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Stimulus-category competition,
inhibition, and affective devaluation:
a novel account of the uncanny valley

Anne E. Ferrey’, Tyler J. Burleigh? and Mark J. Fenske?*

" Child Study Center, Yale University School of Medicine, New Haven, CT, USA, 2 Department of Psychology, University of
Guelph, Guelph, ON, Canada

Stimuli that resemble humans, but are not perfectly human-like, are disliked compared
to distinctly human and non-human stimuli. Accounts of this “Uncanny Valley” effect
often focus on how changes in human resemblance can evoke different emotional
responses. We present an alternate account based on the novel hypothesis that
the Uncanny Valley is not directly related to ‘human-likeness’ per se, but instead
reflects a more general form of stimulus devaluation that occurs when inhibition is
triggered to resolve conflict between competing stimulus-related representations. We
consider existing support for this inhibitory-devaluation hypothesis and further assess
its feasibility through tests of two corresponding predictions that arise from the link
between conflict-resolving inhibition and aversive response: (1) that the pronounced
disliking of Uncanny-type stimuli will occur for any image that strongly activates multiple
competing stimulus representations, even in the absence of any human-likeness, and
(2) that the negative peak of an ‘Uncanny Valley’ should occur at the point of greatest
stimulus-related conflict and not (in the presence of human-likeness) always closer to
the ‘human’ end of a perceptual continuum. We measured affective responses to a
set of line drawings representing non-human animal-animal morphs, in which each
continuum midpoint was a bistable image (Experiment 1), as well as to sets of human-
robot and human-animal computer-generated morphs (Experiment 2). Affective trends
depicting classic Uncanny Valley functions occurred for all continua, including the non-
human stimuli. Images at continua midpoints elicited significantly more negative affect
than images at endpoints, even when the continua included a human endpoint. This
illustrates the feasibility of the inhibitory-devaluation hypothesis and the need for further
research into the possibility that the strong dislike of Uncanny-type stimuli reflects the
negative affective consequences of cognitive inhibition.

Keywords: uncanny valley, cognitive conflict, inhibition, affect, emotion, inhibitory devaluation, visual perception,
cognitive dissonance

Introduction

The Uncanny Valley— a significant decrease in liking for objects that closely resem-
ble humans but are not perfectly human-like— was originally described in terms of
the uncomfortable feeling associated with viewing robots of increasing human-likeness
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(Mori, 1970). Indeed, many accounts of this effect have focused
on the potential relationship between the subjective human-
likeness of a stimulus and an observer’s emotional response to
it (e.g., MacDorman and Ishiguro, 2006; Seyama and Nagayama,
2007; MacDorman et al., 2009). The importance of elucidat-
ing specific mechanisms underlying the Uncanny Valley effect
is underscored by the extent to which interest in this effect
has spread from robotics into other areas, such as com-
puter graphics and prosthetics (Seyama and Nagayama, 2007;
MacDorman et al., 2009; Mitchell et al., 2011; Tinwell et al., 2011;
Poliakoff et al., 2013). To this end, we consider here the novel
hypothesis that the Uncanny Valley is not directly related to
‘human-likeness’ per se, but instead reflects a more general form
of stimulus devaluation that occurs when inhibition is triggered
to resolve conflict between competing stimulus-related repre-
sentations. The purpose of this article is to therefore demon-
strate how the Uncanny Valley may be explained through recent
advances in our understanding of the negative affective conse-
quences of cognitive inhibition. After presenting our ‘inhibitory-
devaluation’ hypothesis, we report a preliminary assessment of its
feasibility—in terms of prior findings as well as through two new
experiments that test specific predictions arising from this new
account of the Uncanny Valley—and then consider directions for
future research.

Inhibition, Negative Affect, and the Uncanny
Valley
A recent and growing body of research suggests that cognitive
inhibition is not only crucial for resolving potential interfer-
ence during visual tasks (i.e., when multiple stimulus/response
representations compete to become the focus of thoughts and
actions), but also subsequently results in negative affect for
the associated stimuli (for reviews, see Fenske and Raymond,
2006; Raymond, 2009). Such affectively negative consequences
of inhibition have been found in a variety of visual-recognition
tasks that require stimulus classification (e.g., Kiss et al., 2008;
Frischen et al., 2012) and localization (e.g., Raymond et al., 2003;
Fenske et al., 2004), using stimuli ranging from meaningless
patterns (e.g., Raymond et al., 2003), non-human objects (e.g.,
Griffiths and Mitchell, 2008), and entire scenes (Frischen et al.,
2012), to images of real human faces (Fenskeetal, 2005),
and bodies (Ferrey etal., 2012). Moreover, these studies have
shown that this inhibitory devaluation impacts a variety of
subjective emotional judgments (i.e., likeability, relative prefer-
ence, cheerfulness, pleasantness, trustworthiness, sexual attrac-
tiveness), as well as the motivational incentive to seek and
obtain otherwise-appealing stimuli. Importantly, the magni-
tude of inhibitory devaluation increases with the level of
potential interference from competing stimulus-category or
stimulus-response representations (e.g., Raymond etal., 2005;
Frischen etal., 2012; Martiny-Huenger et al., 2013). This sug-
gests that the Uncanny Valley effect could be a specific
instance of inhibition-related devaluation of stimuli whose
perception activates multiple, competing stimulus interpreta-
tions.

Most prior accounts of the Uncanny Valley effect suggest it
occurs when humans view images of conspecifics (i.e., other

potential humans) that possess non-human traits. For instance,
one idea is that disliking of not-quite-humanlike images is
the result of a disgust response that evolved for the pur-
pose of pathogen avoidance (MacDorman and Ishiguro, 2006;
MacDorman et al., 2009). From this perspective, the stronger an
entity’s resemblance to a conspecific, the stronger the aversion
to a “deformed” version would be, since defects may cue poten-
tial disease, and conspecific resemblance cues the potential for
catching the disease due to genetic similarity (Rozin and Fallon,
1987). By extension, negative feelings elicited during studies
that have used human-like stimuli with mismatched features
(e.g., Seyamaand Nagayama, 2007; MacDorman etal., 2009;
Mitchell et al., 2011) could reflect the activation of this human-
specific pathogen-avoidance mechanism.

In contrast to theories focusing on discrepancies related to
the ‘human-ness’ of stimuli, an inhibitory-devaluation account
of the Uncanny Valley predicts that negative evaluations will
be triggered by any stimulus that activates multiple, compet-
ing stimulus representations during recognition. Recent reviews
of the neurocognitive mechanisms underlying the perception
of ambiguous sensory information suggest that resolving such
competition, and the accompanying perceptual ambiguity, may
be achieved through mechanisms that suppress neural activ-
ity associated with perceptual features that conflict with the
perceptual outcome (e.g., Sterzeretal, 2009). This perspec-
tive is consistent with well-accepted biased-competition mod-
els of visual processing (e.g., Desimone and Duncan, 1995),
whereby each possible interpretation of an ambiguous figure
competes for representation across a hierarchical network of
visual areas. Top—down signals, such as those associated with
selective attention, can bias this neural competition in favor
of one perceptual interpretation over another (Meng and Tong,
2004). Evidence that inhibition of competing representations
may be one of the mechanisms through which the compe-
tition is biased to resolve such conflict (e.g., Munakata et al,,
2011) suggests that the well-established negative affective con-
sequences of inhibition should be evident for any stimulus
that activates multiple, competing stimulus representations dur-
ing recognition, just as it is for stimuli associated with other
forms of inhibition (Fenske and Raymond, 2006; Raymond,
2009).

Support for a shift in focus from human-specific to more gen-
eral recognition-related mechanisms can also be seen in recent
‘categorization’ accounts of the Uncanny Valley (Cheetham et al.,
2011; Moore, 2012; Burleigh et al., 2013; Cheetham et al., 2013;
Burleigh and Schoenherr, 2015). These accounts generally con-
sider affective response to be a function of stimulus distance
from a category boundary (Cheetham etal., 2011, 2014; but see
Burleigh and Schoenherr, 2015). A stimulus is easy to classify as
‘human’ or ‘non-human’ when it is far from the category bound-
ary along a ‘human’/‘non-human’ continuum. But a stimulus that
is at or near the category boundary is difficult to classify because
its identity is ambiguous. Cheetham et al. (2011, 2014) provided
evidence of this category boundary at the midpoint of a human-
avatar morph continuum, and Burleigh et al. (2013) reported that
ambiguous morph-stimuli near the midpoint of a human-non-
human continuum were indeed associated with heightened levels
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of negative affect. The findings of Cheetham et al. (2014) further
support the idea that such devaluation may be linked to catego-
rization, but is not likely to follow from perceptual discrimination
difficulty, per se. Importantly, these previous results are consis-
tent with the possibility that stimuli near such midpoints strongly
activate multiple, competing visual-category representations dur-
ing recognition. From this perspective, negative affect for such
items occurs to the extent that selecting one interpretation over
the other requires inhibition of the visual-category information
associated with the non-selected interpretation. The greater the
inhibition during identification, the greater the negative affect for
the associated stimulus.

A key feature of Uncanny Valley explanations that focus
on the ‘human-ness’ of stimuli concerns the expected loca-
tion of the ‘valley’ - the point along a perceptual continuum
where stimulus-related affective response maximally deviates
from an otherwise linear function. A conspecific pathogen-
avoidance account, for example, predicts an asymmetrical val-
ley that drops closer to the human’ side of a ‘human’/‘non-
human’ continuum. Indeed, this is exactly what was depicted
in Moris (1970) well-known original figure illustrating the
Uncanny Valley. In contrast, an inhibitory-devaluation account
predicts the greatest affective drop at the point where multi-
ple competing visual-category representations are most strongly
activated. And while this should be at the midpoint for con-
tinua anchored by two equally distinct stimulus categories, the
exact location for any given continuum will vary depending on
parameters such as baseline affective response to the specific
endpoints and the perceptual salience of the visual cues denot-
ing each category. This may explain why Seyama and Nagayama
(2007, Experiments 3), for example, were able to obtain a val-
ley location comparable to that depicted by Mori (1970), but
only after dramatically increasing the size (and thus the per-
ceptual salience) of the discrepant features in otherwise highly
human-like stimuli. Other studies utilizing human’/‘nonhuman’
continua have found valleys at the midpoint, and occasionally
closer to the ‘non-human’ endpoint (MacDorman and Ishiguro,
2006; Burleigh etal., 2013). Such findings are consistent with
the possibility that the lowest point in the valley is not deter-
mined by the human-ness of the stimuli per se, but instead occurs
at whatever point requires the greatest inhibition of competing
visual-category information to select one stimulus interpretation
over another.

Inhibition has been proposed as a critical mechanism for
resolving conflict and potential interference from competing
signals in a variety of cognitive and neural operations (for
review, see Munakata et al., 2011). And while evidence of the link
between conflict-resolving inhibition and negative affect has only
recently begun to accumulate, several lines of research, includ-
ing Burleigh etal’s (2013) examination of the Uncanny Valley,
have demonstrated the link between situations involving cogni-
tive conflict and negative affect. A classic example is cognitive
dissonance theory, which originally described how a negative
emotional response is elicited when a person’s attitude is at odds
with their behavior (Festinger, 1957). In more general terms,
cognitive dissonance describes a conflict between two incom-
patible cognitions (van Veen et al., 2009), which leads to both

autonomic arousal and negative affect (Croyle and Cooper, 1983;
Losch and Cacioppo, 1990; Elliot and Devine, 1994) and has been
described as a state of discomfort and unease (Elliot and Devine,
1994). In order to resolve this conflict, cognitive resources must
be devoted to the problem. The corresponding negative affect
may be linked in part to the extent that the resources recruited
in the face of such conflict include inhibition aimed at reducing
the salience of incompatible representations.

A special case of cognitive dissonance is post-decisional dis-
sonance. This phenomenon was first observed in Brehm (1956),
who noticed that participants who were asked to choose between
two similarly valued items had rated selected items more posi-
tively than their initial ratings of the same item, and rated the
rejected item more negatively. In this case, a conflict between two
choices lead to negative affect associated with the unchosen item.
This may result from recruitment of cortical areas that inhibit
representations of the unchosen option, leading to negative affect
(Harmon-Jones, 2004).

Other types of interference or conflict are also associated with
negative affect. For example, the interference that is caused by
response competition during the Stroop (1935) task when the
name of a color is presented in a color that is inconsistent with its
identity (e.g., the word “blue” in red ink). When conflict occurs,
the dorsal anterior cingulate cortex (dACC; Botvinick et al.,
2001; van Veen et al., 2009; Izuma et al., 2013) and insula regions
(van Veen etal.,, 2009) are activated, and individuals experi-
ence arousal and feelings of discomfort (Elliot and Devine, 1994;
van Veen etal, 2009), which motivates them to engage in a
dissonance-reduction strategy. In the case of a Stroop (1935) task,
for example, dissonance-reduction is accomplished by biasing
inputs such that word names or word colors dominate response
selection (Botvinick et al., 2001).

The consistency of prior findings with what we have recently
learned about the affective consequences of inhibition suggests
that an inhibitory-devaluation account of the Uncanny Valley
effect merits further consideration. One way to further assess its
feasibility is to begin experimentally testing specific predictions
that arise from our account. We report two such tests below
as a preliminary example of Uncanny Valley research into the
inhibitory-devaluation hypothesis.

Assessing the Feasibility of the
Inhibitory-Devaluation Hypothesis

The hypothesis that the Uncanny Valley reflects inhibitory deval-
uation of stimuli that activate multiple, competing stimulus inter-
pretations during recognition generates a number of testable
predictions. The two considered here concern the type of stim-
uli that can show Uncanny Valley effects and the type of stimuli
that are likely to receive the most negative affective evalua-
tions. Our experimental approach for assessing the potential
involvement of cognitive inhibition in the Uncanny Valley is the
same as that used extensively in studies of inhibitory devalu-
ation. In these prior studies, any type of stimulus—human or
non-human— appearing in experimental conditions suspected to
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involve cognitive inhibition have consistently received more neg-
ative evaluations than stimuli appearing in conditions thought
to be relatively free of inhibition (Fenske and Raymond, 2006;
Raymond, 2009). Such effects are routinely obtained across sub-
stantially different visual classification and response-decision
tasks. Indeed, the link between inhibition and stimulus devalu-
ation is sufficiently strong that researchers have begun to take the
occurrence of increasingly negative subjective stimulus evalua-
tions as a key indicator of the potential involvement of inhibition
at key points within a given task (e.g., Kihara et al., 2011). Thus,
while we do not directly measure inhibition per se, we instead
assess whether differences in affective evaluations for items at
different points along a given perceptual continuum are con-
sistent with the expected extent to which inhibition may be
applied during the perception of such items. The experiments
reported in this section therefore represent an important first step
in assessing the feasibility of an inhibitory-devaluation account
by (1) confirming that the Uncanny Valley also occurs when
humans view distinctly non-human stimuli, and (2) demonstrat-
ing that for human-like stimuli, the lowest point of the ‘valley’
does not always occur on the ‘human’ side of the perceptual
continuum.

The key emphasis on the human-ness of objects in prior
accounts of the Uncanny Valley effect may explain why so lit-
tle work has been done to explore whether Uncanny Valley-type
effects also occur with non-human stimuli. To the best of our
knowledge, the only published research of this sort currently
includes two papers by Yamadaetal. (2012, 2013). However,
their findings do suggest that the Uncanny Valley can occur for
non-human stimuli. Yamada et al. (2012) obtained participants’
categorization responses and affective ratings of images that mor-
phed between a tomato and a strawberry. The lowest likability
scores for these images coincided with the point of greatest ambi-
guity in stimulus categorization. Yamada etal. (2013) likewise
found that participants’ most affectively negative ratings were
provided for the most ambiguous stimuli among sets of images
that morphed between a real dog and a cartoon dog, a real dog
and a stuffed-toy dog, and a cartoon dog and a stuffed-toy dog.
Unfortunately, the veracity of these findings remains unclear
because of issues associated with the use of relatively small
sample sizes (e.g., Yamada et al., 2013, utilized 12 or fewer partic-
ipants in each experiment), and the possibility that their stimuli
included visual artifacts produced by the morphing process that
may have had a confounding influence on participants’ affective
ratings.

Our studies therefore expand upon these important prior
findings to provide a converging test of the prediction that
Uncanny Valley effects should not be limited to the perception
of humans, but should also occur with non-human stimuli. Thus,
in Experiment 1, we use bistable line drawings of animals, a type
of non-human stimuli that has been specifically designed to acti-
vate multiple, competing stimulus interpretations (Fisher, 1967).
The sets of line-drawn images we used were specifically chosen
for their step-wise differences along a given two-category contin-
uum and because of the availability of normative data regarding
the corresponding level of perceptual ambiguity of each item
(Verstijnen and Wagemans, 2004).

Accordingly, the conditions in Experiment 1 in which we sus-
pect the greatest involvement of inhibition during perception
concern those items whose perceptual features are consistent with
multiple conflicting interpretations, such as those near the mid-
point of a given continuum. In contrast, recognition of items
closer to a continuum endpoint, whose perceptual features are
clearly consistent with a single interpretation, should be rela-
tively free of inhibition. Following the experimental approach of
prior inhibitory devaluation studies, we therefore expect that any
stimulus occurring near the midpoint of such a two-category con-
tinuum should receive more negative evaluations than items near
the continuum endpoints. Participants in our studies were asked
to evaluate stimuli based on their initial emotional reaction to
each stimulus using a numerical rating scale. This allowed us to
obtain an accurate measure of subjective emotional reactions to
non-human stimuli that vary in the extent to which they activate
multiple, competing stimulus interpretations.

In addition to responses to non-human stimuli, we also pre-
dicted that when assessing affective responses to human-like
stimuli, the location of the ‘valley’— the point along a perceptual
continuum where stimulus-related affective response maximally
deviates from an otherwise linear function — should occur near
the midpoint of a two-category continuum. We tested this pre-
diction in Experiment 2 by examining differences in individuals’
affective responses to sets of 3D computer-modeled images that
represent different points along human-to-robot and human-to-
animal morphed continua.

Experiment 1: Non-Human Bistable Images
Materials and Methods

Stimuli in this experiment consisted of three different sets of
line drawings, each comprising a step-wise continuum of dif-
ferences in perceptual similarity to two distinct animals. The
stimulus at the midpoint of each continuum is a bistable image
that can be interpreted as either of the two animals (see Figure 1
for example). Bistable images have long been of interest (e.g.,
Fisher, 1967) as stimuli that can support two incompatible inter-
pretations, although the stimulus itself does not change. Such
stimuli are specifically created to ensure maximal category con-
flict for items near the bistable midpoint. Normative stimulus-
classification data provided by Verstijnen and Wagemans (2004)
previously established that the point of maximal perceptual ambi-
guity for these stimulus sets was for the item within one step

/Qﬁ%? /@/Qﬁf@

N N\

== ) =< — e N < <
SN Ss)ED)ED D ED
\/) ~ ~ ) ~ ~ GUIPI s 4

FIGURE 1 | Bistable image examples (rabbit-duck, rhino-giraffe, and
duck-elephant; originally from Hogeboom (1995), as cited in
Verstijnen and Wagemans (2004).
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of the midpoint (i.e., midpoint plus or minus one step) of each
continuum.

We predicted that the shape of the affective data for stim-
uli from each continuum would be consistent with an Uncanny
Valley function (i.e., non-linear). Following Burleigh et al. (2013),
we tested this by fitting linear, cubic, and quadratic functions to
the data for each continuum. Because the Uncanny Valley func-
tion (Mori, 1970) is essentially a cubic function, we expected a
cubic or quadratic function would fit our data better than a linear
function. We also predicted that the specific shape of this non-
linear function would be formed by lower affective ratings for
morph-stimuli near the midpoint of the continua than for those
near the endpoints.

All of the following materials and procedures were approved
by the Research Ethics Board at the University of Guelph (REB
#1INVOI11).

Participants

Sixty undergraduate students (31 women, Mg = 20 years,
SDqge = 3.6) participated in exchange for course credit. The only
inclusion criterion was having normal or corrected-to-normal
vision.

Apparatus and stimuli
Stimuli consisted of three sets line drawings, each com-
prising seven images (Hogeboom, 1995, as cited in

Verstijnen and Wagemans, 2004). Sets included: duck-elephant,
rhino-girafte, and rabbit-duck (see Figure 1).

The 21 images were presented in a randomized order for each
participant using an Intel Core2Duo computer with a 50.8 cm
LCD monitor (resolution: 1680 x 1050 pixels) running PsychoPy
software (Peirce, 2007). Displays were viewed at a distance of
75 cm in a sound-attenuated room, with low ambient illumina-
tion. Stimuli were presented one at a time at the center of the
screen for 400 ms along with a visual-analog rating scale that
ranged from “dislike very much” (0.00) to “like very much” (1.00).
Participants were required to use the mouse to select the point on
the line that best matched their emotional response to each stim-
ulus. The rating scale had a precision of 0.01 unit increments, and
was visible on the screen until a response was registered.

Results

Average ratings were calculated for each stimulus as a function of
its location along its corresponding continuum. These are plotted
separately for each stimulus set in Figure 2, along with average
ratings calculated across the three stimulus sets.

We predicted that the shape of the affective data for stim-
uli from each continuum would be consistent with an Uncanny
Valley function (i.e., non-linear). To assess this, we fit linear,
cubic, and quadratic functions to the data for each continuum,
as in Burleigh et al. (2013). Because the Uncanny Valley func-
tion (Mori, 1970) is essentially a cubic function, it follows that

Bistables Combined

1.0 1
0.9 A1
0.8 -
0.7 A
0.6 -
0.5
0.4 -
0.3 A
0.2 1
0.1 1

Likeability

0.0 T . .

Duck-Elephant

Stimulus Location

Duck-Rabbit

Rhino-Giraffe

FIGURE 2 | Affective trends for animal-animal bistable morphs in Experiment 1.
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if a cubic or quadratic function was found to fit the data bet-
ter than a linear function, then this would support an Uncanny
Valley interpretation.

We used the Akaike Information Criterion (AIC; see
Burnham and Anderson, 2002) as our goodness-of-fit index. The
AIC is suited to comparing models with different degrees of
complexity because it penalizes models with additional fit param-
eters. We calculated raw Akaike values and Akaike Weights
(wj), which are a transformation of raw scores that indicate the
probability that a particular model among the set of models is
correct (Wagenmakers and Farrell, 2004). Using these weights,
we also calculated evidence ratios by dividing the weight of
one model by the weight of another. These ratios are under-
stood in context of a “confidence set] which is similar to
a confidence interval and is defined as 10% of the highest
Akaike Weight in the set (Royall, 1997). For the purposes of
interpretation, it should be noted that lower raw Akaike val-
ues and higher Akaike Weights indicate a better fit to the
data.

As indicated by the evidence ratios in Table 1, our curve-fit
analyses confirmed that non-linear quadratic and cubic models
were best fit to the data, whereas linear models fell outside the
confidence set. To the extent that such non-linear functions are
a defining feature of the Uncanny Valley (Burleigh et al., 2013),
this finding is consistent with the possibility that Uncanny Valley
effects can occur with distinctly non-human stimuli.

Indeed, we predicted that the specific shape of this non-
linear function for bistable images would further resemble an
Uncanny Valley by having lower affective ratings for morph-
stimuli near the midpoint of the continua than for those near the
endpoints. The average rating for stimuli at positions 1 and 7—
the unambiguous category endpoints—was therefore compared
to the average rating for the position-4 midpoint stimulus for
each stimulus set using paired-samples t-tests. Consistent with
our expectations, endpoint items were rated more positively than
midpoint items from the duck-elephant [endpoints, M = 0.65,
SD = 0.17; midpoint, M = 0.58, SD = 0.22; #(59) 2.86,
p = 0.006], rabbit-duck [endpoints, M = 0.66, SD = 0.16;
midpoint, M = 0.56, SD = 0.22; #(59) = 4.64, p < 0.001],
and rhino-giraffe [endpoints, M = 0.54, SD = 0.17; midpoint,
M = 0.45,SD = 0.18; £(59) = 3.80, p < 0.001] sets.

Our results based on average ratings suggest that participants
provided their lowest affective ratings to morph-stimuli at inter-
mediate positions of each continuum rather than to those at
either continuum endpoint. To examine the extent to which this
pattern was observable at the level of individual participants, we
plotted an abbreviated rating function for each participant’s affec-
tive response to each perceptual continuum. This was comprised
of each participant’s rating of the stimulus at each endpoint (i.e.,
positions 1 and 7) along with the lowest rating they provided to
an intermediate stimulus (i.e., among positions 2-6). As shown
in Figure 3A, for each perceptual continuum, the vast majority of
participants (85% for duck-elephant, 87% for duck-rabbit, 80%
for rhino-giraffe) provided their most negative affective rating in
response to an intermediate stimulus. The resulting ‘valley’ shape
of these individuals’ rating functions is visually evident despite
substantial variability otherwise in their individual responses.
However, it is also the case that, for each perceptual contin-
uum, a corresponding minority of participants provided their
lowest rating for an endpoint stimulus, failing to show a val-
ley shape in their individual rating functions (see Figure 3B).
This suggests that while most individuals’ affective responses
were appropriately reflected by our group averages, others do
not show the same Uncanny-valley-type pattern of responses (see
MacDorman and Entezari, 2015, for another example of individ-
ual differences in Uncanny Valley effects).

Taken together, the results of Experiment 1 replicate and
expand upon the important preliminary findings of Yamada et al.
(2012, 2013) to confirm that Uncanny Valley-type effects can
occur with distinctly non-human stimuli. These findings are
therefore consistent with the possibility that the drop in affective
response reflected by the Uncanny Valley may not be determined
by the human-ness of the stimuli per se, but might instead occur at
whatever point requires greatest inhibition of competing visual-
category information to select one stimulus interpretation over
another.

Experiment 2: 3D Computer Models

Materials and Methods

The possibility that the Uncanny Valley reflects inhibitory deval-
uation of stimuli that activate multiple, competing stimulus inter-
pretations during recognition suggests that the location of the

TABLE 1 | Experiment 1 curve fit analyses.

Set Model Residual sum AlCc Aj(AlIC) w;(AIC) Cl
of squares

Duck-elephant* Linear’ 20.31 —1270.26 7.66 0.02 0.07
Quadratic? 19.85 —1277.92 0.00 0.71 -
Cubic® 19.84 —1276.03 -1.89 0.28 -

Rabbit-duck*® Linear 19.92 —1278.45 7.62 0.01 0.07
Quadratic 19.47 —1286.07 0.00 0.65 -
Cubic 19.44 —1284.71 1.35 0.33 -

Rhino-giraffe* Linear 20.76 —1261.06 12.91 0.00 0.07
Quadratic 20.10 —1272.67 1.29 0.34 -
Cubic 19.94 —1273.96 0.00 0.66 -

TK=1,2K=23K=3, *n=420.
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FIGURE 3 | Individual participants’ affective response to each (A) provided their lowest affective rating to a stimulus from an
animal-animal bistable morph continua in Experiment 1. intermediate position. The resulting ‘valley’ shape of these individual
Abbreviated rating functions are each comprised of a specific rating functions is consistent with the Uncanny Valley-type effects
participant’s rating of the stimulus at each endpoint (i.e., positions 1 identified in the group-average results, but is absent in a minority of
and 7) along with the lowest rating they provided to an intermediate participants (B) who each provided their lowest rating to at least one
stimulus (i.e., among positions 2-6). The majority of participants of the continua-endpoint items.

valley—the continuum point showing the most affectively neg-
ative stimulus response— should occur at the point where multi-
ple competing visual-category representations are most strongly
activated. Thus, in contrast to explanations that focus on the
‘human-ness’ of stimuli, this lowest point for human-like stim-
uli should not always occur on the ‘human’ side of the perceptual
continuum.

To test this prediction, we measured affective responses to
a series of 3D computer-modeled morph stimuli representing

different locations along different human-non-human continua.
To replicate the classic Uncanny Valley effect, one stimulus set
was created from human-robot morphs. Additional stimulus
sets were created from various human-animal continua. For all
stimulus sets, we expected stimuli near continua midpoints to
receive more negative affective ratings than those depicting cat-
egory endpoints. Furthermore, we predicted that the greatest
drop in affective ratings would not consistently occur at stimulus-
continuum locations near the “human” endpoint, as predicted by
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a conspecific pathogen-avoidance account of the Uncanny Valley
effect.

All of the following materials and procedures were approved
by the Research Ethics Board at the University of Guelph (REB
#11NVO11).

Participants

Sixty-nine undergraduate students (54 women, M,ge = 19 years,
SDgge = 1.2) participated in exchange for course credit. The only
inclusion criterion was having normal or corrected-to-normal
vision. None of the participants in Experiment 2 had previously
participated in Experiment 1.

Apparatus and stimuli

Stimuli consisted of 35 computer-generated images that were
created using Poser (Version 2012, www.smithmicro.com)
modeling software and Abrosoft FantaMorph (Version 5.4,
www.fantamorph.com) morphing software. In all, there was one
human-robot morph-continuum, and four human-animal con-
tinua (human-stag, human-tiger, human-lion, and human-bird),
each with seven continuum levels - see Figure 4.

In order to create the human-animal stimuli, a “base”
human model, Michael 4, was obtained from daz3d.com, and
modified using commercial morph packages for Poser (specifi-
cally, the Leonese and Cervus characters obtained from philoso-
phersegg.com, and the Bird Cult character obtained from
daz3d.com). Each of these morph packages comprise a pre-
defined set of morphological transformations that can be applied
to a base model in order to holistically transform its morphology
into the animal character. These packages also contain textures

that transform the “skin” of the character into the fur of the
animal. A crucial aspect of these morph packages is that the trans-
formations can be applied in a continuous fashion, by assigning
values between 0.000 and 1.000 (e.g., a transformation value of
0.500 would be morphologically half-human and half-animal).
Similarly, textures can be applied in a continuous fashion, by
applying both the human and animal textures to the same fig-
ure, and setting them to different levels of opacity (e.g., a 50%
opacity overlay would produce a texture that is half-human and
half-animal). In order to generate the human-animal morph
stimuli, we therefore used morphological transformation and tex-
ture opacity values in Poser to create stepwise morphs from one
model to another. These morphs represented the following ratios:
0-animal/100-human, 15/85, 30/70, 50/50, 70/30, 85/15, 100/0. In
order to create the human-robot morph stimuli, a slightly differ-
ent approach was taken. Specifically, we used rendered images of
Poser models (i.e., the same human model as before, and KlanK
from daz3d.com), and entered these into FantaMorph software
to create a morph sequence. This change was necessary because
we were unable to find a suitable robot morph package for Poser
that was compatible with the human figure. The human-robot
morph stimuli were generated to represent the same ratios as
the human-animal stimuli. All stimuli were cropped and saved
as JPEG images at a resolution of 912 x 805 pixels.

A pilot study was conducted to ensure that subjective percep-
tions of the resulting stimuli were consistent with their objective
location on the corresponding continuum. In this pilot study,
seven participants rated the 35 stimuli, which were presented in
randomized order in a single block, on a 7-point Likert scale

FIGURE 4 | Computer-generated morphs (human-robot, human-stag, human-tiger, human-lion, human-bird).
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ranging from “human-like” to “animal-like” or from “human-
like” to “robot-like.” Results indicated that the point of maximal
perceptual ambiguity for these stimulus sets was the item within
one step of the midpoint (i.e., midpoint plus or minus one
step) of each continuum. Response averages indicated that these
items were explicitly rated as equally belonging to each of the
two categories. Our analyses also revealed that each step in the
continuum was perceived as a linear change in the category
membership of the model, resulting in overall linear trends for
categorical-similarity ratings across each morph continuum. This
also ensured that the stimulus at the midpoint of each continuum
clearly contained visual-category information from both end-
point categories. None of the participants from this pilot-study
were utilized in the subsequent affective-rating task.

The testing apparatus and procedures for the affective-rating
task were exactly the same as used in Experiment 1, with the
exception that participants provided affective ratings for a total
of 35 individual stimuli (five sets of seven morphs) in Experiment
2 compared to 21 stimuli in Experiment 1 (three sets of seven
drawings).

Results

Average ratings were calculated for each stimulus as a function of
its location along its corresponding continuum. These are plotted
separately for each stimulus set in Figure 5, along with average
ratings calculated across the five stimulus sets.

As a formal test for the existence of an Uncanny Valley func-
tion, we again used curve fitting analyses. Raw Akaike values,
Akaike Weights, and confidence sets were calculated in order to
compare the fit of linear, quadratic, and cubic models.

As indicated by the evidence ratios in Table 2, our curve-fit
analyses confirmed that non-linear quadratic and cubic models
were best fit to the data, whereas linear models fell outside the
confidence set. To the extent that such non-linear functions are
a defining feature of the Uncanny Valley (Burleigh et al., 2013),
this finding is indicative of an Uncanny Valley, not only for the
human-robot morph continua, but also for each of the human-
animal continua.

While the ability to demonstrate an Uncanny Valley for vari-
ous sets of stimuli is an important manipulation check, our key
prediction in Experiment 2 concerned the continuum-location
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for each stimulus set that received the most negative affective
ratings. As shown in Figure 5, this valley low-point was located
at position 4—the continua midpoint— for each of the human-
robot and human-animal stimulus sets (human-robot: M = 0.26,
SD = 0.22; human-stag: M = 0.33, SD = 0.17; human-tiger:
M = 0.41, SD = 0.22, human-lion: M = 0.37, SD = 0.21; human-
bird: M = 0.25, SD = 0.20). Moreover, paired-samples ¢-tests
revealed that average ratings for items near these continua mid-
points were indeed significantly lower than those for endpoint
items for both the human-robot stimuli (endpoints, M = 0.54,
SD = 0.17; midpoint, M = 0.26, SD = 0.22; #(68) = 12.95,
p < 0.001) and the human-animal stimuli [endpoints, M = 0.52,
SD = 0.16; midpoint, M = 0.34, SD = 0.24; #(68) = 9.83,
p < 0.001].

As in Experiment 1, we plotted an abbreviated rating function
for each participant’s affective response to each perceptual con-
tinuum comprised of their rating of each endpoint stimulus along
with their lowest rating to an intermediate stimulus. As shown in
Figure 6A, for each continuum, the majority of participants (79%
for human-bird, 76% for human-stag, 76% for human-lion, 72%
for human-tiger, and 79% for human-robot) provided their most
negative affective rating in response to an intermediate stimulus.
The resulting ‘valley’ shape of these individuals’ rating functions
is visually evident for each continuum. However, a corresponding
minority of participants again provided their lowest rating for an
endpoint stimulus, failing to show a valley shape in their individ-
ual rating functions (see Figure 6B). Indeed, certain participants
consistently failed to show Uncanny Valley effects for most (e.g.,
Participant 4) or all (e.g., Participant 11) morph continua.

Taken together, the results of Experiment 2 replicate previ-
ous findings (e.g., Burleigh et al., 2013) and are consistent with
the possibility that the affective low-points in Uncanny Valley
functions are not determined by the human-ness of the stimuli
per se, but instead by the amount of conflicting stimulus infor-
mation during recognition and the need to inhibit competing

visual-category information to select one stimulus interpretation
over another.

Assessing Feasibility: Discussion

The data reported above were collected as a first step in exper-
imentally assessing the feasibility of the hypothesis that the
Uncanny Valley reflects a form of inhibitory stimulus deval-
uation. For a perceptual continuum where the endpoints are
comprised of two separate categories, this account predicts that
maximum negative affect occurs where there is greatest activation
of multiple, competing stimulus representations. We conducted
two experiments to test the corresponding predictions (1) that the
Uncanny Valley also occurs when humans view distinctly non-
human stimuli, and (2) that the lowest point of the ‘valley’ does
not always occur on the ‘human’ side of the perceptual contin-
uum. In Experiment 1, we used distinctly non-human stimuli:
bistable line drawings of animals, a type of stimulus that activates
multiple, competing stimulus interpretations. We found that
affective ratings of these bistable continua were best fit by non-
linear models, which is consistent with an Uncanny Valley inter-
pretation, and that stimuli near the midpoint were rated as least
likeable. In Experiment 2, we generated 3D computer-modeled
images that comprised human-to-robot and human-to-animal
morphed continua. We found that affective ratings of these
human-non-human morph continua were best fit by non-linear
models, and that stimuli near the midpoint were rated as least
likeable. Importantly, we observed that affective minima—the
stimulus with the lowest affect rating in each stimulus set—
were not always on the ‘human’ side of the human-non-human
continua. Taken together, these results are consistent with a gen-
eral recognition-related account based on the novel hypothesis
that the Uncanny Valley is a specific instance of a more gen-
eral form of stimulus devaluation that occurs when inhibition is
triggered to resolve conflict between competing stimulus-related
representations.

TABLE 2 | Experiment 2 curve fit analyses.

Set Model Residual sum AlCc A(AIC) w;(AIC) c
of squares

Human-robot* Linear 32.69 —1298.74 93.34 0.00 0.09
Quadratic? 2713 —1386.78 5.29 0.07 -
Cubic® 26.72 —1392.07 0.00 0.93 -

Human-stag* Linear 23.73 —1453.33 46.15 0.00 0.05
Quadratic 21.48 —1499.48 0.00 0.47 -
Cubic 21.38 —1499.74 —0.26 0.53 -

Human-tiger* Linear 25.78 —1413.40 22.25 0.00 0.03
Quadratic 24.52 —1435.65 0.00 0.70 -
Cubic 24.50 —1433.94 1.71 0.30 -

Human-lion* Linear 26.66 —1452.02 42.92 0.00 0.10
Quadratic 24.86 —1484.60 10.34 0.01 -
Cubic 24.25 —1494.94 0.00 0.99 -

Human-bird* Linear 24.82 —1431.75 67.46 0.00 0.07
Quadratic 21.58 —1497.26 1.95 0.27 -
Cubic 21.41 —1499.21 0.00 0.73 -

1K=1,2K=23K=23 *n=483.
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(A) provided their lowest affective rating to a stimulus from an
intermediate position. The resulting ‘valley’ shape of these individual
rating functions is consistent with the Uncanny Valley-type effects
identified in the group-average results, but is absent in a minority of
participants (B) who each provided their lowest rating to at least one

of the continua-endpoint items.

Frontiers in Psychology | www.frontiersin.org

11

March 2015 | Volume 6 | Article 249


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Ferrey et al.

Uncanny valley as inhibitory devaluation

Mori’s (1970) original hypothesis suggested that near-perfect
human-likeness was key to the Uncanny Valley effect, and
theoretical accounts such as the pathogen avoidance hypoth-
esis (e.g., MacDorman etal., 2009) were consistent with this
premise. These accounts make two basic predictions: the first
is that the Uncanny Valley effect should only occur when indi-
viduals view stimuli that portray conspecifics (e.g., humans
viewing humans), and the second is that the location of the
‘valley’ should be on the ‘human’ side of a ‘human’/‘non-
human’ continuum. Our results are consistent with a differ-
ent interpretation. We found an Uncanny Valley effect with
distinctly non-human stimuli. Moreover, when using human-
like morph stimuli, the location of the ‘valley’ was not con-
sistently on the ‘human’ side of the continuum. We suggest
instead that the Uncanny Valley may reflect the affective con-
sequences of cognitive processes applied to stimuli whose per-
ception strongly activates multiple, competing stimulus repre-
sentations. This perspective is based on a well-established and
growing body of evidence that cognitive inhibition—known
for its role in resolving potential interference during visual
tasks—has distinctly negative affective consequences for associ-
ated stimuli (Fenske and Raymond, 2006; Frischen et al., 2012).
Negative affect for stimuli within an Uncanny Valley context may
therefore occur to the extent that selecting one stimulus inter-
pretation over the other requires inhibition of visual-category
information associated with the non-selected interpretation. The
greater the inhibition during identification, the greater the neg-
ative affect for the associated stimulus. Importantly, our results
here suggest that such stimulus devaluation characteristic of the
Uncanny Valley does not depend on the human-ness of the
stimuli per se.

Outstanding Issues and Future
Directions

Our consideration of prior Uncanny Valley findings and recent
advances in our understanding of the affective consequences
of cognitive inhibition have led to the hypothesis that affec-
tive devaluation by stimulus-related inhibition may underlie the
Uncanny Valley effect. The consistency of the results of our
preliminary experimental tests of key predictions arising from
this new account further establish its feasibility. However, some
outstanding issues need to be addressed before the value of
inhibitory devaluation can be fully realized as an explanatory
construct in Uncanny Valley research.

Negative Affect from Inhibition or
Reduced Fluency?

Yamada etal. (2012, 2013) have suggested that the Uncanny
Valley effect may be due to low processing fluency (i.e., the
ease with which stimulus-information is processed) for items
that are difficult to categorize (e.g., as human or non-human).
This account relies on the well-established connection between
increases in processing fluency and the experience of positive

affect toward associated stimuli (see Reber et al., 2004 for review).
There are some reasons, however, to suspect that the distinctly
negative responses associated with the Uncanny Valley may be
linked to cognitive inhibition rather than fluctuations in flu-
ency, per se. First, it is conceivable that a stimulus-processing
episode involving inhibition might reduce fluency and the pos-
itive affect associated with the item—in which case, process-
ing fluency would be a proxy for cognitive inhibition. Second,
the affective consequences of fluency are thought to be dis-
tinctively positive (Reber et al., 1998; Winkielman and Cacioppo,
2001). Furthermore, experimental conditions that typically favor
increased perceptual fluency (i.e., repeated and longer-duration
stimulus exposures, and stimulus presentations at central foveal
locations associated with high visual acuity) nevertheless lead to
distinctly negative affective stimulus ratings whenever successful
task performance requires attentional or response-related inhi-
bition (Fenske et al., 2004; Raymond et al., 2005; Frischen et al.,
2012). Thus, the available evidence to date points to a clearer
link between inhibition and aversive stimulus response than
between changes in fluency and stimulus-related negative
affect.

The Challenge of Indirect Measures of

Inhibition

We conducted two experiments to assess the feasibility of the
hypothesis that the Uncanny Valley reflects the negative affec-
tive consequences of cognitive inhibition, yet neither experiment
included a measure of inhibition, per se. And while the link
between inhibition and stimulus devaluation is sufficiently strong
that researchers have begun to take the occurrence of increas-
ingly negative subjective stimulus evaluations as a key indicator
of the potential involvement of inhibition at key points within
a given task (e.g., Kihara et al,, 2011), there are certainly many
other factors that can lead to an aversive response. Thus, one
of the outstanding challenges for further assessing the feasibility
of the inhibitory-devaluation hypothesis is to obtain converg-
ing evidence that competition between the multiple stimulus-
category representations activated by Uncanny-type stimuli is
indeed resolved through inhibition of the non-selected repre-
sentations. Part of the challenge arises from the fact that tradi-
tional cognitive-behavioral measures of inhibition (e.g., percep-
tual response time and accuracy) are also indirect measures—
indices of inhibitory aftereffects rather than a metric of inhibi-
tion itself. These traditional measures, as well subjective affec-
tive ratings, can therefore be influenced by other factors that
may systematically accompany inhibition, such as cognitive con-
flict. Nevertheless, the absence of a direct behavioral measure
of inhibition has not precluded the usefulness of using indi-
rect measures in exploring its potential involvement in a wide
variety of cognitive faculties (for review, see Bari and Robbins,
2013). Advances in combining cognitive methods with neu-
roimaging techniques can also provide a converging-methods
approach that may be critical for disentangling the specific cog-
nitive and affective sequence of events involved in inhibitory
devaluation and the extent to which they contribute to the
Uncanny Valley effect. We outline some of these possibilities
below.
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Neurocognitive Mechanisms

If the Uncanny Valley effect reflects inhibitory devaluation of
stimuli that activate multiple, competing interpretations during
recognition, then neuroimaging investigations of the Uncanny
Valley should be expected to show critical similarities with neu-
roimaging investigations of inhibitory devaluation. So far, the
only examinations of the neural correlates of inhibitory devalu-
ation include a pair of electrophysiological (event-related poten-
tial) studies by Kiss et al. (2007, 2008), and a functional mag-
netic resonance imaging (fMRI) study by Doallo etal. (2012).
Nevertheless, each of these studies have indicated that the mag-
nitude of neural activation associated with resolving potential
interference among competing stimulus/motor-response repre-
sentations are linked to subsequent levels of negative subjective
evaluations of the associated stimuli.

Doallo et al. (2012), for example, found that the level of activ-
ity in lateral prefrontal cortex (middle frontal gyrus) was greatest
during periods requiring response inhibition for successful task
performance. The level of activity in this inhibition-related region
was linked to the subsequent magnitude of affective devalua-
tion in participants’ subjective ratings of the stimuli. Within
the realm of Uncanny Valley effects, Saygin etal. (2012) like-
wise observed a greater change in activity within a region of
middle frontal gyrus (among other lateral areas of the parietal
and temporal cortices) when participants repeatedly observed a
robot with human features (i.e., a stimulus depicting multiple,
competing categories) than when participants repeatedly viewed
a robot without human features or a real human (i.e., stimuli
that depicted a single object category). It should be noted, how-
ever, that Saygin et al. (2012) did not measure affective responses
to their stimuli. Nevertheless, some broadly consistent find-
ings across paradigms have also been obtained in fronto-limbic
areas thought to be involved in the coding of items motiva-
tional or emotional significance. Doallo et al. (2012), for example,
reported that the level of activity in orbital-frontal cortex, insu-
lar cortex, and amygdala during periods of motor-inhibition
was linked to the subsequent magnitude of stimulus devalua-
tion. Cheetham et al. (2011) likewise observed relative increases
in activity within amygdala and insular cortex when a morph
image bearing a greater resemblance to an inanimate human-
like avatar was quickly followed by a different image depicting a
real human than when followed by another avatar. Their findings
support the idea that conditions that evoke multiple, compet-
ing stimulus representations can elicit activity in emotion-related
areas, even in the absence of motor-related conflict or cate-
gorical ambiguity, per se. Unfortunately, their passive-viewing
approach meant that participants in their study were not asked
to provide any explicit perceptual or (even more importantly
here) affective judgments about the stimuli they viewed, mak-
ing it impossible to link the changes in neural activity they
observed to subjective perceptual or affective outcomes. And
while comparisons are otherwise limited by the many differ-
ences in methods and procedures, the consistency in the results
of these prior neuroimaging studies of inhibitory devaluation
and Uncanny Valley effects certainly does support a call for
future studies to directly examine specific issues regarding the
extent to which the Uncanny Valley effect reflects inhibitory

devaluation of stimuli that activate multiple, competing stimulus
representations.

For example, tasks that involve cognitive conflict are thought
to rely on the anterior cingulate cortex for conflict detection
(Botvinick et al., 2001; Kerns et al., 2004), while the lateral pre-
frontal regions appear to be recruited during subsequent cogni-
tive control (Carter and van Veen, 2007). This may explain why
tasks that evoke cognitive dissonance have been shown to engage
the dACC as well as the insula (van Veen et al., 2009) and left
dorsolateral PFC (Mengarelli et al., 2013), and why activation in
these areas has predicted attitude change in line with cognitive
dissonance theory. Indeed, more recent evidence (Izuma etal,
2013) suggests that the same region of the dACC is involved
in both cognitive dissonance and conflict. Therefore, if the
Uncanny Valley effect can be understood as the affective conse-
quence of inhibition applied to reduce cognitive conflict, then
we might expect to see anterior cingulate involvement when
participants judge stimuli that present conflicting cues to cate-
gory membership. This can be assessed by combining Uncanny
Valley paradigms such as the paradigm used in our experiments
with techniques such as fMRI or EEG/ERP. Electrophysiological
markers of conflict detection, such as the N2 event-related poten-
tial obtained from frontocentral electrodes (directly above the
dACC), for example, may be particularly useful for examining the
link between conflict and stimulus devaluation in Uncanny Valley
paradigms.

One possibility would involve extending the approach used by
Kiss et al. (2008) in their EEG/ERP study of inhibitory devalu-
ation that focused on how changes in the amplitude of the N2
component were linked to the magnitude of stimulus devalu-
ation measured thereafter. Using this approach with Uncanny
Valley-type stimulus sets would likewise be expected to reveal the
largest N2 component, and the most negative affective response,
for those stimuli that most strongly activate multiple, competing
stimulus interpretations. Experimental priming manipulations
might also be used to vary the extent to which a stimulus from
a given perceptual continuum would activate multiple, compet-
ing stimulus interpretations. For target images selected from the
midpoints of human-robot morph sequences, for example, vary-
ing whether a preceding prime image is either a human, robot,
or from a completely unrelated (control) category should have
an impact on behavioral and neuroimaging measures of cog-
nitive conflict, inhibition, and subjective emotional responses
to the target images. The anterior midcingulate cortex (aMCC)
has also been linked to cognitive control and negative affect
(Shackman et al., 2011). Future fMRI investigations may there-
fore target the aMCC as another potential link between cognitive
conflict, the recruitment of cognitive inhibition and negative
affect in situations involving the Uncanny Valley and other con-
ditions known to produce inhibitory devaluation.

Individual Differences

Another important avenue of research concerns indi-
vidual differences in inhibitory processes that might
explain differing affective responses to ‘uncanny’ stimuli.
In our experimental assessment of the feasibility of the
inhibitory-devaluation hypothesis (Experiments 1 and 2),
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we observed that, while the individual affective responses of most
participants reflected an Uncanny Valley-like pattern of stimu-
lus evaluation, this was not universal. Individual differences in
affective responses to uncanny stimuli could arise either due to
varying inhibitory control abilities, or due to variations in the
affective sensitivity of an individual to an inhibitory signal. For
example, MacDorman and Entezari (2015) recently observed that
the eeriness induced by uncanny stimuli was more pronounced
among individuals with high trait anxiety. Given evidence that
trait-anxious persons exhibit hyper-responsivity in fronto-limbic
regions associated with negative affect (Shin and Liberzon, 2009),
it is possible that their sensitivity to Uncanny stimuli arises due
to heightened affective reactivity to inhibitory signals. Individual
differences in the magnitude of other forms of inhibitory-
devaluation have also been linked to differences in inhibitory
control (e.g., failures to inhibit motor-responses, Ferrey et al.,
2012). Exploring the relationship between individual differences
in the subjective magnitude of the Uncanny Valley effect and
differences in inhibitory control and/or affective sensitivity to
inhibitory signals may therefore provide another interesting
direction for future research into the specific sequence of cogni-
tive and affective events that the inhibitory-devaluation account
of the Uncanny Valley is proposed to comprise.

Conclusion

The importance of elucidating specific mechanisms under-
lying the Uncanny Valley effect is underscored by the
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