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The Iowa Gambling Task (IGT) and the Soochow Gambling Task (SGT) are two
experience-based risky decision-making tasks for examining decision-making deficits
in clinical populations. Several cognitive models, including the expectancy-valence
learning (EVL) model and the prospect valence learning (PVL) model, have been
developed to disentangle the motivational, cognitive, and response processes
underlying the explicit choices in these tasks. The purpose of the current study was
to develop an improved model that can fit empirical data better than the EVL and PVL
models and, in addition, produce more consistent parameter estimates across the IGT
and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79) and 27 control participants
(mean age 35; SD 10.44) completed both tasks. Eighteen cognitive models varying in
evaluation, updating, and choice rules were fit to individual data and their performances
were compared to that of a statistical baseline model to find a best fitting model. The
results showed that the model combining the prospect utility function treating gains
and losses separately, the decay-reinforcement updating rule, and the trial-independent
choice rule performed the best in both tasks. Furthermore, the winning model produced
more consistent individual parameter estimates across the two tasks than any of the
other models.

Keywords: Iowa Gambling Task, Soochow Gambling Task, cognitive modeling, parameter consistency, opiate
users

Introduction

The Iowa Gambling Task (IGT; Bechara et al., 1994) and the Soochow Gambling Task (SGT;
Chiu et al., 2008) are experience-based risky decision-making tasks. The IGT has been used
in numerous studies to examine decision-making deficits in various clinical populations, such
as people with brain damage (e.g., Bechara et al., 1994, 1999), neurodegenerative diseases (e.g.,
Stout et al., 2001), or drug abuse problems (Grant et al., 2000; Bechara et al., 2001; Bolla et al.,
2003; Bechara and Martin, 2004; Stout et al., 2004; Gonzalez et al., 2007; Vassileva et al., 2007). The
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SGT was developed more recently to further distinguish influ-
ential factors for decisions using a scenario similar to the
IGT (Chiu et al., 2008). While IGT studies produced ambivalent
results in terms of the relevant impacts of gain-loss frequency
and expected value (e.g., Dunn et al., 2006), the choice pattern
of healthy participants in the SGT suggested that gain-loss fre-
quency is more influential than expected value in determining
preference in such tasks.

An important feature of the IGT and SGT is the com-
plex interplay among motivational, cognitive, and response pro-
cesses underlying the explicit choice behavior revealed in these
tasks. Therefore, decision-making deficits in particular partici-
pant groups may be produced by deficiencies in different compo-
nent processes. Various cognitive models have been examined to
disentangle this interplay of psychological processes underlying
decision task performance, and successful ones are then applied
to clinical populations to identify reasons for disadvantageous
choice patterns. Among them are the expectancy-valance learn-
ing model (EVL; Busemeyer and Stout, 2002) and the prospect
valence learning model (PVL; Ahn et al., 2008), which have been
successfully fitted to empirical data from a variety of healthy and
clinical groups (Busemeyer and Stout, 2002; Stout et al., 2004;
Yechiam et al., 2005; Lane et al., 2006; Fridberg et al., 2010).

In this study, we aimed to improve the cognitive models for
the IGT and SGT in two major aspects. Compared with previous
models, the improved model should not only provide better fits
to individual data, but also demonstrate a better consistency in
parameter estimates across the two tasks. The former is what we
expect from a better model in general, while the latter is desired
for a model which presumably captures the common decision
processes underlying the two tasks.

The remainder of this article is organized as follows. First,
we briefly describe and compare the IGT and SGT. Second, we
describe modifications to the EVL and PVL models that might
yield new improvements for quantifying the component deci-
sion processes. Third, we report a previously published behavioral
study on IGT and SGT with both non-opiate user controls and
clinical participants (i.e., opiate users), and compare the perfor-
mances of various models in fitting individual data from the
empirical study. We also report results from parameter con-
sistency tests across tasks on the various models. The article
concludes with a discussion on the implications of the newmodel
and future research orientations.

The IGT and SGT
The IGT was initially developed by Bechara et al. (1994) as a tool
to simulate real-world risky decision-making and detect decision-
making deficits of patients with brain damage. The task requires
participants to choose a card from one of four decks (labeled
decks A, B, C, and D respectively) on each trial and the total
number of trials is unknown to participants. When a card is cho-
sen, the payoff of that card is revealed1. The goal of the task is
to maximize the total payoff. Some of the cards produce a pure

1The payoffs of the IGT used in this study were 1/100th of the hypothetical payoffs
in the original design of Bechara et al. (1994). In this way, the participants could be
paid what they actually encountered in the study. The same is true for the payoffs
of the SGT used in this study.

TABLE 1 | The payoff distribution of the IGT.

Deck A B C D

Expected value of 10 trials ($) −2.50 −2.50 2.50 2.50

Gain from each trial ($) 1.00 1.00 0.50 0.50

Number of loss(es) in each set of 10
trials

5 1 5 1

Loss amount(s) in each set of 10
trials ($)

−1.50 −12.50 −0.25 −2.50

−2.00 −0.50

−2.50 −0.50

−3.00 −0.50

−3.50 −0.75

gain (e.g., winning $0.50), while others lead to a mixture of gain
and loss (e.g., winning $1 but at the same time losing $3). The
cards within each deck yield the same amounts of gain but differ-
ent amounts of possible loss (see Table 1). Specifically, each card
in decks A and B yields a gain of $1 when turned over, while each
card in decks C and D yields $0.50. For decks A and C, five out
of each set of 10 trials produce a loss in addition to a gain. For
decks B and D, only one out of each set of 10 trials produces
a simultaneous loss. The amounts of potential loss are manipu-
lated so that the expected values of decks A and B are negative
(i.e., losing $2.5 in each set of 10 trials) while those of decks C
and D are positive (i.e., gaining $2.5 in each set of 10 trials). The
positions of trials yielding a loss within each set of 10 trials are
randomized. In summary, decks C and D are better than decks
A and B in terms of long-term net gain, and therefore the for-
mer are typically called the advantageous or good decks while
the latter are disadvantageous or bad ones. On the other hand,
decks B and D produce net gains more frequently than decks
A and C.

A typical finding in the initial application of the IGT to clin-
ical populations was that healthy people tended to choose the
good decks (i.e., decks C and D) more frequently than the bad
ones (i.e., decks A and B) after gaining experience with the task,
but participants with brain damage to the ventromedial pre-
frontal cortex (vmPFC) kept choosing the bad decks throughout
the whole experiment. Bechara and colleagues (Damasio, 1994;
Bechara et al., 1996) interpreted this pattern as a demonstration
that people with damage to vmPFC cannot accumulate informa-
tion from previous experience to foresee the long-term value of
a specific deck and attributed this deficit to the incapability of
producing a somatic marker to guide future decisions. However,
Lin et al. (2007) and Chiu et al. (2008) questioned this interpreta-
tion as well as the design of IGT, arguing that there is a severe
confounding between long-term outcome (i.e., expected value)
and gain-loss frequency variables in the IGT (see also Dunn et al.,
2006). Consequently, the preference for the good decks among
healthy people may be partly caused by the fact that deck D
produces a positive expected value as well as more net gains.
This argument was supported by the phenomenon of “prominent
deck B” (Toplak et al., 2005; Lin et al., 2007; see Dunn et al., 2006,
for a review), which suggested that healthy people also tend to
choose deck B more frequently than the somatic marker hypoth-
esis predicts. As a result, Chiu et al. (2008) designed the SGT
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to eliminate the confounding between long-term outcome and
gain-loss frequency.

The SGT has the same surface characteristics and goal as the
IGT, as well as the same expected value of each deck. However,
the payoff distribution of the SGT was modified to redress the
confounding in the IGT. Specifically, each card in the SGT always
produces either a gain or a loss (see Table 2). For decks A and B,
four out of each set of five trials produce a gain while the remain-
ing one produces a large amount of loss to make the expected
values of these two decks negative. In contrast, for decks C and D,
four out of each set of five trials produce a loss but the remaining
one produces a large amount of gain so that the expected values
are positive. In this way, decks with a positive expect value also
produce (net) losses more frequently. Finally, the order of payoffs
is randomized within each set of five instead of 10 trials.

Chiu et al. (2008) found that, just like clinical participants,
healthy people tended to choose the bad decks more often
than the good ones in the SGT. Therefore, they argued that
gain-loss frequency is more important than long-term outcome
in predicting choice behavior in the IGT and SGT. This was
echoed by a recent review of the IGT in healthy participants by
Steingroever et al. (2013), which questioned the assumption that
healthy people learn to prefer the options with positive expected
values. Despite the apparent similarities between the IGT and
SGT, the different payoff distributions warrant the use of both
tasks in a single study to better understand risky choices from
experience.

Cognitive Models of the IGT and SGT
The EVL and PVL Models
Various cognitive models of the IGT and SGT have been evalu-
ated and compared previously in terms of their descriptive accu-
racy for the empirical choice pattern of healthy and clinical par-
ticipants. Among them, the EVL model (Busemeyer and Stout,
2002) and the PVL model (Ahn et al., 2008) appeared to be the
most successful and widely used ones. Bothmodels are built upon
three general assumptions. First, participants evaluate the pos-
itive and/or negative payoffs produced by their choice on each
trial with a unidimensional utility function. Second, based on the
utility of experienced payoff(s) on each trial, expectation about
the utility of each deck is updated with a specific learning rule.
Third, the expected utility associated with each deck then serves
as an input to a probabilistic function which determines the
choice probability of each deck on the next trial. In other words,
the explicit behavior in the IGT and SGT is determined by the
interplay of three processes, i.e., the motivational process (utility

TABLE 2 | The payoff distribution of the SGT.

Deck A B C D

Expected value of 10 trials ($) −2.50 −2.50 2.50 2.50

Payoffs in each set of five trials ($) 1.00 0.50 −1.00 −0.50

1.00 0.50 −1.00 −0.50

1.00 0.50 −1.00 −0.50

1.00 0.50 −1.00 −0.50

−5.25 −3.25 5.25 3.25

evaluation), the cognitive process (expectation updating), and the
response process (deck choosing).

According to the EVL model, the evaluation process is gov-
erned by the following weighted utility function

u(t) = (1 − W) · win(t) − W · loss(t) (1)

in which win(t) and loss(t) represent the amounts of gain and loss
on trial t respectively, and W is an attention weight parameter
which denotes the weight participants place on losses as opposed
to gains. It is constrained between 0 and 1; the higher it is, the
more attention one puts on losses than gains. We can also inter-
pret Equation 1 as a piecewise linear utility function with an
implication that participants evaluate gains and losses separately.

The expectation updating rule involved in the EVL model is
the following delta-learning rule (Rescorla and Wagner, 1972),

Ej(t) = Ej(t − 1) + A · δj(t) · [u(t) − Ej(t − 1)] (2)

in which Ej(t) represents the expectancy or expected utility for
deck j on trial t and A is an updating parameter denoting the
influential power of the current outcome on the expectancy for
a deck. The value of A should be constrained between 0 and 1
so that the new expectancy after updating is bounded between
the old expectancy and the utility of the immediate outcome. The
variable δj(t) in Equation 2 is a dummy variable indicating the
deck chosen on trial t. For example, if deck C is chosen on trial t,
then δC(t) = 1, and δj(t) = 0 for j=A, B, D.WhenA equals 0, the
expectancy for each deck will not change (i.e., Ej(t) = Ej(t − 1));
when A equals 1, the expectancy for the chosen deck will be iden-
tical to the utility of the immediate outcome and those for the
other decks will remain unchanged.

Finally, the choice rule assumed by the EVL model is a trial-
dependent ratio-of-strength rule (Luce, 1959). Specifically, the
choice probability of each deck on trial t + 1 is

Pr[D(t + 1) = j] = eθ(t)·Ej(t)
∑

j e
θ(t)·Ej(t) (3)

in whichD(t + 1)= j represents choosing deck j on trial t + 1 and
θ (t) is a sensitivity parameter which determines the sensitivity of
choice probabilities to expectancies on trial t. Equation 3 suggests
that the higher the expectancy of a deck is, the more likely it will
be chosen on the next trial. The trial-dependent choice (TDC)
rule further assumes that

θ(t) = (t/10)c (4)

in which c is a consistency parameter. This type of choice rule
implies a changing sensitivity parameter over trials.

Ahn et al. (2008) extended the literature by further explor-
ing different formalizations of each of the three processes in
an attempt to find a better model in terms of both descrip-
tive and predictive accuracy for the IGT and SGT. Specifically,
they tried a utility function based on the prospect theory
(Kahneman and Tversky, 1979) in addition to the original piece-
wise linear utility function in the EVL, a decay-reinforcement
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learning (DRL) rule (Erev and Roth, 1998) in addition to the orig-
inal delta-learning rule, and a trial-independent choice (TIC) rule
as well as the original TDC rule.

According to the prospect utility function in Ahn et al. (2008),

u(t) = { x(t)α

−λ|x(t)|α
if
if

x(t) ≥ 0
x(t) < 0

(5)

in which x(t) is the net payoff (i.e., win(t) - |loss(t)|) on trial t,
α is the exponent of the power function which prescribes the
shape of the utility function, and λ is a loss aversion parameter.
The value of α is typically constrained between 0 and 1. When α

equals 0, the prospect utility function reduces into a step func-
tion with all net gains producing the same positive utility (i.e., 1)
and all net losses producing the same negative utility (i.e., –λ).
When α equals 1, the utility of a net gain is equal to its objec-
tive value (i.e., x(t)), and the utility of a net loss is proportional
to its objective value with λ serving as the proportional con-
stant. When α is between 0 and 1 exclusively, the utility function
is curved with diminishing marginal utility. The loss aversion
parameter λ denotes howmuch an individual participant is averse
to losses relative to his/her degree of preference toward gains of
the same magnitude. A value of λ greater than 1 indicates that
the negative utility of a loss would more than counterbalance the
positive utility of a gain of the same magnitude, while a value
of λ smaller than 1 suggests the opposite. The specific form of
prospect utility function explored by Ahn et al. (2008) suggests
that only the net payoffs are evaluated, whereas the utility func-
tion of the EVL model implies that gains and losses are evaluated
separately before combined together.

The DRL rule in the PVL model suggests that in the short
period between two successive trials, the expectancy resulted
from the first trial decays and the updated expectancy after the
second trial is a sum of the decayed expectancy and the utility of
the current outcome. Specifically,

Ej(t) = A · Ej(t − 1) + δj(t) · u(t) (6)

in whichA is a recency parameter and δj(t) is a dummy variable as
in the delta-learning rule. Unlike the delta learning rule, the DRL
rule implies that the expectancies of the unchosen decks would
decrease on each trial.

Finally, the TIC rule explored by Ahn et al. (2008) assumes
that θ(t) is invariant across trials. Specifically,

θ(t) = θ = 3c − 1 (7)

in which c is a consistency parameter as in the EVL model. The
higher its value is, the more consistent one’s choice will be with
the expectancies of the four decks. When c equals 0, θ = 0, sug-
gesting that choice among the four decks will be totally random
no matter how different their expectancies are. When c is relative
large, θ will be quite big, suggesting that people will choose the
deck with the highest expectancy almost for sure. The results of
Ahn et al. (2008) favored a model combining the prospect utility

function, DRL rule, and TIC rule. The resultant model is usually
called the PVL model2.

Alternative Cognitive Models of the IGT and SGT
Although the EVL and PVL models have been successfully
applied to various populations to disentangle the interplay
between component processes underlying the IGT and SGT, there
are other ways to model these two tasks. Indeed, the common
structure of these two models suggests using alternative util-
ity functions, updating rules, and/or choice rules to generate
potentially better models. Consequently, in this article we pro-
pose a new utility function and a new updating rule, which
will be combined with complementary components in the EVL
and PVL models to create new cognitive models of the IGT
and SGT.

According to the prospect utility function in the PVL model,
the utility of an outcome with the same amounts of gain and loss
is always zero. This is due to the fact that the net outcome is zero
under this condition and only net outcome is evaluated accord-
ing to the PVL model. In contrast, the same property holds for
the weighted utility function of the EVL model only when the
attention weight parameter, W, equals 0.5 and thus gains and
losses attract the same amounts of attention. When selecting a
card leads to both gain and loss of the same magnitude, a partici-
pant’s overall feeling may not be neutral because, for example, the
sadness associated with the loss may not be completely offset by
the gain. Here, we propose an alternative form of prospect utility
function that combines features of utility functions in both the
EVL and PVL models,

u(t) = [win(t)]α − γ [∣∣loss(t)∣∣]α (8)

in which win(t) and loss(t) represent the amounts of gain and
loss on trial t, and α and γ have the same meanings as in the
PVL model. On the one hand, like the weighted utility func-
tion, this utility function evaluates gains and losses separately
before aggregating the results to generate a comprehensive utility.
On the other hand, the new utility function retains the assump-
tions of prospect theory concerning non-linearity (i.e., α) and loss
aversion (i.e., γ ).

Other modifications incorporating features of both EVL and
PVL models can be applied to the updating rule. According to
the updating rule of the EVL model (i.e., the delta learning rule),
after a card from a specific deck is turned over, the updated
expectancy of the selected deck should lie between its previous
expectancy and the utility of the current outcome. In contrast,
the updating rule of the PVL model (i.e., the DRL rule) suggests
that participants will add the utility of the current outcome
to the (decayed) expectancy of the selected deck to update its
expectancy. One potential problem with the DRL rule is that the
updated expectancy of the selected deck can be larger in absolute
magnitude than both its previous expectancy and the utility of
the current outcome. In other words, the updated expectancy
is not reasonably bounded. For example, suppose A = 0.9,

2The definitive feature of the PVL model is the use of the specific form of prospect
utility function explored in Ahn et al. (2008). See Fridberg et al. (2010) for more
information.
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Ej(t–1) = 10, and u(t) = 5 in Equation 6 for a chosen deck. Then
Ej(t) = 0.9 × 10 + 5 = 14, which is larger than both Ej(t–1) and
u(t). To get around this potential problem, we explore a new
learning rule that incorporates the features of both delta and
DRL rules,

Ej(t) = (1 − D) · Ej(t − 1)+
A · δj(t) · [u(t) − (1 − D) · Ej(t − 1)] (9)

in which D is a decay parameter, A is an updating parameter,
and δj(t) is a dummy variable indicating the deck chosen on
trial t3. This updating rule assumes mechanisms of both memory
decay and delta-learning and thus might account for empirical
data more accurately. We will hereafter call it the mixed updating
rule.

In summary, with the new utility function and updating rule,
we have a collection of three utility functions (i.e., the weighted
utility function of the EVL model, the prospect utility function
of the PVL model, and the alternative prospect utility function
described above), three updating rules (i.e., the delta learning rule
of the EVL model, the DRL rule of the PVL model, and the mix-
ture updating rule), and two choice rules (i.e., the TDC rule of
the EVL model and the TIC rule of the PVL model) to generate
cognitive models of the two tasks. Forming all combinations, we
evaluated and compared 18 cognitive models to find new models
even better than the EVL and PVL models.

Materials and Methods

Participants
A total of 26 opiate users (mean age = 34.23 years, SD = 8.79)
and 27 age and gender matched control participants (mean
age = 35 years, SD = 10.44) were involved in this study (see
Table 3). Opiate users were recruited from Turning Point Alcohol
and Drug Centre, a community outpatient service located in
Melbourne (Australia). Opiate users were treatment seeking,
either currently abstinent or taking prescribed opiate substitu-
tion medication (methadone, buprenorphine). Participants were
asked to abstain from illicit drugs and alcohol for 12 h prior to
the testing session (excluding opiate substitution medication).
If participants reported using alcohol or drugs less than 12 h
before the test session, or had a blood alcohol level reading
above 0.05 mg/kg on arrival, their test session was postponed
for at least 1 day. Fourteen of the opiate users (54%) and five
of the controls (19%) reported having a current mood disorder
[among opiate users, two had major depressive disorder (MDD),
two had an anxiety disorder, eight had MDD and an anxiety
disorder, and two had a bipolar disorder; among controls, two
had MDD, two had an anxiety disorder and one had MDD and

3Note that we replace the recency parameter A in Equation 6 [i.e., Equation 4 in
Ahn et al. (2008)] with (1 – D) and reserve symbol A for the updating parameter
to formulize the mixed updating rule. This leads to clearer symbol system in this
article and higher values of D, the decay parameter, actually indicate more rapid
memory decay. The same is true for our formulation of the decay-reinforcement
learning rule.

an anxiety disorder]. Exclusion criteria for control participants
were: use of illicit drugs in the previous 6 months, history of
drug and/or alcohol dependence or abuse, blood alcohol level
>0.05 mg/kg confirmed on arrival to the test session. In addition,
any participants from either group who had a history of psy-
chosis were excluded. All participants provided written informed
consent, and the Monash University Human Ethics Committee
approved all study procedures. See Table 3 for more information
concerning the sample4.

Procedure
The participants completed computerized versions of the IGT
and SGT. The order of tasks was counterbalanced across par-
ticipants. Each task had 120 trials with an unlimited number of
cards in each deck. Participants were given a starting balance of
$20.00 and received any money earned above this balance at the
end of the task. They could not lose any money. The total bal-
ance was updated on-screen after every selection and participants
were also provided with feedback about the net change in balance
after every 20 trials. Each trial was participant-initiated, and there
were no time restrictions. Decks were positioned on the computer
screen, from left to right, randomly across participants.

Model Comparison Analyses
Maximum Likelihood Estimation
A total of 18 cognitive models (3 utility functions × 3 updat-
ing rules × 2 choice rules) were fit to the choice data of each
individual in each task. We used these models to predict choice
probabilities of the four decks on each trial given the outcomes
experienced on previous trials. The one-step-ahead predictions
were then employed to evaluate the performance of each model.
Specifically, we defined the likelihood of the observed choice
sequence of each participant as the product of the predicted
choice probabilities of the decks actually chosen across trials5 and
we used maximum-likelihood estimation to find the best param-
eter values for each model. The log likelihood of the observed
sequence is defined as

LLM =
n−1∑

t=1

∑

j

ln(Pr[Dj(t + 1)]) · δj(t + 1) (10)

In the above equation, n denotes the number of trials,
Pr[Dj(t + 1)] represents the predicted choice probability of deck
j on trial t + 1 given the sequence of choices and outcomes up to
and including trial t, δj(t + 1) is a dummy variable with a value of
1 if deck j is chosen on trial t + 1 and 0 otherwise, and the second
summation is across the four decks. A combination of grid-search
with 50 different starting positions and simplex search method
(Nelder and Mead, 1965) was utilized to find the best parameter
values.

4Behavioral data from this sample were reported and analyzed in Upton et al.
(2012). In the current study we focus on the performance of various models with
regard to the data.
5The first trial was actually skipped in calculating likelihood of the choice sequence
since all models predict equal choice probabilities (i.e., 0.25) across decks for the
first trial.
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TABLE 3 | Summary of demographic, mood, personality, and substance use variables.

Controls (n = 27) Drug users (n = 26)

M (SD) % M (SD) %

Age 35 (10.44) 34.23 (8.79)

Gender (male) 81.49 80.67

Est. IQ (WTAR) 35.15 (8.23) 32.42 (10.22)

Education (years)* 14.74 (2.93) 12.25 (3.46)

Employed* 66.67 11.54

Head inj. requiring hospital* 3.70 38.46

Mood/anxiety dis. (depression and/or anxiety)* 18.51 53.85

Anxiety (past week; HADS)* 5.41 (2.42) 9.73 (3.66)

Depression (past week; HADS)* 3.11 (3.09) 7.50 (3.42)

Impulsivity (Eysenck I7)* 5.41 (3.65) 10.46 (4.62)

Antisociality (MMPI-PD)* 15.52 (4.50) 24.44 (6.31)

Alcohol

Past month use 59.26 59.26

Past month use (numb. days) 3.22 (5.77) 7.42 (9.12)

Lifetime use (years) 11.70 (10.78) 13.69 (8.69)

Problems (MAST) 0.44 (0.66) 8.23 (6.71)

Tobacco

Never 74.10 3.85

Quit 11.11 0

Current (occasional) 7.41 0

Current (daily) 7.41 96.15

Cannabis

Past month use 0 42.31

Past month use (numb. days) 0 8.15 (11.75)

Lifetime use (years) 1.74 (5.35) 8.81 (7.84)

Amphetamine

Past month use 0 23.10

Past month use (numb. days) 0 0.50 (1.14)

Lifetime use (years) 0 5.04 (6.45)

Heroin

Past month use 0 73.10

Past month use (numb. days) 0 5.85 (6.44)

Lifetime use (years) 0 9.35 (6.75)

Prescr. Methadone (current)

Past month use 0 46.15

Past month use (numb. days) 0 13.69 (15)

Lifetime use (years) 0 1.96 (3.23)

Parent hist. (sub. problems)* 3.70 50

Illicit drug problems (DAST) 0.30 (0.61) 14.54 (4.34)

*p < 0.05.

Model Comparisons Using the Bayesian Information
Criterion
Since models explored in this study differed in number of param-
eters, the Bayesian information criterion (BIC; Schwartz, 1978)
was used as the main performance index for model compari-
son, because it considers both descriptive accuracy and model
complexity. We also explored a statistical baseline model as in
Busemeyer and Stout (2002) and Ahn et al. (2008). This model
assumes independent choices with constant probabilities across
trials and served as the reference point in our model comparison.

Three free parameters are involved in this model, represent-
ing the choice probabilities of the first three decks on each
trial. By definition, the choice probability of the last deck equals
one minus the sum of those of the first three decks. This
model suggests that people choose among the four decks with-
out considering previous choices and outcomes and thus the
choice probability of each deck remains the same throughout
the whole task. Consequently, a cognitive model performs better
than the baseline model only if it can account for the depen-
dency of choices on previous choices and outcomes. The BIC
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difference score of a specific model compared with the baseline
model6 is

BIC = 2(
∧
LLM − ∧

LL Baseline) − k · ln(n) (11)

in which
∧
LL denotes the maximum log-likelihood produced by

a model, k denotes the difference in the number of parameters
and n is the number of data points used in fitting the models.
Positive values of the BIC difference score indicate that a cog-
nitive model outperforms the baseline model and the higher the
better. A more complex model tends to produce a higher maxi-
mum log-likelihood but is also associated with a larger value of k.
Therefore, models with more parameters do not necessarily lead
to higher BIC scores.

Parameter Consistency Test
The implicit assumption underlying our effort to fit data from
both tasks with the same model is that participants’ choices in
these similar tasks are at least partly governed by the same mech-
anisms. Consequently, model parameters estimated from the two
tasks should be positively associated since they are supposed to
measure relatively stable psychological characteristics of the same
individual across tasks (Yechiam and Busemeyer, 2008). To test

6More precisely, Equation 11 represents the change in BIC value between the
cognitive model and the baseline model.

this hypothesis, we conducted a correlational analysis between
the two tasks for every parameter of each model. A good model
in this respect should produce positive correlation coefficient for
each parameter involved.

Results

Model Comparison
By comparing the various models (see Table 4), we obtained
five key findings. First, in all cases cognitive models performed
better on average than the baseline statistical model when mak-
ing one-step-ahead predictions. This is not unexpected given
that the baseline model assumes independent choices across tri-
als, which seems unlikely since these tasks promote learning
from feedback throughout. Evidence that the cognitive mod-
els performed better than the baseline model came from the
positive mean BIC difference score of each cognitive model
across both the IGT and SGT. Second, most of the cognitive
models fit IGT data better than SGT data. This was true no
matter whether mean BIC difference score, median BIC differ-
ence score, or percentage of positive BIC difference scores was
used as a criterion. Third, in both tasks the delta learning rule
was always inferior to the DRL rule and the new mixed learn-
ing rule no matter what utility function and choice rule were
involved.

TABLE 4 | Summary of Bayesian information criterion (BIC) difference scores of the 18 cognitive models relative to the baseline statistical model in the
IGT and SGT.

Model Task

IGT SGT

Utility
function

Updating
rule

Choice
rule

# Parameters M Mdn SD % (BIC>0) M Mdn SD % (BIC>0)

EU DEL TDC 3 0.76 −1.78 24.7 45 4.40 −2.30 28.2 42

TIC 3 2.97 −1.48 26.0 38 4.03 −2.25 28.2 36

DRL TDC 3 29.63 16.51 48.8 66 11.95 1.49 39.4 55

TIC 3 33.09 18.28 50.9 64 16.87 3.52 36.9 60

ML TDC 4 25.07 11.46 46.6 64 11.37 1.48 35.1 51

TIC 4 29.35 13.41 50.6 62 13.05 −1.08 36.9 49

PU DEL TDC 4 11.29 1.38 34.8 55 7.22 0.13 29.0 53

TIC 4 13.72 3.11 36.4 58 7.94 1.26 27.9 53

DRL TDC 4 27.89 14.93 50.3 66 15.59 6.16 38.1 64

TIC 4 31.71 16.81 49.2 66 20.82 9.97 36.5 72

ML TDC 5 24.93 11.93 43.2 66 15.03 7.06 34.1 60

TIC 5 29.96 13.97 47.3 68 17.16 5.60 36.1 60

PU2 DEL TDC 4 13.69 2.78 33.2 64 7.22 0.13 29.0 53

TIC 4 14.68 3.97 34.4 64 7.94 1.26 27.9 53

DRL TDC 4 31.52 16.88 53.1 68 15.59 6.16 38.1 64

TIC 4 35.69 15.35 53.4 74 20.82 9.97 36.5 72

ML TDC 5 31.14 15.22 47.2 68 15.03 7.06 34.1 60

TIC 5 33.81 17.11 51.7 68 17.16 5.60 36.1 60

EU, expectancy utility function; PU, prospect utility function; PU2, alternative prospect utility function; DEL, delta learning rule; DRL, decay-reinforcement learning rule;
ML, mixed learning rule; TDC, trial-dependent choice rule; TIC, trial-independent choice rule; IGT, Iowa Gambling Task; SGT, Soochow Gambling Task; M, mean; Mdn,
median; SD, standard deviation.
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Furthermore, when combined with the same updating and
choice rules, the new utility function based on prospect theory
performed better than the previous utility functions used with
the EVL and PVL models. In the IGT, regardless of what updat-
ing and choice rules were utilized, the alternative prospect utility
function always produced a higher average BIC difference score
than the other two utility functions. In the SGT, the BIC dif-
ference scores generated from the two prospect utility functions
were always identical because the task involves only a single
outcome on each trial. On the other hand, the prospect utility
functions were better than the piecewise weighted utility func-
tion in the EVL model in terms of average BIC difference score
no matter what updating and choice rules were in force. Similar
patterns could be found when median BIC difference score or
percentage of positive BIC difference scores was used as the cri-
terion. In general, the new prospect utility function performed
better than the other two utility functions.

Finally, with the alternative prospect utility function, the
model with DRL rule (DRL) and TIC rule appeared to be the
best: it produced a higher average BIC difference score and more
positive BIC difference scores than any of the other five models
in both tasks. It was only inferior to the model with DRL rule
and TDC rule, and the model with mixed learning rule and TIC
rules, when median BIC difference score was used as the criterion
and IGT data were fit. To choose among these three compet-
ing models, we further conducted pairwise comparisons in terms
of the number of participants whose BIC difference scores were

higher on one model than another (Broomell et al., 2011). The
model with DRL and TIC again worked better in this compari-
son. Specifically, when comparing the DRL+TIC model with the
DRL+TDC model, the former produced higher BIC difference
scores on 34 participants in the IGT, whereas the latter produced
higher BIC scores on only 19 participants. The corresponding
numbers in the SGT were 42 and 11 respectively. Similarly, when
comparing the DRL+TICmodel with the model assumingmixed
updating rule and TIC rule, the former produced higher BIC dif-
ference scores on 42 participants in the IGT and 49 participants
in the SGT. Given the general advantage of the new model with
the alternative prospect utility function, DRL rule, and TIC rule,
we will hereafter treat it as the winning model and call it the PVL2
model. This model has four parameters, with higher values indi-
cating more rapid memory decay, more consistent choices with
regard to deck expectancies, higher levels of sensitivity to out-
come differences, and more loss aversion respectively. Note that
almost the same results from model comparison occurred when
participants were divided into separate groups of opiate users and
healthy controls (see Tables 5 and 6).

Parameter Consistency
Table 7 shows the correlation coefficient for each parameter of
the PVL2model between individual estimates from the two tasks.
We used Spearman’s rho coefficient since both Kolmogorov–
Smirnov test and Shapiro–Wilk test of normality led to significant
results on each parameter in both tasks (all ps < 0.05), and

TABLE 5 | Summary of BIC difference scores of the 18 cognitive models relative to the baseline statistical model in the IGT and SGT among controls.

Model Task

IGT SGT

Utility
function

Updating
rule

Choice
rule

M Mdn SD % (BIC>0) M Mdn SD % (BIC>0)

EU DEL TDC 3.14 3.82 30.9 63 8.43 −2.30 32.3 41

TIC 6.20 0.57 33.0 52 8.44 −2.44 35.2 37

DRL TDC 45.30 41.11 56.4 85 18.98 10.70 45.9 63

TIC 49.79 37.45 59.3 85 23.01 9.95 43.3 59

ML TDC 40.82 35.34 53.3 89 18.28 3.87 39.8 59

TIC 45.96 32.66 58.6 81 19.12 5.15 43.9 56

PU DEL TDC 15.97 8.56 42.5 67 12.91 3.27 32.2 56

TIC 19.03 12.19 45.2 70 13.73 3.19 33.9 63

DRL TDC 43.89 39.56 56.4 78 23.84 10.47 44.1 74

TIC 47.87 42.63 55.6 81 29.02 16.07 41.5 78

ML TDC 39.49 33.36 48.4 89 23.24 13.00 37.3 70

TIC 45.71 38.22 53.6 81 25.12 11.29 41.6 70

PU2 DEL TDC 18.97 11.25 40.6 74 12.91 3.27 32.2 56

TIC 21.56 12.98 42.6 74 13.73 3.19 33.9 63

DRL TDC 49.17 43.75 59.8 81 23.84 10.47 44.1 74

TIC 53.41 43.49 61.7 85 29.02 16.07 41.5 78

ML TDC 48.03 38.12 53.0 85 23.24 13.00 37.3 70

TIC 51.99 40.80 59.3 81 25.12 11.29 41.6 70

EU, expectancy utility function; PU, prospect utility function; PU2, alternative prospect utility function; DEL, delta learning rule; DRL, decay-reinforcement learning rule;
ML, mixed learning rule; TDC, trial-dependent choice rule; TIC, trial-independent choice rule; IGT, Iowa Gambling Task; SGT, Soochow Gambling Task; M, mean; Mdn,
median; SD, standard deviation.
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TABLE 6 | Summary of BIC difference scores of the 18 cognitive models relative to the baseline statistical model in the IGT and SGT among opiate users.

Model Task

IGT SGT

Utility
function

Updating
rule

Choice
rule

M Mdn SD % (BIC>0) M Mdn SD % (BIC>0)

EU DEL TDC −0.96 −4.90 16.7 29 0.67 −1.27 24.1 46

TIC −0.39 −4.26 15.9 23 −0.55 −2.09 18.1 35

DRL TDC 13.36 −1.07 33.2 46 4.65 −2.68 30.4 46

TIC 15.75 −1.63 33.5 42 10.79 2.92 28.3 62

ML TDC 8.71 −6.92 32.1 38 4.19 −3.17 28.5 42

TIC 12.10 −5.88 33.9 42 6.73 −1.46 27.4 42

PU DEL TDC 6.43 −0.81 24.3 42 1.31 −0.84 24.5 50

TIC 8.21 −0.39 23.9 46 1.92 −1.21 18.7 42

DRL TDC 11.28 2.29 37.3 54 7.01 1.20 29.2 54

TIC 14.92 −0.17 35.2 50 12.31 4.27 28.9 65

ML TDC 9.81 −3.92 31.3 42 6.51 −0.64 28.7 50

TIC 13.60 2.58 33.5 54 8.89 0.20 27.7 50

PU2 DEL TDC 8.21 0.97 22.9 54 1.31 −0.84 24.5 50

TIC 7.54 1.07 21.7 54 1.92 −1.21 18.7 42

DRL TDC 13.18 4.75 38.3 54 7.01 1.20 29.2 54

TIC 17.28 3.83 35.9 62 12.31 4.27 28.9 65

ML TDC 13.60 0.06 32.9 50 6.51 −0.64 28.7 50

TIC 14.94 1.81 34.5 54 8.89 0.20 27.7 50

EU, expectancy utility function; PU, prospect utility function; PU2, alternative prospect utility function; DEL, delta learning rule; DRL, decay-reinforcement learning rule;
ML, mixed learning rule; TDC, trial-dependent choice rule; TIC, trial-independent choice rule; IGT, Iowa Gambling Task; SGT, Soochow Gambling Task; M, mean; Mdn,
median; SD, standard deviation.

TABLE 7 | Correlations for parameters of the PVL2 model estimated from
the IGT and SGT.

Parameter Spearman’s rho one-tailed p-value ρ2

Memory decay (D) 0.292 0.017 0.085

Choice consistency (c) 0.465 0.001 0.216

Outcome sensitivity (α) 0.266 0.027 0.071

Loss aversion (γ) 0.468 0.001 0.219

one-tailed tests because, according to the hypothesis on param-
eter consistency, we expected positive coefficients. As expected,
there was a positive association between the estimates from the
two tasks for each parameter of the winning model. The only
other model that also produced significant correlations on all
parameters was the model with expectancy utility function (i.e.,
the weighted utility function in the EVL model), DRL rule, and
TIC rule. However, the strength of association produced by this
model was lower than that of the PVL2 model (see Table 8)7. In
summary, the PVL2 model outperformed all the other models
with regard to parameter consistency across the IGT and SGT.
Furthermore, the same pattern of associations occurred when
participants were divided into groups of opiate users and healthy
controls, although certain correlation coefficients might not be
statistically significant due to the small sample sizes.

7See Appendix for a table with the correlation coefficients for parameter estimates
from the IGT and SGT for all of the models.

TABLE 8 | Correlations for parameters estimated from the IGT and SGT of
the model with expectancy utility function, decay-reinforcement learning
rule, and trial-independent choice rule.

Parameter Spearman’s rho one-tailed p-value ρ2

Memory decay (D) 0.265 0.028 0.070

Choice consistency (c) 0.355 0.005 0.126

Loss weight (W) 0.302 0.014 0.091

Discussion

In this article, we made a systematic comparison of various mod-
els for the IGT and SGT, including the EVL and PVL models
which have been widely adopted in the literature. Specifically,
with the alternative prospect utility function and mixed updating
rule, we generated 18 cognitive models of the IGT and SGT by
factorially combining different utility functions, updating rules,
and choice rules. The winning model, i.e., the PVL2 model, is
similar to the PVL model but with a different implementation of
the utility function of prospect theory. The BIC scores suggested
that, for both healthy controls and opiate users, the PVL2 model
outperformed the EVLmodel in both tasks and the PVLmodel in
the IGT. These results implied that the alternative prospect util-
ity function might provide a better approximation to the actual
evaluation process than the other two utility functions. In other
words, people evaluate positive and negative outcomes separately

Frontiers in Psychology | www.frontiersin.org 9 March 2015 | Volume 6 | Article 229

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Dai et al. Improved model of the IGT and SGT

before combining the results into a comprehensive measure (as
in the EVLmodel) and they become less sensitive to outcome dif-
ference when the absolute magnitudes of outcomes increase (as
in the PVL model).

Although on average all the cognitive models performed bet-
ter than the baseline model in both tasks, most of the cognitive
models fit IGT data better than SGT data. Close scrutiny of the
differences in payoff distribution between the two tasks revealed
that the SGT not only couples low-frequency losses with negative
expected values but also introduces more subtle structural prop-
erties that might induce participants to respond differently in the
SGT than in the IGT. For example, it might be actually desirable
in the SGT to choose the bad decks one more time after they pro-
duce a negative outcome because it is very unlikely that the next
outcome will be a loss again. This is not true in the IGT, at least for
deck A which produces a net loss half of the time. Similarly, peo-
ple might avoid choosing the same good decks in the SGT when
they just yield a positive outcome because there is a high prob-
ability that the same deck will produce a loss on the next trial.
Such a tendency is clearly inconsistent with the current class of
models which assume implicitly that a positive outcome would
increase the choice probability of the selected deck and vice versa.
This might be the major reason for the poorer performance of
the models on SGT data. Future research is necessary to develop
more sophisticated models incorporating this tendency.

Given that the DRL rule might produce an unbounded
updated expectancy, one may wonder why this updating rule is
still selected by the model comparison. Two possible explanations
exist for the current result. First, although the DRL rule might
produce an unbounded expectancy, this is not always true. The
presumably undesirable situation occurs only when Ej(t–1) and
u(t) have the same sign and the former is no larger than the latter
in absolute magnitude, or when the two terms have the same sign,
the former is larger than the latter in absolute magnitude, and the
decay parameter is relatively small. More important, according
to the winning model, the choice probabilities of the four decks
are related to the relative magnitudes of deck expectancies rather
than the absolute magnitudes. Therefore, models allowing for
unbounded expectancies across the four decks might lead to the
same predictions on choice probabilities as those only producing
bounded expectancies.

After establishing the PVL2 model as the best model with
regard to model fitting performance, we examined the issue of
parameter consistency for each model. Within-subject data on
both tasks made it possible to investigate whether parameter
estimates from the two tasks were associated with each other.
The results indicated that individual estimates of each parame-
ter in the PVL2 model were positively associated across the two
tasks. This suggested that choice responses in these two tasks
were at least partly governed by the same mechanisms reflected
by the PVL2 model. Although a similar model with the same
updating and choice rules but a different utility function (i.e.,
the weighted utility function) also led to significant correlation
coefficient on each parameter involved, the strength of associa-
tion between its parameter estimates was lower than that of the
PVL2 model. Therefore, the PVL2 model still outperformed all
the other models in terms of parameter consistency.

One natural question arises from the results advocating the
new model: how does the model account for the differences in
behavioral data between opiate users and healthy controls? For
example, does the winning model suggest that the differences
in behavioral data are the consequence of differential degrees
of choice variability, outcome sensitivity and/or loss aversion
between the two groups? For any cognitive model of the IGT and
SGT, this is no doubt a critical issue to address. However, it seems
premature to answer the question right now for the following
reasons: (1) the complex pattern of abnormality in the current
samples, and (2) the relatively small sample sizes. Future stud-
ies with larger and more homogeneous samples of opiate users
and controls are necessary to provide a convincing answer to this
question.

Besides modeling the IGT and SGT from a reinforcement
learning perspective, previous research has also investigated the
role of perseveration in these tasks (Worthy and Maddox, 2012;
Worthy et al., 2013a). Recently, Worthy et al. (2013b) further
explored the benefit of combining reinforcement learning with
perseveration in describing observed data from the IGT. It turned
out that a model with the delta learning rule and a separate term
for perseveration outperformed the PVL model with the DRL
rule. Furthermore, it was proposed that the DRL rule may per-
form better than the delta learning rule not because memory
decay plays a critical role in the tasks but because the for-
mer accounts for participants’ tendency to perseverate but not
the latter. Whether the same will occur to the current model-
ing attempt is an open question. On the one hand, with the
alternative prospect utility function, treating perseveration sep-
arately may again improve the fitting performance of a model
with the delta learning rule relative to a model with the decay-
reinforcement rule, at least for the IGT data. On the other hand,
the resultant more complicated models may perform poorly in
the consistency test due to the extra parameters and more sub-
tle interactions among all the parameters. Future studies should
test models with the alternative prospect utility function and
a separate term for perseveration across the IGT and SGT to
advance our understanding of the mechanisms underlying these
tasks.

In conclusion, our analyses on the empirical data from both
healthy and clinical participants suggested that the PVL2 model
with the alternative prospect utility function, DRL rule, and TIC
rule performed even better than the previous best model, i.e., the
PVL model, in describing individual data. In addition, the PVL2
model also produced more consistent parameter estimates across
the IGT and SGT than various other models examined in this
study. Consequently, we recommend the PVL2 model as a can-
didate model of both the IGT and SGT in future studies on these
two tasks.
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Appendix

TABLE A1 | Correlations for parameters estimated from the IGT and SGT for all of the models.

Model Parameters

Utility
function

Updating
rule

Choice
rule

Memory
decay (D)

Updating (A) Choice
consistency (c)

Outcome
sensitivity (α)

Loss
aversion (γ)

Loss weight (W)

EU DEL TDC – 0.082 0.258∗ – – 0.150

TIC – 0.188 0.099 – – 0.158

DRL TDC −0.019 – 0.306∗ – – 0.197

TIC 0.265∗ – 0.355∗∗ – – 0.302∗

ML TDC 0.047 −0.009 0.454∗∗ – – 0.260∗

TIC 0.266∗ 0.034 0.012 – – 0.302∗

PU DEL TDC – 0.283∗ 0.222 0.019 0.211 –

TIC – 0.335∗∗ 0.174 0.145 −0.045 –

DRL TDC 0.298∗ – 0.466∗∗ 0.110 0.261∗ –

TIC 0.337∗∗ – 0.515∗∗ −0.194 0.363∗∗ –

ML TDC 0.209 0.252∗ 0.542∗∗ 0.174 0.215 –

TIC 0.342∗∗ 0.142 0.189 −0.122 0.151 –

PU2 DEL TDC – 0.273∗ 0.178 −0.014 0.144 –

TIC – 0.203 0.211 0.083 0.090 –

DRL TDC 0.230∗ – 0.466∗∗ 0.181 0.358∗∗ –

TIC 0.292∗ – 0.465∗∗ 0.266∗ 0.468∗∗ –

ML TDC 0.156 0.092 0.378∗∗ 0.141 0.365∗∗ –

TIC 0.317∗ 0.195 0.242∗ 0.192 0.211 –

EU, expectancy utility function; PU, prospect utility function; PU2, alternative prospect utility function; DEL, delta learning rule; DRL, decay-reinforcement learning rule;
ML, mixed learning rule; TDC, trial-dependent choice rule; TIC, trial-independent choice rule.
*p < 0.05; **p < 0.01.
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