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Researchers planning a longitudinal study typically search, more or less informally,

a multivariate space of possible study designs that include dimensions such as the

hypothesized true variance in change, indicator reliability, the number and spacing of

measurement occasions, total study time, and sample size. The main search goal is to

select a research design that best addresses the guiding questions and hypotheses of

the planned study while heeding applicable external conditions and constraints, including

time, money, feasibility, and ethical considerations. Because longitudinal study selection

ultimately requires optimization under constraints, it is amenable to the general operating

principles of optimization in computer-aided design. Based on power equivalence

theory (MacCallum et al., 2010; von Oertzen, 2010), we propose a computational

framework to promote more systematic searches within the study design space. Starting

with an initial design, the proposed framework generates a set of alternative models

with equal statistical power to detect hypothesized effects, and delineates trade-off

relations among relevant parameters, such as total study time and the number of

measurement occasions. We present LIFESPAN (Longitudinal Interactive Front End

Study Planner), which implements this framework. LIFESPAN boosts the efficiency,

breadth, and precision of the search for optimal longitudinal designs. Its initial version,

which is freely available at http://www.brandmaier.de/lifespan, is geared toward the

power to detect variance in change as specified in a linear latent growth curve model.

Keywords: statistical power, structural equation modeling, latent growth curve modeling, optimal design, power

equivalence theory, effective error

Introduction

Describing, explaining, and modifying between-person differences in change are central goals in
research on lifespan development (Baltes and Nesselroade, 1979; Hertzog, 1996; Baltes et al., 2006;
Ferrer and McArdle, 2010; Lindenberger et al., 2011). Numerous studies have shown that people
differ in rates of change in many functional domains, both at neural and behavioral levels of anal-
ysis (e.g., Lindenberger, 2014). To delineate the antecedents, correlates, and consequents of these
differences, differences in change in variables of interest must bemeasured with sufficient reliability.
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Hence, researchers have begun to examine the relative impor-
tance of factors that contribute to the statistical power to detect
between-person differences in change (represented by the vari-
ance in change), such as the true variance in change, the number
and precision of indicators, the number and distribution of mea-
surement occasions, and the total time elapsing from the begin-
ning to the end of the study (henceforth referred to as total study
time; Hertzog et al., 2006; von Oertzen et al., 2010; von Oertzen
and Brandmaier, 2013; Rast and Hofer, 2014). The search for
optimally powerful longitudinal research designs requires close
and simultaneous attention to the relative contributions of each
of these factors to statistical power.

There is a dire need for a coherent and unified approach to the
a-priori estimation of statistical power that can efficiently assist
researchers in identifying longitudinal research designs with opti-
mal statistical power to detect key effects under a given set of
assumptions and design constraints (Maxwell et al., 2008; Moer-
beek, 2011). Current statistical power analysis is often based on
Monte Carlo simulations (e.g., Hertzog et al., 2008; Ke andWang,
2014; Rast and Hofer, 2014), which can be carried out with the
help of statistical software packages such as Mplus (Muthén and
Muthén, 2007). However, the Monte Carlo simulation approach
can be cumbersome, and requires scientists to choose how and
when to simulate possible design configurations. What is cur-
rently needed is a method for an efficient yet comprehensive
overview of the ways in which different parameter values or
design configurations contribute to statistical power. Currently
available dedicated software can be used for the a-priori power
analysis of hypotheses about repeated measures means and inter-
actions in a general linear model context (G∗power; Faul et al.,
2007) and for group differences in mean growth curve parame-
ters, as in intervention contexts (Hedeker et al., 1999; Kelley and
Rausch, 2011) or observational studies with time-varying expo-
sure (Barrera-Gomez et al., 2013). However, power tools with a
focus on individual differences in change as specified by latent
variable models are still lacking. Given recent advances in the for-
mal understanding of statistical power in longitudinal Structural
Equation Modeling (e.g., von Oertzen, 2010), the time is ripe to
introduce a software tool for the computer-aided design of lon-
gitudinal studies. Hence, we propose LIFESPAN, a freely avail-
able computer tool for creating linear latent growth curve model
(LGCM) designs and for deriving approximate estimates of their
statistical power. The currently available version of LIFESPAN
allows researchers to explore alternative study designs with
equivalent power to detect individual differences in linear change.

In the remainder of this article, we introduce the design prin-
ciples and specific features of our computational approach, dis-
cuss limitations of its current implementation, and lay out a
research agenda for the computer-aided design of longitudinal
studies.

Computer-Aided Design of Longitudinal
Studies: A Structural Equation Modeling
Approach

Human designers typically envision a design problem in terms
of one or more goals they wish to attain, and then consider

dimensions that put constraints on the space of admissible solu-
tions, such as cost, time, feasibility, elegance (aesthetics), and
ethics. In engineering and the natural sciences, computers often
assist humans in finding solutions to design problems of this sort.
Computer-aided design (CAD) is devoted to reducing the elapsed
time and resources spent during the design task supported by
computational facilities (Coons and Mann, 1960). When the goal
of a design task is not only feasibility but has further design objec-
tives, the task at handmay be formalized in terms of optimization
under constraints (see Rao, 2009). The auspicious role assigned to
the computer is to find a solution (e.g., a product) that optimizes
one or more criteria under a given set of constraints. In mechan-
ical design, typical goals are the reduction of stress, wear, or
weight, for example, minimizing the overall weight in aerospace
design or minimizing manufacturing costs in civil engineering
design.

Likewise, the planning of a longitudinal study, which involves
repeated measurements of one or more variables over time,
can be regarded as an engineering task. Generally, researchers
have a good sense of their phenomena of interest, and select
their measurement instruments on that basis. They then con-
sider various longitudinal study designs based on a collection
of reasons that include assumptions about the nature of the
change process as well as practical considerations such as avail-
able resources (e.g., time and money). This selection process
comes with many degrees of freedom, and decisions are often
made without full knowledge of their implications. For instance,
longitudinal design decisions entail choosing an observational
time span, and, within that time span, the frequency and dis-
tribution of measurement occasions. Given the complexity and
size of the longitudinal design search space, it is surprising that
computer-aided approaches to optimal longitudinal design have
been largely neglected thus far, despite the longstanding avail-
ability of appropriate statistical approaches (e.g., Schlesselman,
1973).

Structural Equation Modeling (SEM; e.g., Bollen, 1989) is a
statistical framework that formalizes the relationship between
observed and latent variables. SEM notation includes diagrams
that represent the entire set of equations underlying a given
model (see McArdle and Nesselroade, 2014, pp. 59–66). This
feature greatly facilitates the creation, modification, and com-
munication of models, and is particularly useful for comparing
different research designs (vonOertzen et al., 2015).Within SEM,
latent growth curve models (LGCM) are widely used to capture
change in longitudinal data on human behavioral development
(e.g., Meredith and Tisak, 1990;Muthén and Curran, 1997; Ferrer
and McArdle, 2003, 2010; Duncan et al., 2013). In LGCM, factor
loadings represent hypothesized trends over time, such as initial
level and linear change. The mean vector, µ, and the covariance
matrix, 6, of the observed variables are a function of factor load-
ings,3, variables’ intercepts, ν, a latent covariancematrix,9 , and
a residual covariance matrix, 2 (e.g., Bollen, 1989):

6 = 393′
+ 2

µ = 3ν

Under the assumption of homoscedastic and uncorrelated
residual errors, the matrices for a linear LGCM are:
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The parameters in the model are the number of measurement
occasions, M, at times t1 to tM , the residual error, σ 2

ε , the mean,
µI , and variance, σ 2

I , of the latent intercept, and the mean,
µS, and the variance, σ 2

S , of the latent slope, and the latent
intercept-slope covariance, σIS.

When planning a longitudinal study, statistical consultants are
typically approached with questions about the size of the sam-
ple needed to approach a level of statistical power that is deemed
adequate (e.g., 80%). Questions of this kind have been the tar-
get of a large number of simulation studies (e.g., Muthén and
Muthén, 2002; Maxwell et al., 2008), which in turn have informed
researchers about reasonable ranges for selected designs and
effect sizes. So far, however, the curse of dimensionality has
rendered an exhaustive simulation-based treatment of statisti-
cal power for all potential combinations of design parameters
intractable. This impasse can be overcome by statistical theories
that formalize parameter trade-off relations in SEM (MacCallum
et al., 2010; von Oertzen, 2010).

Specifically, von Oertzen and Brandmaier (2013) have pro-
posed a formal approach, based on power equivalence theory
(von Oertzen, 2010), that allows researchers to examine trade-
off relations among design parameters of a LGCM while hold-
ing statistical power constant. In the context of SEM, power
equivalence theory allows the generation of alternative models
with different design parameters but equal power according to
likelihood-ratio tests. Von Oertzen and Brandmaier (2013) show
how power-equivalent operations can be used to transform a
given LGCM into alternative models. For tests of interindivid-
ual differences of change, σ 2

S , they present an empirical example
of trade-off relations between total study time and the number of
measurement occasions. Of course, many more such trade-offs
are possible. If multiple measurement instruments were avail-
able, combinations of them could be used in multiple-indicator
LGCM to increase power (von Oertzen et al., 2010), or the num-
ber of participants could be traded for additional bursts or waves
of measurement (Schlesselman, 1973; see Raudenbush and Liu,
2001; von Oertzen and Brandmaier, 2013). As is true for any
engineering task, the optimal choice among models will depend
on external criteria, such as the amount of study time elaps-
ing before targeted effects are reliable, the strain exerted on
research participants, and resource expenditures like laboratory
space or money.

Power Equivalence Theory and Effective
Error

Comparing alternative study designs under equal power allows
the optimization of a study design with respect to a given design
objective, for example, the minimization of the total study time
or the number of measurement occasions or waves. To permit
the manipulation of design parameters of a given study design
without changing statistical power, we rely on power equivalence
theory as introduced by von Oertzen (2010). Two study designs
measuring the same effect of interest are power-equivalent if they
exhibit the same statistical power to detect the effect. Translat-
ing this definition to study designs targeting interindividual dif-
ferences in change, two study designs are power-equivalent if
they have the same power to detect non-zero slope variance in
a likelihood-ratio test. Two such study designs may differ in any
aspect that does not change the variables involved in the statisti-
cal hypothesis. In the context of a test with one degree of freedom
(1-df ), any parameter other than the linear slopemay be changed.
For example, two alternative study designs may have the same
power while differing in a combination of parameters, such as
the number of measurement occasions (and thus in the num-
ber of observed variables), in the total study time, distribution
of measurement occasions in time, precision of the measurement
instrument, or the number of participants.

Von Oertzen (2010) noted that together with a given statisti-
cal hypothesis, a given, potentially complex SEM can be reduced
to a minimal power-equivalent model. For hypotheses about a
single latent variable, as in a 1-df test of slope variance, power
equivalence theory allows the reduction of a structurally complex
study design to a simple model with a single effective error. This
effective error may be interpreted as the hypothetical measure-
ment error encountered had it been possible tomeasure the latent
construct of interest directly. It follows that two alternative study
designs with the same effective error are power-equivalent. Thus,
the effective error acts as a pivotal point allowing the derivation
of power-equivalent models from an initial design. Von Oertzen
and Brandmaier (2013) have elaborated this approach for LGCM
and hypotheses about the intercept and slope variance. In the fol-
lowing, we reiterate how the effective error in a linear LGCM
can be used to arrive at alternative designs given an initial study
design.

The effective error of measuring slope variance in a linear
LGCM can be written as follows (adapted from Equation 2 in von
Oertzen and Brandmaier, 2013):

σ 2
eff =

σ 2
ε

∑M
j= 1 t

2
j −

1
M+ σ 2

ε /σ 2
I

(

∑M
j= 1 tj

)2

whereM is the number of measurement occasions at time points
tj, σ

2
ε the residual error, and σ 2

I the intercept variance. Assuming
equally spaced measurements and linear growth over time with T
being the total study time, T = tM , we can substitute the sums by
the following terms:
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∑M

j= 1
tj =

∑M

j= 1

(

j

M
T

)

=
1

2
(M + 1)T

∑M

j= 1
t2j =

∑M

j= 1

(

j

M
T

)2

=
(M + 1) (2M + 1)T2

6M

It follows that the effective error is a function of a given set
of parameters θ =

(

σ 2
ε , σ 2

I ,T,M
)

including residual variance,
intercept variance, total study time and number of measure-
ment occasions. Let θ represent the specification of the initial
study design. Then, we can define an alternative study design

by a second parameter vector θ ′ =

(

σ ′2
ε, σ

′2
I ,T

′,M′

)

. Both

study designs are power equivalent if their effective errors are
equal, that is, σ 2

eff (θ) = σ 2
eff

(

θ ′
)

. To guarantee power equiva-

lence during manipulation of an alternative design, we allow all
but a single parameter in θ ′ to be freely varied. Henceforth, we
refer to this excluded parameter as computer-adjusted. Whenever
any value on one of the dimensions of θ ′ is changed during the
design process, an optimization algorithm is used to adapt the
computer-adjusted dimension of θ ′ such that σ 2

eff (θ) = σ 2
eff

(

θ ′
)

.

To accomplish this end we employ a gradient descent algorithm
(e.g., Luenberger, 1973) to find the root of σ 2

eff (θ) − σ 2
eff

(

θ ′
)

.

This general-purpose optimization technique allows us to arrive
at alternative models under equivalent statistical power without
the need to run computationally expensive Monte Carlo simula-
tions at each optimization step. Sample size can also be a modifi-
able parameter under power equivalence when the optimization
scheme is augmented by numerical approximations of statistical
power (see Satorra and Saris, 1985). The layout of a path diagram
for an automatically created, alternative study design given by the
parameter vector θ ′ can either be implemented for a particular
design or generally left to an automatic layout algorithm (e.g.,
Boker et al., 2002).

Based on the design parameters of a LGCM, various indices of
design quality other than statistical power itself can be derived. By
normalizing the absolute effect size, σ 2

S , with the effective error,
σ 2
eff
, we obtain an index of reliability of the specific likelihood-

ratio test of slope variance, effective curve reliability (ECR), which
can be interpreted as an effect size estimate of slope variance:

ECR =
σ 2
S

σ 2
S + σ 2

eff

Similarly, growth rate reliability (GRR), introduced by Willett
(1989), was used by Rast and Hofer (2014) as an index of sta-
tistical power in LGCM. GRR can be regarded as a special case of
ECR, in the sense that the two indices yield identical results when
the effect of intercept variance on effective error is asymptotically
large so that the denominator of the effective error simplifies to
a term proportional to the variance of the occasions of measure-
ments. GRR may be more appropriate than ECR if the statistical
test used to detect slope variance does not account for the effect
of intercept variance (e.g., a one-dimensional Wald test).

In contrast to both ECR and GRR, growth curve reliability
(GCR; e.g., McArdle and Epstein, 1987) is a measure of variance
explained in the observed variables, and reduces to a scaling of

intercept variance and residual variance at the point in time when
the regression of the observed variable on the latent slope is zero
(i.e., at occasion j for which tj = 0):

GCR0 =
σ 2
I

σ 2
I + σ 2

ε

The different indices serve complementary functions in planning,
selecting, and communicating a study. Effective error is particu-
larly useful as a proxy for statistical power when researchers have
no clear expectations about the corresponding true score, such as
the true variance of change. ECR relates a true score to its effec-
tive error, and serves as a proxy for statistical power when sample
size and alpha level are left undetermined.

The LIFESPAN Tool

Based on power equivalence theory (von Oertzen, 2010; von
Oertzen and Brandmaier, 2013), we have designed LIFESPAN
to aid researchers in the design phase of longitudinal studies.
The program is freely available at http://www.brandmaier.de/
lifespan. With LIFESPAN, our primary goal is to help researchers
to design, manipulate, and optimize their longitudinal study
design. To this end, researchers using LIFESPAN can: (a) gener-
ate a graphical rendition of the model implied by an initial study
design; (b) freely and systematically explore the space of alter-
native power-equivalent study designs; (c) compute and display
relevant design indices, such as effective error, GCR, GRR, or
ECR; (d) run a Monte Carlo simulation engine to estimate statis-
tical power for a given sample size; and (e) convert the final model
from a planning into a data analysis tool. To facilitate this tran-
sition, LIFESPAN is based on �nyx (von Oertzen et al., 2015),
a SEM software environment that is also freely available (http://
onyx.brandmaier.de), but distributed as a stand-alone program.
LIFESPAN is written in JAVA and runs on all major operating sys-
tems, including Linux/Unix, OSX, and Windows. To streamline
researchers’ workflow and increase accessibility, we are consider-
ing integrating LIFESPAN directly into �nyx as a module such
that users need not switch between programs when planning a
study, running Monte Carlo simulations, and conducting data
analyses.

Currently, LIFESPAN is limited to linear LGCM, and is geared
toward evaluating the power to detect variance in linear change.
Further specification modes, design indicators, and simulation
tools related to other design parameters will be added to future
releases of the program (see below).

The main screen of LIFESPAN features three elements (see
Figure 1). The top half of the screen displays the path diagram
of the initial or target study design. The center shows a sum-
mary with a set of study design indices, such as the effective error,
GCR, GRR, and ECR. The bottom half of the screen features a
control panel. LIFESPAN offers four modes of operation, each
corresponding to one of the tabs in the control panel: (1) model
specification; (2) alternative models; (3) iso-power plots; and (4)
Monte Carlo simulation. In the following, each of these modes is
described in detail.
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FIGURE 1 | Main screen of LIFESPAN. This screenshot shows the

specification mode of LIFESPAN. Text fields allow researchers to type in

study design parameters, for instance, time span or the number of

measurement occasions, and best guesses about true variances in

intercept and linear change. At the top, the current study design is

displayed as a path diagram.

Model Specification
In model specification mode, researchers can specify an initial
study design in the form of a linear LGCM. Specification does
not require knowledge of syntax or algebra, since researchers
are asked to directly manipulate the design parameters of the
LGCM. These parameters include the number of measurement
occasions, the total time span of the study, and the residual vari-
ance of the indicator. In addition, parameters referring to popu-
lation values at the latent level need to be specified, that is, inter-
cept variance, slope variance, and intercept-slope covariance.
Once model specification is completed, clicking Done generates

a path diagram that corresponds to the specified study design,
and delivers the design indices GCR, GRR, ECR, and effective
error.

Alternative Models
Proceeding from model specification, LIFESPAN allows
researchers to generate alternative models that have equal statis-
tical power to detect variance in linear change. To this end, the
parameters chosen during model specification are represented
as sliders. In this manner, researchers can observe how different
parameter combinations result in identical statistical power.
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Specifically, choice buttons allow the selection of one design
parameter to be computer-adjusted while the remaining param-
eters remain user-modifiable. Whenever any of the user-
modifiable parameters is changed, the optimization algorithm
described above adapts the computer-adjusted parameter such
that the resulting alternative study design is power-equivalent to
the initial design. As the researcher explores alternative designs,
the corresponding path diagram and associated design indices are
updated.

Plots of Iso-Power Contours
To attain a more complete understanding of parameter trade-
off relations, the next mode of operation allows researchers to
plot iso-power curves (MacCallum et al., 2010; von Oertzen and
Brandmaier, 2013). Iso-power curves display power-equivalent
alternative models in two-dimensional parameter space; they dis-
play bivariate associations between parameters while statistical
power to detect linear variance of change is held constant. This
feature allows researchers to identify parameter constellations
that optimize one or more external criteria, such as total study
time and indicator reliability.

Monte Carlo Simulation
Finally, LIFESPAN estimates the statistical power to detect vari-
ance in linear change for a given sample size. To this end,
researchers can choose between two tests: (i) a 1-df test of the
slope variance; (ii) a generalized variance-covariance likelihood-
ratio test with 2-df (for discussion, see Hertzog et al., 2008).
The current version of LIFESPAN uses a Monte Carlo simula-
tion approach (e.g.,Muthén andMuthén, 2002) to estimate actual
statistical power. Researchers can specify the sample size and the
number of Monte Carlo replications. In each replication, data are
simulated from the currently specified study design and are fit-
ted to the same model, once without restriction and once under
the restrictions imposed by the selected variance test. Parame-
ter estimation is performed by the estimation engine of �nyx
(for details, see von Oertzen et al., 2015). By counting the result-
ing significant likelihood-ratio tests, one obtains an unbiased
approximation to the statistical power of the study design.

Workflow
In its current form, LIFESPAN allows the specification of a
longitudinal study design with repeated measures over time in
the form of a LGCM. Researchers can enter their initial model
parameters and a best guess of the true variance in linear change
(e.g., effect size) to obtain approximations to the statistical power
to detect between-person differences in linear change. By using
sliders that represent various design parameters, researchers
can intuitively explore alternative models. Plotting associations
between pairs of selected parameters under equal power makes
it possible to visualize critical design aspects based on power
equivalence theory.

The final model specification can be exported to and directly
used in �nyx. �nyx allows use of the selected design option for

Maximum Likelihood estimation of parameters once empirical
data have been collected. Also, the graphical interface of �nyx
allows researchers to expand the model beyond the limitations of
LIFESPAN, for instance, by imposing constraints or expanding
the model beyond the unconditional LGCM. Further capabilities
of �nyx include the generation of publication-ready figures, fur-
ther simulation, and export of the syntax of the final model to
three freely available R packages, OpenMx (Boker et al., 2011),
lavaan (Rosseel, 2012), and sem (Fox, 2006), and to the commer-
cially available software package Mplus (Muthén and Muthén,
2007).

A Sample Application of Lifespan

For illustration, we have recreated a study design taken from
the study, “Origins of Variance in the Oldest-Old: Octogenarian
Twins” (see Johansson et al., 1999, 2004). Following the values
reported by Rast and Hofer (2014; Table 5, line 1, p. 11) for the
measure, Memory-in-Reality Free Recall, we specified an initial
study design with slope variance σ 2

S = 0.53, intercept variance
σ 2
I = 39.63, residual error σ 2

ε = 9.20, intercept-slope covariance
σIS = −0.69 (corresponding to an intercept-slope correlation of
−0.15), and three measurement occasions spanning a total of 4
years, that is, T = 4, and M = 3. As reliability and effect size
indicators, we obtain GCR of .81, GRR of .32, ECR of .36, and
an effective error of .96. Using the Monte Carlo estimation func-
tionality, we estimate the power of the design with a sample size
of N = 250 to be close to 80%.

Based on this empirically realized study design and its
observed statistical parameters, we ask four questions concern-
ing possible modifications of the initial design (see Figure 2):
(1) If we added (or subtracted) measurement occasions, in how
far could we afford to use a less reliable (or would we need
a more reliable) measurement instrument? (2) Again, if we
added (or subtracted) measurement occasions, by how much
could we reduce (or would we need to increase) total study
time? (3) If the true variance in linear change was larger (or
smaller) than observed, in how far can could we afford a less
reliable (or would we need a more reliable) measurement instru-
ment? (4) If individual differences at baseline were higher (or
lower) than observed, by how much would we need to extend
(or could we reduce) total study time to achieve the same
power to detect between-person differences in linear change?
The four panels of Figure 2 show iso-power curves that provide
answers to each of these questions. Residual variance trades off
almost linearly against the number of occasions and the vari-
ance of slope (left panels). The number of measurement occa-
sions and total study time span trade off against each other in
a quadratic relationship, in the sense that the effect of adding
occasions on power is reduced with each additional measure-
ment occasion (upper right panel; cf. von Oertzen and Brand-
maier, 2013). Finally, the effect of intercept variance on power
quickly reaches an asymptote such that increasing intercept vari-
ance needs to be compensated for by only small increments of
total study time span to achieve equal statistical power (lower
right panel).
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FIGURE 2 | Iso-power plots for bivariate trade-offs between

parameters in a LGCM based on the OCTO-Twin Study. Number of

occasions and residual variance (top left), number of occasions and time

span (top right), variance of slope and residual variance (bottom left), and

variance of intercept and time span (bottom right). The original study design

is marked with a cross in each panel.

Discussion

Current Limitations of LIFESPAN
We see LIFESPAN as a computational tool that helps researchers
to gain insights into trade-off relations among design parame-
ters, and hence enables them to make better decisions about the
design of a planned longitudinal study. At the same time, we
acknowledge that the current version has at least three important
limitations.

First, LIFESPAN is currently limited to linear LGCM. We
decided to formalize longitudinal study design in terms of a
LGCM because models of this type are widely used for longitudi-
nal data analysis, particularly in lifespan research (Hertzog, 1996;
McArdle and Nesselroade, 2003; Lindenberger et al., 2011). We
emphasize that the assumption of homogeneous linear change is
strong, and quite likely to be incorrect inmany empirical settings.
For instance, in studies of cognitive aging, changes often acceler-
ate with advancing age (cf. Ghisletta et al., submitted). Hence, we

recommend some caution when searching for alternative models,
as the linearity assumption may entail substantial misspecifica-
tion at higher ages, especially when the model covers a large age
range.

Second, the current version of LIFESPAN has an exclusive
focus on the statistical power to detect between-person differ-
ences in linear change. In our judgment, this focus is well justified
because the description, explanation, and modification of indi-
vidual differences in change is central to lifespan theory (Baltes
et al., 1977), and arguably themost important reason for conduct-
ing longitudinal work in the first place. Accordingly, the indices
currently provided by LIFESPAN reflect our substantive research
interest in between-person differences in change (Hertzog, 2008;
Lindenberger, 2014) and complement our earlier work on statis-
tical power (Hertzog et al., 2006, 2008; von Oertzen et al., 2010;
von Oertzen and Brandmaier, 2013).

Third, in the present version of LIFESPAN, power equiva-
lence is based on the 1-df test, which refers to the specific test
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of zero variance. Note that the hypothesis tested in this way is
that there is no unique variance in linear slope. If the intercept-
slope covariance is different from zero, then testing this hypoth-
esis is different from testing the hypothesis of total zero variance.
When confusing these two hypotheses, manipulating the covari-
ance may yield unintuitive results. To reject the hypothesis of
no slope variance in the presence of a non-zero intercept-slope
covariance, it is necessary to use the 2-df test, or the general-
ized variance test. It draws power from both the intercept-slope
covariance and the slope variance, which also makes it more
powerful than the specific variance test (Hertzog et al., 2008; Ke
and Wang, 2014). We are currently working on a derivation of
the effective error corresponding to this two-dimensional null
hypothesis (Brandmaier et al., in preparation) and will imple-
ment this derivation in a future version of LIFESPAN. Facilities
for the Monte Carlo simulation of statistical power are already
available for both the specific and the generalized test of slope
variance.

LIFESPAN as a Vehicle for Progress in
Longitudinal Study Design
The LGCM is just one class of models for evaluating change. It
does not directly address the issue of capturing various forms of
causality (see Pearl, 2012). Future developments can consider the
power to detect fixed and random regression coefficients in alter-
native structural regression models such as the bivariate dual-
change score model (McArdle and Hamagami, 2001; Ferrer and
McArdle, 2003; Prindle andMcArdle, 2012) as well as continuous
time models (Voelkle et al., 2012).

LIFESPAN can be augmented in a number of ways that will
enhance its usefulness as a tool to select and evaluate longitudinal
study designs. The hope is that we can make LIFESPAN suffi-
ciently flexible to serve as an instrument for promoting progress
in longitudinal study design. From this perspective, the current
emphasis on linear change as specified in a LGCM is a conserva-
tive design limitation that future versions of the program need to
overcome. Power equivalence theory, in general, and the notion
of effective error, in particular, will play a central role in this
endeavor, as the concept of effective error is not limited to testing
hypotheses about true variance in change, but can be extended to
other effects of a given statistical model. Von Oertzen and Brand-
maier (2013) derived an effective error term to detect intercept
variance in the context of a LGCM.

In particular, we envision that future versions of LIFESPAN
will ultimately include options to specify variable spacing of mea-
surement occasions (Willett, 1989; Sliwinski et al., 2010), selec-
tive attrition (Lindenberger et al., 2002), cohort-sequential designs
(Schaie, 1965; Baltes, 1968), non-linear change (Ghisletta et al.,
submitted), and planned missingness (e.g., McArdle, 1994; Gra-
ham et al., 2001; Little et al., 2013; Rhemtulla et al., 2014). Some
of these options are discussed in more detail below.

Alternative approaches to sampling time (i.e., occasions
of measurement) are important because the density and
distribution of measurement occasions influence the statistical

power to detect variance in change (Willett, 1989; von Oertzen
and Brandmaier, 2013; Rast and Hofer, 2014). More work is
needed to find out which time-sampling schemes are well suited
to separating long-term change from forms of within-person
variability that operate on shorter timescales (Nesselroade, 1991;
Lindenberger and von Oertzen, 2006; Sliwinski et al., 2010). Fol-
lowing the original work by Willett (1989), increasing the vari-
ance of measurement intervals by giving up the longstanding
habit of equally spacedmeasurement intervals seems highly com-
mendable. Taken to the extreme, the sampling of time can be
regarded as a variable that varies randomly across participants
(e.g., Voelkle and Oud, 2013).

Regarding selective attrition, future versions of LIFESPAN
or related programs would allow researchers to specify drop-
out rates, including selection equations to capture possible
effects of non-random attrition (cf. Lawley, 1943; Lindenberger
et al., 2002). As a first step in this direction, von Oertzen and
Brandmaier (2013) derived power-equivalence relations based on
score-independent drop-out to examine how power contribu-
tions shift from total study time to observation density depending
on dropout rate.

It would also be useful to evaluate power in sequential sam-
pling designs that incorporate convergence assumptions (Bell,
1953, 1954;McArdle andHamagami, 2001;Moerbeek, 2011), and
to formally explore the potential consequences of misspecifica-
tion on the statistical power to detect variance in change (e.g.,
Sliwinski et al., 2010).

We remind readers that the generation of power-equivalent
models requires the specification of population parameters. To
the extent that these parameters are biased, unreliable, or sim-
ply wrong, the set of power-equivalent models derived on the
basis of these parameters will be less useful than desired. Of
course, this limitation also applies to Monte Carlo simulations,
and to any other method for selection and evaluation of study
designs. VonOertzen and Brandmaier (2013) advised researchers
to rely on conservative population values to obtain lower bounds
on expected statistical power. Alternatively, it might be use-
ful to treat the uncertainty in population values formally (see
Kelley and Rausch, 2011; Lai and Kelley, 2011; Gribbin et al.,
2013).

Outlook
Power evaluation programs such as LIFESPAN serve the purpose
of helping researchers to craft and select longitudinal designs that
have optimal power to detect random effects of change, based on
what is currently known about the change process under investi-
gation. The goal of a fully flexible program that enhances longi-
tudinal study design and obeys the principles of computer-aided
design is more attainable than ever before, though a number of
difficult problems still need to be resolved.

Acknowledgments

We thank Julia Delius for editorial help on the manuscript.

Frontiers in Psychology | www.frontiersin.org 8 March 2015 | Volume 6 | Article 272

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Brandmaier et al. CAD of longitudinal studies

References

Baltes, P. B. (1968). Longitudinal and cross-sectional sequences in the study of age

and generation effects. Hum. Dev. 11, 145–171. doi: 10.1159/000270604

Baltes, P. B., and Nesselroade, J. R. (1979). “History and rationale of longitudinal

research,” in Longitudinal Research in the Study of Behavior and Development,

eds J. R. Nesselroade and P. B. Baltes (New York, NY: Academic Press), 1–39.

Baltes, P. B., Reese, H. W., and Nesselroade, J. R. (1977). Life-Span Developmental

Psychology: Introduction to Research Methods. Monterey, CA: Brooks/Cole.

Baltes, P. B., Reuter-Lorenz, P. A., and Rösler, F. (eds.). (2006). Lifespan Develop-

ment and the Brain: The Perspective of Biocultural Co-constructivism. New York,

NY: Cambridge University Press.

Barrera-Gomez, J., Spiegelman, D., and Basagana, X. (2013). Optimal combina-

tion of number of participants and number of repeated measurements in lon-

gitudinal studies with time-varying exposure. Stat. Med. 32, 4748–4762. doi:

10.1002/sim.5870

Bell, R. Q. (1953). Convergence: an accelerated longitudinal approach. Child Dev.

24, 145–152. doi: 10.2307/1126345

Bell, R. Q. (1954). An experimental test of the accelerated longitudinal approach.

Child Dev. 25, 281–286. doi: 10.2307/1126058

Boker, S. M., McArdle, J., and Neale, M. (2002). An algorithm for the hierarchi-

cal organization of path diagrams and calculation of components of expected

covariance. Struct. Equ. Model. 9, 174–194. doi: 10.1207/S15328007SEM0902_2

Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., et al. (2011).

OpenMx: an open source extended structural equation modeling framework.

Psychometrika 76, 306–317. doi: 10.1007/s11336-010-9200-6

Bollen, K. A. (1989). Structural Equations with Latent Variables. Oxford: John

Wiley.

Coons, S. A., and Mann, R. W. (1960). Computer-Aided Design Related to the

Engineering Design Process. Cambridge, MA: Electronic Systems Laboratory

Duncan, T. E., Duncan, S. C., and Strycker, L. A. (2013). An Introduction to Latent

Variable Growth Curve Modeling: Concepts, Issues, and Application. New York,

NY: Routledge Academic.

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G* Power 3: a flexi-

ble statistical power analysis program for the social, behavioral, and biomedical

sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Ferrer, E., and McArdle, J. (2003). Alternative structural models for multi-

variate longitudinal data analysis. Struct. Equ. Model. 10, 493–524. doi:

10.1207/S15328007SEM1004_1

Ferrer, E., and McArdle, J. J. (2010). Longitudinal modeling of developmental

changes in psychological research. Curr. Dir. Psychol. Sci. 19, 149–154. doi:

10.1177/0963721410370300

Fox, J. (2006). Teacher’s corner: structural equationmodeling with the sem package

in R. Struct. Equ. Model. 13, 465–486. doi: 10.1207/s15328007sem1303_7

Graham, J. W., Taylor, B. J., and Cumsille, P. E. (2001). “Planned missing-data

designs in analysis of change,” in New Methods for the Analysis of Change,

eds L. M. Collins and A. G. Sayer (Washington, DC: American Psychological

Association), 335–353. doi: 10.1037/10409-011

Gribbin, M. J., Chi, Y. Y., Stewart, P. W., and Muller, K. E. (2013). Confidence

regions for repeated measures ANOVA power curves based on estimated

covariance. BMCMed. Res. Methodol. 13:57. doi: 10.1186/1471-2288-13-57

Hedeker, D., Gibbons, R. D., and Waternaux, C. (1999). Sample size estima-

tion for longitudinal designs with attrition: comparing time-related contrasts

between two groups. J. Educ. Behav. Stat. 24, 70–93. doi: 10.3102/10769986024

001070

Hertzog, C. (1996). “Research design in studies of aging and cognition,” in Hand-

book of the Psychology of Aging, 4th Edn., eds J. E. Birren and K.W. Schaie (New

York, NY: Academic Press), 24–37.

Hertzog, C. (2008). “Theoretical approaches to the study of cognitive aging: an

individual-differences perspective,” in Handbook of Cognitive Aging: Interdisci-

plinary Perspectives, eds S. M. Hofer and D. F. Alwin (Thousand Oaks, CA: Sage

Publications, Inc.), 34–49.

Hertzog, C., Lindenberger, U., Ghisletta, P., and von Oertzen, T. (2006). On the

power of multivariate latent growth curve models to detect correlated change.

Psychol. Methods 11, 244–252. doi: 10.1037/1082-989X.11.3.244

Hertzog, C., von Oertzen, T., Ghisletta, P., and Lindenberger, U. (2008). Evaluat-

ing the power of latent growth curve models to detect individual differences in

change. Struct. Equ. Model. 15, 541–563. doi: 10.1080/10705510802338983

Johansson, B., Hofer, S. M., Allaire, J. C., Maldonado-Molina, M. M., Piccinin, A.

M., Berg, S., et al. (2004). Change in cognitive capabilities in the oldest old:

the effects of proximity to death in genetically related individuals over a 6-year

period. Psychol. Aging 19, 145–156. doi: 10.1037/0882-7974.19.1.145

Johansson, B.,Whitfield, K., Pedersen, N. L., Hofer, S.M., Ahern, F., andMcClearn,

G. E. (1999). Origins of individual differences in episodic memory in the

oldest-old: a population-based study of identical and same-sex fraternal twins

aged 80 and older. J. Gerontol. B Psychol. Sci. Soc. Sci. 54, P173–P179. doi:

10.1093/geronb/54B.3.P173

Ke, Z., and Wang, L. (2014). Detecting individual differences in change: meth-

ods and comparisons. Struct. Equ. Model. doi: 10.1080/10705511.2014.936096.

[Epub ahead of print].

Kelley, K., and Rausch, J. R. (2011). Sample size planning for longitudinal models:

accuracy in parameter estimation for polynomial change parameters. Psychol.

Methods 16, 391–405. doi: 10.1037/a0023352

Lai, K. K., and Kelley, K. (2011). Accuracy in parameter estimation for tar-

geted effects in structural equation modeling: sample size planning for narrow

confidence intervals. Psychol. Methods 16, 127–148. doi: 10.1037/a0021764

Lawley, D. N. (1943). XXIII.—On problems connected with item selection and test

construction. Proc. R. Soc. Edinb. A. Math. Phys. Sci. 61, 273–287.

Lindenberger, U. (2014). Human cognitive aging: corriger la fortune? Science 346,

572–578. doi: 10.1126/science.1254403

Lindenberger, U., Singer, T., and Baltes, P. B. (2002). Longitudinal selectivity in

aging populations: separating mortality-associated versus experimental com-

ponents in the Berlin Aging Study (BASE). J. Gerontol. B Psychol. Sci. Soc. Sci.

57, P474–P482. doi: 10.1093/geronb/57.6.P474

Lindenberger, U., and von Oertzen, T. (2006). “Variability in cognitive aging: from

taxonomy to theory,” in Lifespan Cognition: Mechanisms of Change, eds F. I.

M. Craik and E. Bialystok (Oxford: Oxford University Press), 297–314. doi:

10.1093/acprof:oso/9780195169539.003.0021

Lindenberger, U., von Oertzen, T., Ghisletta, P., and Hertzog, C. (2011). Cross-

sectional age variance extraction: what’s change got to do with it? Psychol. Aging

26, 34–47. doi: 10.1037/a0020525

Little, T. D., Jorgensen, T. D., Lang, K. M., andMoore, E. W. G. (2013). On the joys

of missing data. J. Pediatr. Psychol. 39, 151–162. doi: 10.1093/jpepsy/jst048

Luenberger, D. G. (1973). Introduction to Linear and Nonlinear Programming.

Reading, MA: Addison-Wesley.

MacCallum, R., Lee, T., and Browne, M.W. (2010). The issue of isopower in power

analysis for tests of structural equation models. Struct. Equ. Model. 17, 23–41.

doi: 10.1080/10705510903438906

Maxwell, S. E., Kelley, K., and Rausch, J. R. (2008). Sample size planning for sta-

tistical power and accuracy in parameter estimation. Annu. Rev. Psychol. 59,

537–563. doi: 10.1146/annurev.psych.59.103006.093735

McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data.

Multivariate Behav. Res. 29, 409–454. doi: 10.1207/s15327906mbr2904_5

McArdle, J. J., and Epstein, D. (1987). Latent growth curves within developmental

structural equation models. Child Dev. 58, 110–133. doi: 10.2307/1130295

McArdle, J. J., and Hamagami, F. (2001). “Latent difference score structural mod-

els for linear dynamic analyses with incomplete longitudinal data: new meth-

ods for the analysis of change,” in New Methods for the Analysis of Change,

eds L. M. Collins and A. G. Sayer (Washington, DC: American Psychological

Association), 139–175.

McArdle, J. J., and Nesselroade, J. R. (2003). “Growth curve analysis in con-

temporary psychological research,” in Handbook of Psychology: Research

Methods in Psychology, Vol. 2, eds J. A. Schinka and W. F. Velicer, and

I. B. Weiner (Hoboken, NJ: John Wiley & Sons, Inc.), 447–480. doi:

10.1002/0471264385.wei0218

McArdle, J. J., and Nesselroade, J. R. (2014). Longitudinal Data Analysis

Using Structural Equation Models. Washington, DC: American Psychological

Association.

Meredith, W., and Tisak, J. (1990). Latent curve analysis. Psychometrika 55,

107–122. doi: 10.1007/BF02294746

Moerbeek, M. (2011). The effects of the number of cohorts, degree of over-

lap among cohorts, and frequency of observation on power in acceler-

ated longitudinal designs. Methodology 7, 11–24. doi: 10.1027/1614-2241/

a000019

Muthén, B. O., and Curran, P. J. (1997). General longitudinal modeling of indi-

vidual differences in experimental designs: a latent variable framework for

Frontiers in Psychology | www.frontiersin.org 9 March 2015 | Volume 6 | Article 272

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Brandmaier et al. CAD of longitudinal studies

analysis and power estimation. Psychol. Methods 2, 371–402. doi: 10.1037/1082-

989X.2.4.371

Muthén, L. K., and Muthén, B. O. (2002). How to use a Monte Carlo study to

decide on sample size and determine power. Struct. Equ. Model. 9, 599–620.

doi: 10.1207/S15328007SEM0904_8

Muthén, L. K., and Muthén, B. O. (2007). Mplus: Statistical Analysis with Latent

Variables: User’s Guide. Los Angeles, CA: Muthén & Muthén.

Nesselroade, J. R. (1991). “The warp and woof of the developmental fabric,” in

Visions of Aesthetics, the Environment and Development: The Legacy of Joachim

Wohlwill, eds R. M. Downs, L. S. Liben, and D. S. Palermo (Hillsdale, NJ:

Lawrence Erlbaum Associates), 213–240.

Pearl, J. (2012). “The causal foundations of structural equationmodeling,” inHand-

book of Structural Equation Modeling, ed R. H. Hoyle (New York, NY: Guilford

Press), 68–91.

Prindle, J. J., and McArdle, J. J. (2012). An examination of statistical power

in multigroup dynamic structural equation models. Struct. Equ. Model. 19,

351–371. doi: 10.1080/10705511.2012.687661

Rao, S. S. (2009). Engineering Optimization: Theory and Practice. Hoboken, NJ:

John Wiley & Sons, Inc.

Rast, P., and Hofer, S. M. (2014). Longitudinal design considerations to optimize

power to detect variances and covariances among rates of change: simulation

results based on actual longitudinal studies. Psychol. Methods 19, 133–154. doi:

10.1037/a0034524

Raudenbush, S. W., and Liu, X. F. (2001). Effects of study duration, frequency of

observation, and sample size on power in studies of group differences in poly-

nomial change. Psychol. Methods 6, 387–401. doi: 10.1037/1082-989X.6.4.387

Rhemtulla, M., Savalei, V., and Little, T. D. (2014). On the asymptotic relative

efficiency of planned missingness designs. Psychometrika. doi: 10.1007/s11336-

014-9422-0. [Epub ahead of print].

Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. J. Stat.

Softw. 48, 1–36.

Satorra, A., and Saris, W. E. (1985). Power of the likelihood ratio test in covariance

structure-analysis. Psychometrika 50, 83–90. doi: 10.1007/BF02294150

Schaie, K. W. (1965). A general model for the study of developmental problems.

Psychol. Bull. 64, 92–107. doi: 10.1037/h0022371

Schlesselman, J. J. (1973). Planning a longitudinal study: II. Frequency of mea-

surement and study duration. J. Chronic Dis. 26, 561–570. doi: 10.1016/0021-

9681(73)90061-1

Sliwinski, M., Hoffman, L., and Hofer, S. M. (2010). Evaluating conver-

gence of within-person change and between-person age differences in

age-heterogeneous longitudinal studies. Res. Human Dev. 7, 45–60. doi:

10.1080/15427600903578169

Voelkle, M. C., Oud, J. H., Davidov, E., and Schmidt, P. (2012). An SEM approach

to continuous time modeling of panel data: relating authoritarianism and

anomia. Psychol. Methods 17, 176–192. doi: 10.1037/a0027543

Voelkle, M. C., and Oud, J. H. L. (2013). Continuous time modelling with

individually varying time intervals for oscillating and non-oscillating pro-

cesses. Br. J. Math. Stat. Psychol. 66, 103–126. doi: 10.1111/j.2044-8317.2012.

02043.x

von Oertzen, T. (2010). Power equivalence in structural equation modelling. Br. J.

Math. Stat. Psychol. 63, 257–272. doi: 10.1348/000711009X441021

von Oertzen, T., and Brandmaier, A. M. (2013). Optimal study design with identi-

cal power: an application of power equivalence to latent growth curve models.

Psychol. Aging 28, 414–428. doi: 10.1037/a0031844

von Oertzen, T., Brandmaier, A. M., and Tsang, S. (2015). Structural

equation modeling with �nyx. Struct. Equ. Model. 22, 148–161. doi:

10.1080/10705511.2014.935842

von Oertzen, T., Hertzog, C., Lindenberger, U., and Ghisletta, P. (2010). The

effect of multiple indicators on the power to detect inter-individual differ-

ences in change. Br. J. Math. Stat. Psychol. 63, 627–646. doi: 10.1348/000711010

X486633

Willett, J. B. (1989). Some results on reliability for the longitudinal measurement

of change: implications for the design of studies of individual growth. Educ.

Psychol. Meas. 49, 587–602. doi: 10.1177/001316448904900309

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Brandmaier, von Oertzen, Ghisletta, Hertzog and Lindenberger.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychology | www.frontiersin.org 10 March 2015 | Volume 6 | Article 272

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	LIFESPAN: A tool for the computer-aided design of longitudinal studies
	Introduction
	Computer-Aided Design of Longitudinal Studies: A Structural Equation Modeling Approach
	Power Equivalence Theory and Effective Error
	The LIFESPAN Tool
	Model Specification
	Alternative Models
	Plots of Iso-Power Contours
	Monte Carlo Simulation
	Workflow

	A Sample Application of Lifespan
	Discussion
	Current Limitations of LIFESPAN
	LIFESPAN as a Vehicle for Progress in Longitudinal Study Design
	Outlook

	Acknowledgments
	References


