paper presents a tutorial for the teaching of data testing procedures,
often referred to as hypothesis testing theories. The first procedure introduced is
Fisher’s approach to data testing—tests of significance; the second is Neyman-Pearson’s
approach—tests of acceptance; the final procedure is the incongruent combination of the
previous two theories into the current approach—NSHT. For those researchers sticking
with the latter, two compromise solutions on how to improve NHST conclude the tutorial.
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INTRODUCTION
This paper introduces the classic approaches for testing research
data: tests of significance, which Fisher helped develop and pro-
mote starting in 1925; tests of statistical hypotheses, developed
by Neyman and Pearson (1928); and null hypothesis signifi-
cance testing (NHST), first concocted by Lindquist (1940). This
chronological arrangement is fortuitous insofar it introduces the
simpler testing approach by Fisher first, then moves onto the
more complex one by Neyman and Pearson, before tackling the
incongruent hybrid approach represented by NHST (Gigerenzer,
2004; Hubbard, 2004). Other theories, such as Bayes’s hypotheses
testing (Lindley, 1965) and Wald’s (1950) decision theory, are not
object of this tutorial.

The main aim of the tutorial is to illustrate the bases of dis-
cord in the debate against NHST (Macdonald, 2002; Gigerenzer,
2004), which remains a problem not only yet unresolved but very
much ubiquitous in current data testing (e.g., Franco et al., 2014)
and teaching (e.g., Dancey and Reidy, 2014), especially in the bio-
logical sciences (Lovell, 2013; Ludbrook, 2013), social sciences
(Frick, 1996), psychology (Nickerson, 2000; Gigerenzer, 2004)
and education (Carver, 1978, 1993).

This tutorial is appropriate for the teaching of data testing at
undergraduate and postgraduate levels, and is best introduced
when students are knowledgeable on important background
information regarding research methods (such as random sam-
pling) and inferential statistics (such as frequency distributions of
means).

In order to improve understanding, statistical constructs that
may bring about confusion between theories are labeled dif-
ferently, attending to their function in preference to their his-
torical use (Perezgonzalez, 2014). Descriptive notes (notes) and
caution notes (caution) are provided to clarify matters whenever
appropriate.

FISHER’S APPROACH TO DATA TESTING
Ronald Aylmer Fisher was the main force behind tests of signifi-
cance (Neyman, 1967) and can be considered the most influential
figure in the current approach to testing research data (Hubbard,
2004). Although some steps in Fisher’s approach may be worked
out a priori (e.g., the setting of hypotheses and levels of signifi-
cance), the approach is eminently inferential and all steps can be
set up a posteriori, once the research data are ready to be analyzed
(Fisher, 1955; Macdonald, 1997). Some of these steps can even be
omitted in practice, as it is relatively easy for a reader to recreate
them. Fisher’s approach to data testing can be summarized in the
five steps described below.

Step 1–Select an appropriate test. This step calls for selecting a
test appropriate to, primarily, the research goal of interest (Fisher,
1932), although you may also need to consider other issues, such
as the way your variables have been measured. For example, if
your research goal is to assess differences in the number of people
in two independent groups, you would choose a chi-square test
(it requires variables measured at nominal levels); on the other
hand, if your interest is to assess differences in the scores that the
people in those two groups have reported on a questionnaire, you
would choose a t-test (it requires variables measured at interval
or ratio levels and a close-to-normal distribution of the groups’
differences).

Step 2–Set up the null hypothesis (H0). The null hypothesis
derives naturally from the test selected in the form of an exact sta-
tistical hypothesis (e.g., H0: M1–M2 = 0; Neyman and Pearson,
1933; Carver, 1978; Frick, 1996). Some parameters of this hypoth-
esis, such as variance and degrees of freedom, are estimated from
the sample, while other parameters, such as the distribution of
frequencies under a particular distribution, are deduced theoreti-
cally. The statistical distribution so established thus represents the
random variability that is theoretically expected for a statistical
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nil hypothesis (i.e., H0 = 0) given a particular research sample
(Fisher, 1954, 1955; Bakan, 1966; Macdonald, 2002; Hubbard,
2004). It is called the null hypothesis because it stands to be
nullified with research data (Gigerenzer, 2004).

Among things to consider when setting the null hypothesis is
its directionality.

Directional and non-directional hypotheses. With some
research projects, the direction of the results is expected (e.g., one
group will perform better than the other). In these cases, a direc-
tional null hypothesis covering all remaining possible results can
be set (e.g., H0: M1–M2 = 0). With other projects, however, the
direction of the results is not predictable or of no research inter-
est. In these cases, a non-directional hypothesis is most suitable
(e.g., H0: M1–M2 = 0).

Notes: H0 does not need to be a nil hypothesis, that is, one
that always equals zero (Fisher, 1955; Gigerenzer, 2004). For
example, H0 could be that the group difference is not larger
than certain value (Newman et al., 2001). More often than not,
however, H0 tends to be zero.

Setting up H0 is one of the steps usually omitted if fol-
lowing the typical nil expectation (e.g., no correlation between
variables, no differences in variance among groups, etc.). Even
directional nil hypotheses are often omitted, instead specifying
that one-tailed tests (see below) have been used in the analysis.

Step 3-Calculate the theoretical probability of the results
under H0 (p). Once the corresponding theoretical distribution
is established, the probability (p-value) of any datum under the
null hypothesis is also established, which is what statistics calcu-
late (Fisher, 1955, 1960; Bakan, 1966; Johnstone, 1987; Cortina
and Dunlap, 1997; Hagen, 1997). Data closer to the mean of the
distribution (Figure 1) have a greater probability of occurrence
under the null distribution; that is, they appear more frequently
and show a larger p-value (e.g., p = 0.46, or 46 times in a 100
trials). On the other hand, data located further away from the
mean have a lower probability of occurrence under the null
distribution; that is, they appear less often and, thus, show a
smaller p-value (e.g., p = 0.003). Of interest to us is the proba-
bility of our research results under such null distribution (e.g.,

FIGURE 1 | Location of a t-value and its corresponding p-value on a

theoretical t distribution with 30 degrees of freedom. The actual p-value
conveys stronger evidence against H0 than sig ≈0.05 and can be
considered highly significant.

the probability of the difference in means between two research
groups).

The p-value comprises the probability of the observed results
and also of any other more extreme results (e.g., the probability
of the actual difference between groups and any other differ-
ence more extreme than that). Thus, the p-value is a cumulative
probability rather than an exact point probability: It covers the
probability area extending from the observed results toward the
tail of the distribution (Fisher, 1960; Carver, 1978; Frick, 1996;
Hubbard, 2004).

Note: P-values provide information about the theoretical prob-
ability of the observed and more extreme results under a null
hypothesis assumed to be true (Fisher, 1960; Bakan, 1966),
or, said otherwise, the probability of the data given a true
hypothesis—P(D|H); (Carver, 1978; Hubbard, 2004). As H0 is
always true (i.e., it shows the theoretical random distribution of
frequencies under certain parameters), it cannot, at the same
time, be false nor falsifiable a posteriori. Basically, if at any point
you say that H0 is false, then you are also invalidating the whole
test and its results. Furthermore, because H0 is always true, it
cannot be proved, either.

Step 4–Assess the statistical significance of the results. Fisher
proposed tests of significance as a tool for identifying research
results of interest, defined as those with a low probability of occur-
ring as mere random variation of a null hypothesis. A research
result with a low p-value may, thus, be taken as evidence against
the null (i.e., as evidence that it may not explain those results satis-
factorily; Fisher, 1960; Bakan, 1966; Johnstone, 1987; Macdonald,
2002). How small a result ought to be in order to be considered
statistically significant is largely dependent on the researcher in
question, and may vary from research to research (Fisher, 1960;
Gigerenzer, 2004). The decision can also be left to the reader,
so reporting exact p-values is very informative (Fisher, 1973;
Macdonald, 1997; Gigerenzer, 2004).

Overall, however, the assessment of research results is largely
made bound to a given level of significance, by comparing
whether the research p-value is smaller than such level of signifi-
cance or not (Fisher, 1954, 1960; Johnstone, 1987):

• If the p-value is approximately equal to or smaller than the level
of significance, the result is considered statistically significant.

• If the p-value is larger than the level of significance, the result
is considered statistically non-significant.

Among things to consider when assessing the statistical signifi-
cance of research results are the level of significance, and how it is
affected by the directionality of the test and other corrections.

Level of significance (sig). The level of significance is a the-
oretical p-value used as a point of reference to help identify
statistically significant results (Figure 1). There is no need to set
up a level of significance a priori nor for a particular level of signif-
icance to be used in all occasions, although levels of significance
such as 5% (sig ≈0.05) or 1% (sig ≈0.01) may be used for con-
venience, especially with novel research projects (Fisher, 1960;
Carver, 1978; Gigerenzer, 2004). This highlights an important
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property of Fisher’s levels of significance: They do not need to be
rigid (e.g., p-values such as 0.049 and 0.051 have about the same
statistical significance around a convenient level of significance of
5%; Johnstone, 1987).

Another property of tests of significance is that the observed p-
value is taken as evidence against the null hypothesis, so that the
smaller the p-value the stronger the evidence it provides (Fisher,
1960; Spielman, 1978). This means that it is plausible to gradate
the strength of such evidence with smaller levels of significance.
For example, if using 5% (sig ≈0.05) as a convenient level for
identifying results which are just significant, then 1% (sig ≈0.01)
may be used as a convenient level for identifying highly significant
results and 1� (sig ≈0.001) for identifying extremely significant
results.

Notes: Setting up a level of significance is another step usually
omitted. In such cases, you may assume the researcher is using
conventional levels of significance.

If both H0and sig are made explicit, they could be joined in a
single postulate, such as H0: M1–M2 = 0, sig ≈0.05.

Notice that the p-value informs about the probability asso-
ciated with a given test value (e.g., a t value). You could use
this test value to decide about the significance of your results
in a fashion similar to Neyman-Pearson’s approach (see below).
However, you get more information about the strength of the
research evidence with p-values.

Although the p-value is the most informative statistic of a
test of significance, in psychology (e.g., American Psychological
Association, 2010) you also report the research value of the
test—e.g., t(30) = 2.25, p = 0.016, 1-tailed. Albeit cumbersome
and largely ignored by the reader, the research value of the test
offers potentially useful information (e.g., about the valid sample
size used with a test).

Caution: Be careful not to interpret Fisher’s p-values as
Neyman-Pearson’s Type I errors (α, see below). Probability values
in single research projects are not the same than probability val-
ues in the long run (Johnstone, 1987), something illustrated by
Berger (2003)—who reported that p = 0.05 often corresponds
to α = 0.5 (or anywhere between α = 0.22 and α > 0.5)—and
Cumming (2014)—who simulates the “dance” of p-values in the
long run, commented further in Perezgonzalez (2015).

One-tailed and two-tailed tests. With some tests (e.g., F-tests)
research data can only be tested against one side of the null dis-
tribution (one-tailed tests), while other tests (e.g., t-tests) can
test research data against both sides of the null distribution at
the same time. With one-tailed tests you set the level of signifi-
cance on the appropriate tail of the distribution. With two-tailed
tests you cover both eventualities by dividing the level of sig-
nificance between both tails (Fisher, 1960; Macdonald, 1997),
which is commonly done by halving the total level of significance
in two equal areas (thus covering, for example, the 2.5% most
extreme positive differences and the 2.5% most extreme negative
differences).

Note: The tail of a test depends on the test in question, not
on whether the null hypothesis is directional or non-directional.
However, you can use two-tailed tests as one-tailed ones when
testing data against directional hypotheses.

Correction of the level of significance for multiple tests. As
we introduced earlier, a p-value can be interpreted in terms of
its expected frequency of occurrence under the specific null dis-
tribution for a particular test (e.g., p = 0.02 describes a result
that is expected to appear 2 times out of 100 under H0). The
same goes for theoretical p-values used as levels of significance.
Thus, if more than one test is performed, this has the consequence
of also increasing the probability of finding statistical significant
results which are due to mere chance variation. In order to keep
such probability at acceptable levels overall, the level of signif-
icance may be corrected downwards (Hagen, 1997). A popular
correction is Bonferroni’s, which reduces the level of significance
proportionally to the number of tests carried out. For example, if
your selected level of significance is 5% (sig ≈0.05) and you carry
out two tests, then such level of significance is maintained overall
by correcting the level of significance for each test down to 2.5%
(sig ≈0.05/2 tests ≈0.025, or 2.5% per test).

Note: Bonferroni’s correction is popular but controversial, mainly
because it is too conservative, more so as the number of mul-
tiple tests increases. There are other methods for controlling
the probability of false results when doing multiple compar-
isons, including familywise error rate methods (e.g., Holland
and Copenhaver, 1987), false discovery rate methods (e.g.,
Benjamini and Hochberg, 1995), resampling methods (jackknif-
ing, bootstrapping— e.g., Efron, 1981), and permutation tests
(i.e., exact tests—e.g., Gill, 2007).

Step 5–Interpret the statistical significance of the results. A
significant result is literally interpreted as a dual statement: Either
a rare result that occurs only with probability p (or lower) just
happened, or the null hypothesis does not explain the research
results satisfactorily (Fisher, 1955; Carver, 1978; Johnstone, 1987;
Macdonald, 1997). Such literal interpretation is rarely encoun-
tered, however, and most common interpretations are in the line
of “The null hypothesis did not seem to explain the research
results well, thus we inferred that other processes—which we
believe to be our experimental manipulation—exist that account
for the results,” or “The research results were statistically signifi-
cant, thus we inferred that the treatment used accounted for such
difference.”

Non-significant results may be ignored (Fisher, 1960;
Nunnally, 1960), although they can still provide useful informa-
tion, such as whether results were in the expected direction and
about their magnitude (Fisher, 1955). In fact, although always
denying that the null hypothesis could ever be supported or
established, Fisher conceded that non-significant results might be
used for confirming or strengthening it (Fisher, 1955; Johnstone,
1987).

Note: Statistically speaking, Fisher’s approach only ascertains
the probability of the research data under a null hypothesis.
Doubting or denying such hypothesis given a low p-value does
not necessarily “support” or “prove” that the opposite is true
(e.g., that there is a difference or a correlation in the popula-
tion). More importantly, it does not “support” or “prove” that
whatever else has been done in the research (e.g., the treatment
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used) explains the results, either (Macdonald, 1997). For Fisher,
a good control of the research design (Fisher, 1955; Johnstone,
1987; Cortina and Dunlap, 1997), especially random allocation,
is paramount to make sensible inferences based on the results
of tests of significance (Fisher, 1954; Neyman, 1967). He was
also adamant that, given a significant result, further research was
needed to establish that there has indeed been an effect due to
the treatment used (Fisher, 1954; Johnstone, 1987; Macdonald,
2002). Finally, he considered significant results as mere data
points and encouraged the use of meta-analysis for progress-
ing further, combining significant and non-significant results from
related research projects (Fisher, 1960; Neyman, 1967).

HIGHLIGHTS OF FISHER’S APPROACH
Flexibility. Because most of the work is done a posteriori,

Fisher’s approach is quite flexible, allowing for any number of
tests to be carried out and, therefore, any number of null hypothe-
ses to be tested (a correction of the level of significance may be
appropriate, though—Macdonald, 1997).

Better suited for ad-hoc research projects. Given above
flexibility, Fisher’s approach is well suited for single, ad-hoc,
research projects (Neyman, 1956; Johnstone, 1987), as well as for
exploratory research (Frick, 1996; Macdonald, 1997; Gigerenzer,
2004).

Inferential. Fisher’s procedure is largely inferential, from the
sample to the population of reference, albeit of limited reach,
mainly restricted to populations that share parameters similar to
those estimated from the sample (Fisher, 1954, 1955; Macdonald,
2002; Hubbard, 2004).

No power analysis. Neyman (1967) and Kruskal and Savage
(Kruskal, 1980) were surprised that Fisher did not explicitly
attend to the power of a test. Fisher talked about sensitiveness, a
similar concept, and how it could be increased by increasing sam-
ple size (Fisher, 1960). However, he never created a mathematical
procedure for controlling sensitiveness in a predictable manner
(Macdonald, 1997; Hubbard, 2004).

No alternative hypothesis. One of the main critiques to
Fisher’s approach is the lack of an explicit alternative hypothe-
sis (Macdonald, 2002; Gigerenzer, 2004; Hubbard, 2004), because
there is no point in rejecting a null hypothesis without an alter-
native explanation being available (Pearson, 1990). However,
Fisher considered alternative hypotheses implicitly—these being
the negation of the null hypotheses—so much so that for him the
main task of the researcher—and a definition of a research project
well done—was to systematically reject with enough evidence the
corresponding null hypothesis (Fisher, 1960).

NEYMAN-PEARSON’S APPROACH TO DATA TESTING
Jerzy Neyman and Egon Sharpe Pearson tried to improve
Fisher’s procedure (Fisher, 1955; Pearson, 1955; Jones and Tukey,
2000; Macdonald, 2002) and ended up developing an alterna-
tive approach to data testing. Neyman-Pearson’s approach is
more mathematical than Fisher’s and does much of its work
a priori, at the planning stage of the research project (Fisher,
1955; Macdonald, 1997; Gigerenzer, 2004; Hubbard, 2004). It
also introduces a number of constructs, some of which are
similar to those of Fisher. Overall, Neyman-Pearson’s approach to

data testing can be considered tests of acceptance (Fisher, 1955;
Pearson, 1955; Spielman, 1978; Perezgonzalez, 2014), summa-
rized in the following eight main steps.

A PRIORI STEPS
Step 1–Set up the expected effect size in the population. The
main conceptual innovation of Neyman-Pearson’s approach was
the consideration of explicit alternative hypotheses when testing
research data (Neyman and Pearson, 1928, 1933; Neyman, 1956;
Macdonald, 2002; Gigerenzer, 2004; Hubbard, 2004). In their
simplest postulate, the alternative hypothesis represents a second
population that sits alongside the population of the main hypoth-
esis on the same continuum of values. These two groups differ by
some degree: the effect size (Cohen, 1988; Macdonald, 1997).

Although the effect size was a new concept introduced by
Neyman and Pearson, in psychology it was popularized by Cohen
(1988). For example, Cohen’s conventions for capturing differ-
ences between groups—d (Figure 2)—were based on the degree
of visibility of such differences in the population: the smaller the
effect size, the more difficult to appreciate such differences; the
larger the effect size, the easier to appreciate such differences.
Thus, effect sizes also double as a measure of importance in the
real world (Nunnally, 1960; Cohen, 1988; Frick, 1996).

When testing data about samples, however, statistics do not
work with unknown population distributions but with distribu-
tions of samples, which have narrower standard errors. In these
cases, the effect size can still be defined as above because the
means of the populations remain unaffected, but the sampling
distributions would appear separated rather than overlapping
(Figure 3). Because we rarely know the parameters of popula-
tions, it is their equivalent effect size measures in the context of
sampling distributions which are of interest.

As we shall see below, the alternative hypothesis is the one
that provides information about the effect size to be expected.
However, because this hypothesis is not tested, Neyman-Pearson’s
procedure largely ignores its distribution except for a small
percentage of it, which is called “beta” (β; Gigerenzer, 2004).
Therefore, it is easier to understand Neyman-Pearson’s procedure
if we peg the effect size to beta and call it the expected minimum
effect size (MES; Figure 3). This helps us conceptualize better
how Neyman-Pearson’s procedure works (Schmidt, 1996): The
minimum effect size effectively represents that part of the main
hypothesis that is not going to be rejected by the test ( i.e., MES

FIGURE 2 | A conventional large difference—Cohen’s d =
0.8—between two normally distributed populations, as a fraction of

one standard deviation.
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FIGURE 3 | Sampling distributions (N = 50 each) of the populations in

Figure 2. MES (d = 0.8), assuming β = 0.20, is d = 0.32 (i.e., the expected
difference in the population ranges between d = 0.32 and infinity).

captures values of no research interest which you want to leave
under HM; Cortina and Dunlap, 1997; Hagen, 1997; Macdonald,
2002). (Worry not, as there is no need to perform any further cal-
culations: The population effect size is the one to use, for example,
for estimating research power.)

Note: A particularity of Neyman-Pearson’s approach is that the
two hypotheses are assumed to represent defined popula-
tions, the research sample being an instance of either of them
(i.e., they are populations of samples generated by repetition
of a common random process—Neyman and Pearson, 1928;
Pearson, 1955; Hagen, 1997; Hubbard, 2004). This is unlike
Fisher’s population, which can be considered more theoretical,
generated ad-hoc so as for providing the appropriate random
distribution for the research sample at hand (i.e., a popula-
tion of samples similar to the research sample—Fisher, 1955;
Johnstone, 1987).

Step 2–Select an optimal test. As we shall see below, another of
Neyman-Pearson’s contributions was the construct of the power
of a test. A spin-off of this contribution is that it has been pos-
sible to establish which tests are most powerful (for example,
parametric tests are more powerful than non-parametric tests,
and one-tailed tests are more powerful than two-tailed tests),
and under which conditions (for example, increasing sample size
increases power). For Neyman and Pearson, thus, you are bet-
ter off choosing the most powerful test for your research project
(Neyman, 1942, 1956).

Step 3–Set up the main hypothesis (HM). Neyman-Pearson’s
approach considers, at least, two competing hypotheses, although
it only tests data under one of them. The hypothesis which is
the most important for the research (i.e., the one you do not
want to reject too often) is the one tested (Neyman and Pearson,
1928; Neyman, 1942; Spielman, 1973). This hypothesis is better
off written so as for incorporating the minimum expected effect
size within its postulate (e.g., HM: M1–M2 = 0 ± MES), so that
it is clear that values within such minimum threshold are con-
sidered reasonably probable under the main hypothesis, while
values outside such minimum threshold are considered as more
probable under the alternative hypothesis (Figure 4).

Caution: Neyman-Pearson’s HM is very similar to Fisher’s H0.
Indeed, Neyman and Pearson also called it the null hypoth-
esis and often postulated it in a similar manner (e.g., as

FIGURE 4 | Neyman-Pearson’s approach tests data under HM using the

rejection region delimited by α. HA contributes MES and β. Differences
of research interest will be equal or larger than MES and will fall within this
rejection region.

HM : M1–M2 = 0). However, this similarity is merely superficial on
three accounts: HM needs to be considered at the design stage
(H0 is rarely made explicit); it is implicitly designed to incorporate
any value below the MES—i.e., the a priori power analysis of a
test aims to capture such minimum difference (effect sizes are
not part of Fisher’s approach); and it is but one of two competing
explanations for the research results (H0 is the only hypothesis,
to be nullified with evidence).

The main aspect to consider when setting the main hypothesis
is the Type I error you want to control for during the research.

Type I error. A Type I error (or error of the first class) is made
every time the main hypothesis is wrongly rejected (thus, every
time the alternative hypothesis is wrongly accepted). Because the
hypothesis under test is your main hypothesis, this is an error
that you want to minimize as much as possible in your life-
time research (Neyman and Pearson, 1928, 1933; Neyman, 1942;
Macdonald, 1997).

Caution: A Type I error is possible under Fisher’s approach, as
it is similar to the error made when rejecting H0 (Carver, 1978).
However, this similarity is merely superficial on two accounts:
Neyman and Pearson considered it an error whose relevance
only manifests itself in the long run because it is not possible
to know whether such an error has been made in any particular
trial (Fisher’s approach is eminently ad-hoc, so the risk of a long-
run Type I error is of little relevance); therefore, it is an error that
needs to be considered and minimized at the design stage of the
research project in order to ensure good power—you cannot min-
imize this error a posteriori (with Fisher’s approach, the potential
impact of errors on individual projects is better controlled by cor-
recting the level of significance as appropriate, for example, with
a Bonferroni correction).

Alpha (α). Alpha is the probability of committing a Type I
error in the long run (Gigerenzer, 2004). Neyman and Pearson
often worked with convenient alpha levels such as 5% (α = 0.05)
and 1% (α = 0.01), although different levels can also be set.
The main hypothesis can, thus, be written so as for incorpo-
rating the alpha level in its postulate (e.g., HM: M1–M2 = 0±
MES, α = 0.05), to be read as the probability level at which

www.frontiersin.org March 2015 | Volume 6 | Article 223 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Educational_Psychology/archive


Perezgonzalez Data testing tutorial

the main hypothesis will be rejected in favor of the alternative
hypothesis.

Caution: Neyman-Pearson’s α looks very similar to Fisher’s sig.
Indeed, Neyman and Pearson also called it the significance level
of the test and used the same conventional cut-off points (5, 1%).
However, this similarity is merely superficial on three accounts:
α needs to be set a priori (not necessarily so under Fisher’s
approach); Neyman-Pearson’s approach is not a test of signifi-
cance (they are not interested in the strength of the evidence
against HM ) but a test of acceptance (deciding whether to accept
HA instead of HM ); and α does not admit gradation—i.e., you may
choose, for example, either α = 0.05 or α = 0.01, but not both,
for the same test (while with Fisher’s approach you can have
different levels of more extreme significance).

The critical region (CRtest) and critical value (CVtest, Testcrit)
of a test. The alpha level helps draw a critical region, or rejec-
tion region (Figure 4), on the probability distribution of the main
hypothesis (Neyman and Pearson, 1928). Any research value that
falls outside this critical region will be taken as reasonably prob-
able under the main hypothesis, and any research result that falls
within the critical region will be taken as most probable under
the alternative hypothesis. The alpha level, thus, also helps iden-
tify the location of the critical value of such test, the boundary
for deciding between hypotheses. Thus, once the critical value is
known—see below—, the main hypothesis can also be written so
as for incorporating such critical value, if so desired (e.g., HM:
M1–M2 = 0± MES, α = 0.05, CVt = 2.38).

Caution: Neyman-Pearson’s critical region is very similar to the
equivalent critical region you would obtain by using Fisher’s sig
as a cut-off point on a null distribution. However, this similarity
is rather unimportant on three accounts: it is based on a critical
value which delimits the region to reject HM in favor of HA, irre-
spective of the actual observed value of the test (Fisher, on the
contrary, is more interested in the actual p-value of the research
result); it is fixed a priori and, thus, rigid and immobile (Fisher’s
level of significance can be flexible—Macdonald, 2002); and it
is non-gradable (with Fisher’s approach, you may delimit several
more extreme critical regions as areas of stronger evidence).

Step 4–Set up the alternative hypothesis (HA). One of the
main innovations of Neyman-Pearson’s approach was the con-
sideration of alternative hypotheses (Neyman and Pearson, 1928,
1933; Neyman, 1956). Unfortunately, the alternative hypothesis is
often postulated in an unspecified manner (e.g., as HA: M1–M2 �=
0), even by Neyman and Pearson themselves (Macdonald, 1997;
Jones and Tukey, 2000). In practice, a fully specified alternative
hypothesis (e.g., its mean and variance) is not necessary because
this hypothesis only provides partial information to the testing of
the main hypothesis (a.k.a., the effect size and β). Therefore, the
alternative hypothesis is better written so as for incorporating the
minimum effect size within its postulate (e.g., HA: M1–M2 �= 0±
MES). This way it is clear that values beyond such minimum effect
size are the ones considered of research importance.

Caution: Neyman-Pearson’s HA is often postulated as the nega-
tion of a nil hypothesis (HA: M1–M2 �= 0), which is coherent

with a simple postulate of HM (HM : M1–M2 = 0). These simpli-
fied postulates are not accurate and are easily confused with
Fisher’s approach to data testing—HM resembles Fisher’s H0,
and HA resembles a mere negation of H0. However, merely
negating H0 does not make its negation a valid alternative
hypothesis—otherwise Fisher would have put forward such
alternative hypothesis, something which he was vehemently
against (Hubbard, 2004). As discussed earlier, Neyman-Pearson’s
approach introduces the construct of effect size into their testing
approach; thus, incorporating such construct in the specifica-
tion of both HM and HA makes them more accurate, and less
confusing, than their simplified versions.

Among things to consider when setting the alternative hypoth-
esis are the expected effect size in the population (see above) and
the Type II error you are prepared to commit.

Type II error. A Type II error (or error of the second class) is
made every time the main hypothesis is wrongly retained (thus,
every time HA is wrongly rejected). Making a Type II error is less
critical than making a Type I error, yet you still want to minimize
the probability of making this error once you have decided which
alpha level to use (Neyman and Pearson, 1933; Neyman, 1942;
Macdonald, 2002).

Beta (β). Beta is the probability of committing a Type II error
in the long run and is, therefore, a parameter of the alternative
hypothesis (Figure 4, Neyman, 1956). You want to make beta as
small as possible, although not smaller than alpha (if β needed
to be smaller than α, then HA should be your main hypothesis,
instead!). Neyman and Pearson proposed 20% (β = 0.20) as
an upper ceiling for beta, and the value of alpha (β = α) as
its lower floor (Neyman, 1953). For symmetry with the main
hypothesis, the alternative hypothesis can, thus, be written so
as for incorporating the beta level in its postulate (e.g., HA:
M1–M2 �= 0± MES, β = 0.20).

Step 5–Calculate the sample size (N) required for good
power (1–β). Neyman-Pearson’s approach is eminently a priori
in order to ensure that the research to be done has good power
(Neyman, 1942, 1956; Pearson, 1955; Macdonald, 2002). Power is
the probability of correctly rejecting the main hypothesis in favor
of the alternative hypothesis (i.e., of correctly accepting HA).
It is the mathematical opposite of the Type II error (thus, 1–β;
Macdonald, 1997; Hubbard, 2004). Power depends on the type
of test selected (e.g., parametric tests and one-tailed tests increase
power), as well as on the expected effect size (larger ES’s increase
power), alpha (larger α’s increase power) and beta (smaller β’s
increase power). A priori power is ensured by calculating the
correct sample size given those parameters (Spielman, 1973).
Because power is the opposite of beta, the lower floor for good
power is, thus, 80% (1–β = 0.80), and its upper ceiling is 1–alpha
(1–β = 1–α).

Note: HAdoes not need to be tested under Neyman-Pearson’s
approach, only HM (Neyman and Pearson, 1928, 1933; Neyman,
1942; Pearson, 1955; Spielman, 1973). Therefore, the procedure
looks similar to Fisher’s and, under similar circumstances (e.g.,
when using the same test and sample size), it will lead to the
same results. The main difference between procedures is that
Neyman-Pearson’s HA provides explicit information to the test;
that is, information about ES and β. If this information is not
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taken into account for designing a research project with adequate
power, then, by default, you are carrying out a test under Fisher’s
approach.

Caution: For Neyman and Pearson, there is little justifica-
tion in carrying out research projects with low power. When a
research project has low power, Type II errors are too big, so it
is less probable to reject HM in favor of HA, while, at the same
time, it makes unreasonable to accept HM as the best explana-
tion for the research results. If you face a research project with
low a priori power, try the best compromise between its param-
eters (such as increasing α, relaxing β, settling for a larger ES,
or using one-tailed tests; Neyman and Pearson, 1933). If all fails,
consider Fisher’s approach, instead.

Step 6–Calculate the critical value of the test (CVtest, or
Testcrit). Some of above parameters (test, α and N) can be used for
calculating the critical value of the test; that is, the value to be used
as the cut-off point for deciding between hypotheses (Figure 5,
Neyman and Pearson, 1933).

A POSTERIORI STEPS
Step 7–Calculate the test value for the research (RVtest). In order
to carry out the test, some unknown parameters of the pop-
ulations are estimated from the sample (e.g., variance), while
other parameters are deduced theoretically (e.g., the distribu-
tion of frequencies under a particular statistical distribution).
The statistical distribution so established thus represents the ran-
dom variability that is theoretically expected for a statistical main
hypothesis given a particular research sample, and provides infor-
mation about the values expected at different locations under
such distribution.

By applying the corresponding formula, the research value of
the test (RVtest) is obtained. This value is closer to zero the closer
the research data is to the mean of the main hypothesis; it gets
larger the further away the research data is from the mean of the
main hypothesis.

Note: P-values can also be used for testing data when using
Neyman-Pearson’s approach, as testing data under HM is similar
to testing data under Fisher’s H0 (Fisher, 1955). It implies calcu-
lating the theoretical probability of the research data under the

FIGURE 5 | Neyman-Pearson’s test in action: CVtest is the point for

deciding between hypotheses; it coincides with the cut-off points

underlying α, β, and MES.

distribution of HM—P(D|HM ). Just be mindful that p-values go in
the opposite way than RVs, with larger p-values being closer to
HM and smaller p-values being further away from it.

Caution: Because of above equivalence, you may use
p-values instead of CVtest with Neyman-Pearson’s approach.
However, p-values need to be considered mere proxies under
this approach and, thus, have no evidential properties whatso-
ever (Frick, 1996; Gigerenzer, 2004). For example, if working with
a priori α = 0.05, p = 0.01 would lead you to reject HM at α = 0.05;
however, it would be incorrect to reject it at α = 0.01 (i.e., α

cannot be adjusted a posteriori), and it would be incorrect to con-
clude that you reject HM strongly (i.e., α cannot be gradated). If
confused, you are better off sticking to CVtest , and using p-values
only with Fisher’s approach.

Step 8–Decide in favor of either the main or the alternative
hypothesis. Neyman-Pearson’s approach is rather mechanical
once the a priori steps have been satisfied (Neyman and Pearson,
1933; Neyman, 1942, 1956; Spielman, 1978; Macdonald, 2002).
Thus, the analysis is carried out as per the optimal test selected
and the interpretation of results is informed by the mathematics
of the test, following on the a priori pattern set up for deciding
between hypotheses:

• If the observed result falls within the critical region,
reject the main hypothesis and accept the alternative
hypothesis.

• If the observed result falls outside the critical region and the
test has good power, accept the main hypothesis.

• If the observed result falls outside the critical region and the
test has low power, conclude nothing. (Ideally, you would not
carry out research with low power—Neyman, 1955).

Notes: Neyman-Pearson’s approach leads to a decision between
hypotheses (Neyman and Pearson, 1933; Spielman, 1978). In
principle, this decision should be between rejecting HM or retain-
ing HM (assuming good power), as the test is carried out on
HM only (Neyman, 1942). In practice, it does not really make
much difference whether you accept HM or HA, as appropriate
(Macdonald, 1997). In fact, accepting either HM or HA is bene-
ficial as it prevents confusion with Fisher’s approach, which can
only reject H0 (Perezgonzalez, 2014).

Reporting the observed research test value is relevant
under Neyman-Pearson’s approach, as it serves to compare the
observed value against the a priori critical value—e.g., t(64) =
3.31, 1-tailed > CVt = 2.38, thus accept HA. When using a p-value
as a proxy for CVtest , simply strip any evidential value off p—e.g.,
t(64) = 3.31, p < α, 1-tailed.

Neyman-Pearson’s hypotheses are also assumed to be true.
HM represents the probability distribution of the data given a true
hypothesis—P(D|HM ), while HA represents the distribution of the
data under an alternative true hypothesis—P(D|HA), even when
it is never tested. This means that HM and HA cannot be, at the
same time false, nor proved or falsified a posteriori. The only
way forward is to act as if the conclusion reached by the test
was true—subject to a probability α or β of making a Type I or
Type II error, respectively (Neyman and Pearson, 1933; Cortina
and Dunlap, 1997).
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HIGHLIGHTS OF NEYMAN-PEARSON’S APPROACH
More powerful. Neyman-Pearson’s approach is more power-

ful than Fisher’s for testing data in the long run (Williams et al.,
2006). However, repeated sampling is rare in research (Fisher,
1955).

Better suited for repeated sampling projects. Because of
above, Neyman-Pearson’s approach is well-suited for repeated
sampling research using the same population and tests, such as
industrial quality control or large scale diagnostic testing (Fisher,
1955; Spielman, 1973).

Deductive. The approach is deductive and rather mechanical
once the a priori steps have been set up (Neyman and Pearson,
1933; Neyman, 1942; Fisher, 1955).

Less flexible than Fisher’s approach. Because most of the
work is done a priori, this approach is less flexible for accommo-
dating tests not thought of beforehand and for doing exploratory
research (Macdonald, 2002).

Defaults easily to Fisher’s approach. As this approach looks
superficially similar to Fisher’s, it is easy to confuse both
and forget what makes Neyman-Pearson’s approach unique
(Lehman, 1993). If the information provided by the alternative
hypothesis—ES and β—is not taken into account for designing
research with good power, data analysis defaults to Fisher’s test of
significance.

NULL HYPOTHESIS SIGNIFICANCE TESTING
NHST is the most common procedure used for testing data
nowadays, albeit under the false assumption of testing sub-
stantive hypotheses (Carver, 1978; Nickerson, 2000; Hubbard,
2004; Hager, 2013). NHST is, in reality, an amalgamation of
Fisher’s and Neyman-Pearson’s theories, offered as a seamless
approach to testing (Macdonald, 2002; Gigerenzer, 2004). It is
not a clearly defined amalgamation either and, depending on
the author describing it or on the researcher using it, it may
veer more toward Fisher’s approach (e.g., American Psychological
Association, 2010; Nunnally, 1960; Wilkinson and the Task Force
on Statistical Inference, 1999; Krueger, 2001) or toward Neyman-
Pearson’s approach (e.g., Cohen, 1988; Rosnow and Rosenthal,
1989; Frick, 1996; Schmidt, 1996; Cortina and Dunlap, 1997;
Wainer, 1999; Nickerson, 2000; Kline, 2004).

Unfortunately, if we compare Fisher’s and Neyman-Pearson’s
approaches vis-à-vis, we find that they are incompatible in most
accounts (Table 1). Overall, however, most amalgamations fol-
low Neyman-Pearson procedurally but Fisher philosophically
(Spielman, 1978; Johnstone, 1986; Cortina and Dunlap, 1997;
Hubbard, 2004).

NHST is not only ubiquitous but very well ingrained in
the minds and current practice of most researchers, jour-
nal editors and publishers (Spielman, 1978; Gigerenzer, 2004;
Hubbard, 2004), especially in the biological sciences (Lovell,
2013; Ludbrook, 2013), social sciences (Frick, 1996), psychology
(Nickerson, 2000; Gigerenzer, 2004) and education (Carver, 1978,
1993). Indeed, most statistics textbooks for those disciplines still
teach NHST rather than the two approaches of Fisher and of
Neyman and Pearson as separate and rather incompatible the-
ories (e.g., Dancey and Reidy, 2014). NHST has also the (false)
allure of being presented as a procedure for testing substantive
hypotheses (Macdonald, 2002; Gigerenzer, 2004).

In the situations in which they are most often used by
researchers, and assuming the corresponding parameters are also
the same, both Fisher’s and Neyman-Pearson’s theories work with
the same statistical tools and produce the same statistical results;
therefore, by extension, NHST also works with the same statistical
tools and produces the same results—in practice, however, both
approaches start from different starting points and lead to differ-
ent outcomes (Fisher, 1955; Spielman, 1978; Berger, 2003). In a
nutshell, the differences between Fisher’s and Neyman-Pearson’s
theories are mostly about research philosophy and about how to
interpret results (Fisher, 1955).

The most coherent plan of action is, of course, to follow the
theory which is most appropriate for purpose, be this Fisher’s or
Neyman-Pearson’s. It is also possible to use both for achieving
different goals within the same research project (e.g., Neyman-
Pearson’s for tests thought of a priori, and Fisher’s for exploring
the data further, a posteriori), pending that those goals are not
mixed up.

However, the apparent parsimony of NHST and its power to
withstand threats to its predominance are also understandable.
Thus, I propose two practical solutions to improve NHST: the
first a compromise to improve Fisher-leaning NHST, the second a
compromise to improve Neyman-Pearson-leaning NHST. A com-
puter program such as G∗Power can be used for implementing the
recommendations made for both.

IMPROVING FISHER-LEANING NHST
Fisher’s is the closest approach to NHST; it is also the phi-
losophy underlying common statistics packages, such as SPSS.
Furthermore, because using Neyman-Pearson’s concepts within
NHST may be irrelevant or inelegant but hardly damaging, it
requires little re-engineering. A clear improvement to NHST
comes from incorporating Neyman-Pearson’s constructs of effect
size and of a priori sample estimation for adequate power.
Estimating effect sizes (both a priori and a posteriori) ensures
that researchers consider importance over mere statistical sig-
nificance. A priori estimation of sample size for good power
also ensures that the research has enough sensitiveness for
capturing the expected effect size (Huberty, 1987; Macdonald,
2002).

IMPROVING NEYMAN-PEARSON-LEANING NHST
NHST is particularly damaging for Neyman-Pearson’s approach,
simply because the latter defaults to Fisher’s if important con-
structs are not used correctly. An importantly damaging issue
is the assimilation of p-values as evidence of Type I errors
and the subsequent correction of alphas to match such p-
values (roving α’s, Goodman, 1993; Hubbard, 2004). The best
compromise for improving NHST under these circumstances
is to compensate a posteriori roving alphas with a posteri-
ori roving betas (or, if so preferred, with a posteriori rov-
ing power). Basically, if you are adjusting alpha a posteri-
ori (roving α) to reflect both the strength of evidence (sig)
and the long-run Type I error (α), you should also adjust
the long-run probability of making a Type II error (roving
β). Report both roving alphas and roving betas for each test,
and take them into account when interpreting your research
results.
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Table 1 | Equivalence of constructs in Fisher’s and Neyman-Pearson’s theories, and amalgamation of constructs under NHST.

Concept Fisher Neyman-Pearson

Test object Data—P(D|H0) = Data—P(D|HM)

NHST ➥ Data as if testing a falsifiable
hypothesis—P(H0|D)

➥

Approach A posteriori �= A priori

NHST ➥ A posteriori, sometimes both ➥(partly)

Research goal Statistical significance of research
results

�= Deciding between competing
hypotheses

NHST ➥ Statistical significance, also used for
deciding between hypotheses

➥

Hs under test H0, to be nullified with evidence ≈ HM, to be favored against HA

NHST ➥ Both (H0 = HM) ➥

Alternative hypothesis Not needed (implicitly, “No H0′′ ) �= Needed. Provides ES and β

NHST ➥ HA posed as ‘No H0’ (ES and β

sometimes considered)
➥(partly)

Prob. distr. of test As appropriate for H0 = As appropriate for HM

NHST ➥ As appropriate for H0 ➥

Cut-off point Sig identifies noteworthy results;
can be gradated; can be corrected

a posteriori

�= Common to CVtest, α, β, and
MES; cannot be gradated; cannot
be corrected a posteriori

NHST ➥ Sig = α, can be gradated, can be
corrected a posteriori

➥(partly)

Sample size calculator None �= Based on test, ES, α, and power
(1 − β)

NHST ➥ Either ➥

Statistic of interest p-value, as evidence against H0 �= CVtest (p-value has no inherent
meaning but can be used as a
proxy instead)

NHST ➥ p-value, used both as evidence
against H0 and a proxy to accept HA

➥

Error prob. α possible, but irrelevant with
single studies

�= α = Type I error prob. β = Type II
error prob.

NHST (partly) ➥ p-value = α = Type I error in single
studies (β sometimes considered)

➥(partly)

Result falls outside
critical region

Ignore result as not significant �= Accept HMif good power;
conclude nothing otherwise

NHST ➥ Either ignore result as not significant;
or accept H0; or conclude nothing

➥

Result falls in critical
region

Reject H0 �= Accept HA (= Reject HM in favor
of HA)

NHST ➥ Either ➥

Interpretation of results
in critical region

Either a rare event occurred or H0

does not explain the research data
�= HA explains research data better

than HM does (given α)

NHST HA has been proved / is true; or H0

has been disproved / is false; or both

(Continued)
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Table 1 | Continued

Concept Fisher Neyman-Pearson

Next steps Rejecting H0 does not
automatically justify not H0.

Replication needed, meta-analysis
is useful.

�= Impossible to know whether α

error has been made. Repeated
sampling of same population
needed, Monte Carlo is useful.

NHST None (results taken as definitive,
especially if significant); further

studies may be sometimes
recommended (especially if results

are not significant)

Caution: NHST is very controversial, even if the controversy is
not well known. A sample of helpful readings on this contro-
versy are Christensen (2005); Hubbard (2004); Gigerenzer (2004);
Goodman (1999), Louçã (2008, http://www.iseg.utl.pt/departa
mentos/economia/wp/wp022008deuece.pdf), Halpin and Stam
(2006); Huberty (1993); Johnstone (1986), and Orlitzky (2012).

CONCLUSION
Data testing procedures represented a historical advancement for
the so-called “softer” sciences, starting in biology but quickly
spreading to psychology, the social sciences and education. These
disciplines benefited from the principles of experimental design,
the rejection of subjective probabilities and the application of
statistics to small samples that Sir Ronald Fisher started popular-
izing in 1922 (Lehmann, 2011), under the umbrella of his tests
of significance (e.g., Fisher, 1954). Two mathematical contem-
poraries, Jerzy Neyman and Egon Sharpe Pearson, attempted to
improve Fisher’s procedure and ended up developing a new the-
ory, one for deciding between competing hypotheses (Neyman
and Pearson, 1928), more suitable to quality control and large
scale diagnostic testing (Spielman, 1973). Both theories had
enough similarities to be easily confused (Perezgonzalez, 2014),
especially by those less epistemologically inclined; a confusion
fiercely opposed by the original authors (e.g., Fisher, 1955)—
and ever since (e.g., Nickerson, 2000; Lehmann, 2011; Hager,
2013)—but something that irreversibly happened under the label
of null hypothesis significance testing. NHST is an incompati-
ble amalgamation of the theories of Fisher and of Neyman and
Pearson (Gigerenzer, 2004). Curiously, it is an amalgamation that
is technically reassuring despite it being, philosophically, pseudo-
science. More interestingly, the numerous critiques raised against
it for the past 80 years have not only failed to debunk NHST
from the researcher’s statistical toolbox, they have also failed to
be widely known, to find their way into statistics manuals, to be
edited out of journal submission requirements, and to be flagged
up by peer-reviewers (e.g., Gigerenzer, 2004). NHST effectively
negates the benefits that could be gained from Fisher’s and
from Neyman-Pearson’s theories; it also slows scientific progress
(Savage, 1957; Carver, 1978, 1993) and may be fostering pseu-
doscience. The best option would be to ditch NHST altogether
and revert to the theories of Fisher and of Neyman-Pearson as—
and when—appropriate. For everything else, there are alternative

tools, among them exploratory data analysis (Tukey, 1977), effect
sizes (Cohen, 1988), confidence intervals (Neyman, 1935), meta-
analysis (Rosenthal, 1984), Bayesian applications (Dienes, 2014)
and, chiefly, honest critical thinking (Fisher, 1960).
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