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Previous studies of the development of phonological similarity and word length effects in
children have shown that these effects are small or absent in young children, particularly
when measured using visual presentation of the memoranda. This has often been
taken as support for the view that young children do not rehearse. The current paper
builds on recent evidence that instead suggests that absent phonological similarity
and word length effects in young children reflects the same proportional cost of these
effects in children of all ages. Our aims are to explore the conditions under which
this proportional scaling account can reproduce existing developmental data, and in
turn suggest ways that future studies might measure and model phonological similarity
and word length effects in children. To that end, we first fit a single mathematical
function through previously reported data that simultaneously captures absent and
negative proportional effects of phonological similarity in young children plus constant
proportional similarity effects in older children. This developmental function therefore
provides the benchmark that we seek to re-produce in a series of subsequent
simulations that test the proportional scaling account. These simulations reproduce the
developmental function well, provided that they take into account the influence of floor
effects and of measurement error. Our simulations suggest that future empirical studies
examining these effects in the context of the development of rehearsal need to take into
account proportional scaling. They also provide a demonstration of how proportional
costs can be explored, and of the possible developmental functions associated with
such an analysis.

Keywords: rehearsal, proportional scaling, phonological similarity effect, word length effect, development

Introduction

Many models of verbal short-term memory (e.g., Baddeley, 1986; Camos et al., 2009), assume
that individuals maintain to-be-remembered verbal material via a process of subvocal rehearsal.
Indeed, the phonological loop component of Baddeley’s working memory model consists of
two sub-components - a phonological store that maintains phonological representations, cou-
pled with a rehearsal process that offsets the degradation of these representations that would
otherwise be caused by trace decay. As a consequence, the extent of forgetting from verbal
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short-term memory is assumed to depend on the efficiency of
rehearsal. Specifically, the faster an individual can rehearse an
item the less that item suffers from forgetting (Schweickert and
Boruff, 1986). This provides a potential explanation for the word
length effect - the finding that adults show lower short-term
memory spans for words of a long as opposed to a short spoken
duration (Baddeley et al., 1975) - and in turn the word length
effect has therefore been viewed by many as a marker of rehearsal
taking place.

A second potential indicator of rehearsal is the presence of a
phonological similarity effect for visually presented material. The
phonological similarity effect is the well-established finding of
poorer recall from verbal short-term memory of sets of phonolog-
ically similar compared to phonologically dissimilar items (e.g.,
Wicklegren, 1965). This effect is assumed to reflect the confus-
ability of similar items within the phonological store of Baddeley’s
model. However, when observed for visually presented material
it also shows that the participant has recoded this visual informa-
tion into a phonological form. Because this process of recoding
involves naming the stimuli internally, it has been argued that
participants who can recode in this way can also rehearse (e.g.,
Howard and Franklin, 1990). Indeed, in the neuropsychologi-
cal literature the absence of a phonological similarity effect for
visually presented material is typically interpreted as evidence
of a failure to recode and rehearse (see Trojano and Grossi,
1995).

Since the seminal work of Flavell et al. (1966), developmental
psychologists have assumed that the process of subvocal rehearsal
takes time to come on-line, and is absent in younger children.
Evidence from studies of the two potential markers of rehearsal
identified above appears to support this view. Children aged
younger than 7 years often fail to show significant word length
effects. This is shown in their performance on verbal short-term
memory tasks in which lists of items with verbal labels of either
a short or a long spoken duration are presented for immediate
serial recall (Allik and Siegel, 1976; Henry, 1991; Henry et al.,
2000; Turner et al.,, 2000). Children of this age similarly tend
not to show reliable phonological similarity effects for visually
presented material. In such studies children are typically shown
pictures of objects that either do or do not have phonological
similar names (e.g., dog, man, tree vs. cat, hat, mat), and older,
but not younger children, show poorer recall or lower immediate
memory spans for phonologically similar lists (Hitch et al., 1989,
1991; Halliday et al., 1990; Palmer, 2000). Indeed, a recent study
by Henry et al. (2012) that simultaneously looked at both word
length and phonological similarity effects for visually presented
material, either by measuring memory spans or proportion of
items recalled from lists of a fixed length, failed to find either
effect in children aged below 6. Consequently Henry et al. (2012)
argued that rehearsal is absent at these young ages, and others
have similarly claimed that children do not engage in rehearsal
until around 7 years of age (Baddeley et al., 1998; Gathercole,
1998; Jarrold et al., 2000).

Although widely held, recent evidence has challenged the
assumption that rehearsal undergoes a qualitative change around
this age (see Jarrold and Hall, 2013). For example, Jarrold and
Citroén (2013) replicated previous studies in showing that the

absolute size of the phonological similarity effect increased with
age between 5 and 9 years, and was absent in the youngest chil-
dren with visual presentation of material. However, when the size
of this effect was coded as a proportion of individuals’ ‘baseline’
performance (i.e., [dissimilar recall - similar recall]/dissimilar
recall), the majority of these developmental differences were
removed, with participants of all ages showing a comparable pro-
portional cost of similarity (cf. Logie et al., 1996; Beaman et al.,
2008). This suggests that apparent developments in the size of this
effect with age are in fact a consequence of proportional scaling
operating across different baseline levels of performance, rather
than necessarily reflecting a qualitative change in use of rehearsal
with age.

Having said this in the Jarrold and Citroén (2013) data
the observed phonological similarity effect was sometimes even
smaller than would be predicted by this proportional scaling
account. Specifically, this occurred in just one cell of the design;
namely among the youngest children in the condition where
material was presented visually and then recalled verbally. In fact
this condition produced the lowest baseline (dissimilar) recall
among all individuals, raising the possibility that floor effects
among the youngest participants reduced the similarity effect
more than would be expected by proportional scaling. If there
is a lower bound to the possible range of recall of phonologi-
cally similar items, then the observed level of recall of such items
could conceivably be greater than that predicted by proportional
scaling. In addition, noise in the measurement of recall of phono-
logically similar items could serve to increase the observed value
of similar recall above that predicted by proportional scaling.
However, if performance is near floor then noise cannot reduce
similar recall below this floor level. Subsequent modeling of the
data from the visual presentation and verbal recall condition sup-
ported these suggestions, leading Jarrold and Citroén (2013) to
argue that the phonological similarity effect (and by implication
the word length effect) would be expected to scale in propor-
tion to children’s level of performance, except in conditions where
recall was close to floor.

The purpose of the current paper is not to provide further
evidence for the proportional scaling account of phonological
similarity and word length effects, but rather to explore the impli-
cations of this view and the boundary conditions under which it
can and cannot provide a good account of developmental data.
We have two specific aims. The first is to examine what, if any,
additional assumptions have to be added to a proportional scaling
model to reproduce the developmental data. We do this in a series
of mathematical simulations that start with the simple assump-
tion of proportional scaling of these effects, and which then go
on to successively add additional assumptions. Our second aim
is, as a result, to provide an example of how future studies in
this area might go about examining their data and testing these
assumptions.

The above review shows that the general pattern of develop-
mental data that needs to be reproduced in our simulations is one
of absent manipulation effects in young children and larger effects
in older individuals. More specifically, the Jarrold and Citroén
(2013) data show that when manipulation effects are coded in
proportional terms, the majority of developmental differences
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disappear. However, at very low levels of recall (i.e., particularly
among younger children) manipulation effects can be smaller
than predicted by proportional scaling and can even be reversed.
To provide a clear benchmark against which to evaluate our sim-
ulations, we first fit a mathematical model through the Jarrold and
Citroén (2013) data to provide a single developmental function
that the simulations should re-produce.

Fitting a single function to the Jarrold and
Citroén (2013) dataset
Jarrold and Citroén (2013) assessed a total of 117 children aged
between 5 and 9 years on immediate serial recall tasks that
required each individual to remember either phonologically dis-
similar or phonologically similar items. Children were allocated
to one of four separate testing conditions that were formed by
crossing the modality of presentation of the memoranda (audi-
tory vs. visual) with the modality in which recall was required
(spoken vs. pointing to a set of response pictures). Recall of
phonologically dissimilar and similar items was assessed in sepa-
rate blocks, and each block involved the presentation of four trials
at a series of increasing list lengths. Testing started at list length
2, and proceeded to the next list length if the participant recalled
all the items presented on a trial in their correct serial order on at
least one occasion. The dependent measure extracted from each
block was a partial credit unit scores for performance across all
trials in the block, rather than span scores (see Conway et al.,
2005). This measure sums the proportion of items on a trial that
are correctly recalled across all trials that a child was presented
with. In other words, a child who correctly recalled all the items
on all trials at list lengths 2 and 3, but only two of the four items
on all trials at list length 4, would receive a partial credit unit score
of 10 [(4* 1)+ (4" 1)+ (4 *0.5)].

Figure 1 replots the proportional size of the phonological sim-
ilarity effect shown by each participant in the Jarrold and Citroén
(2013) study against that individual’s ‘baseline’ level of recall.

0.8 1
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@
Q
T 0.0
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t . . .
S Dissimilar recall
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-0.8 1
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-1.2 -
FIGURE 1 | Proportional size of the phonological similarity effect,
plotted against individuals’ level of dissimilar recall, for all participants
in the Jarrold and Citroén (2013) study. Overlapping data are represented
by proportionally larger points. Dissimilar recall is measured in terms of partial
credit unit scores (Conway et al., 2005; see Jarrold and Citroén, 2013).

Baseline level of recall was indexed by their partial credit unit
score for phonologically dissimilar items. The graph shows that
at higher levels of baseline recall proportionalised phonologi-
cal similarity effects are positive, but that negative proportional
phonological similarity effects are seen at lower levels of baseline
performance. This developmental pattern was modeled using a
negative exponential growth function, see equation 1.

Proportional effect = A+ (B (1 — ¢~ Crbaseline recally

This kind of function is consistent with the fact that the data
show negative proportional scores at low levels of baseline recall
(hence one would expect the intercept value, A, to be negative),
and scores that tend to aggregate around a constant value when
baseline recall is higher (the asymptotic proportional effect score
is given by A + B; C represents the rate of growth of the function).

The best fitting negative exponential growth function, shown
in Figure 1, was fit using the non-linear regression module of
SPSS, and accounted for a significant proportion of the variance
in the proportionalised effect (R?> = 0.36). The resultant parame-
ters showed that the function leveled oft to an asymptotic value
of 0.37. In other words, according to this analysis, a relatively
constant 37% cost of phonological similarity was observed in this
study once baseline dissimilar recall scores were above a certain
level (the function predicts a 35% cost when baseline scores reach
a partial credit score of 13, and a 37% cost for partial credit scores
of 18 and above).

Simulations

In all the simulations reported below we look at the effects of a
hypothetical manipulation (which could correspond to a manip-
ulation of word length or phonological similarity) in terms of the
difference between a baseline condition (which would correspond
to a short word or a phonologically dissimilar condition) and
a harder manipulation condition (which would correspond to a
long word or phonological similar word condition). We plot the
size of the manipulation against baseline recall in order to model
the effects of development, assuming that age would be associ-
ated with increases in baseline levels of recall. In most simulations
we plot the size of the manipulation in two ways; the absolute
size of the effect (baseline — referent) and the proportionalised
effect ([baseline — referent]/baseline). The former allows us to
present the data in the manner in which such effects are typically
reported in the literature, while the latter allows us to examine
whether the simulation produces a function that mirrors seen in
Figure 1.

Simulation 1 - Proportional Scaling without Noise

In Simulation 1 we artificially assumed that there was no noise in
the estimate of baseline or harder manipulation condition recall,
and employed three different levels of proportional cost of our
manipulation - 10, 30, and 50%. Figure 2 shows the plots that
arise from these simulations when the manipulation is measured
in absolute terms (panel A) or proportional terms (panel B). Panel
A necessarily shows that the absolute size of the effect is linearly
related to baseline recall, with a slope that corresponds to the
proportional cost; panel B necessarily shows that proportional
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FIGURE 2 | Results of Simulation 1, showing size of the absolute effect
of the manipulation (A) or the proportional effect of the manipulation
(B) plotted against baseline level of performance.

costs are flat across levels of baseline performance. These results
are entirely unsurprising and, indeed, arguably do not need to
be demonstrated graphically. However, they serve as a reference
point against which one can compare more realistic simulations
that include noise in the estimate of the baseline and referent
conditions.

Simulation 2 - Proportional Scaling with Proportional
Noise

In Simulation 2 we assumed that the size of any noise in the
estimate of performance in either the baseline or harder manipu-
lation condition was also proportional to baseline level of perfor-
mance. In other words, we assumed a form of heteroscedasticity
where the variance in the underlying population of potential
scores for both the baseline and harder manipulation condition
at any point in the distribution was proportional to its mean.
Specifically, in Simulation 2 we fixed the proportional cost of our
manipulation to 30% and simulated 2000 data points (sampling
from the distribution of baseline scores between 0 and 20 at 0.01
intervals). For each sampled value of baseline performance, an
‘observed’ baseline score was determined by the addition of noise.
This noise was drawn randomly from a Gaussian distribution of
potential values that was centered on zero and had a standard
deviation that was equivalent to 10% of the sample value of base-
line performance for that point. Observed performance in the
harder manipulation condition was calculated by first imposing

a 30% cost on the sampled (rather than observed) level of base-
line performance, and by then adding noise in the same way as
for the baseline performance scores. However, the noise for the
harder manipulation condition was sampled independently from
the sampling of noise for the baseline condition.

As Figure 3A shows, unsurprisingly the plot of absolute
manipulation sizes shows a similar pattern to that seen for the
30% cost curve in Figure 2A, but with increasing variance in
the size of the effect as baseline performance increases. However,
when coded proportionally (see Figure 3B) the variance in pro-
portionalised manipulation scores does not increase across the
range of baseline performance values. This confirms that if one
is seeking to examine whether proportional scaling occurs in
the development of a manipulation, then plotting proportional
scores against baseline performance should produce a relatively
flat developmental function even if noise is present, provided that
this noise also scales with level of baseline performance.

Simulation 3 - Proportional Scaling with Constant
Noise

One consequence of assuming in Simulation 2 that noise in
the estimates of baseline and harder manipulation condition
performance are themselves proportional to level of baseline per-
formance is that this noise tends to zero as baseline performance
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FIGURE 3 | Results of Simulation 2, showing size of the absolute effect
of the manipulation (A) or the proportional effect of the manipulation
(B) plotted against baseline level of performance.
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approaches zero. In Simulation 3 we instead assumed that the
spread of the noise distribution in the observed estimates of
baseline and harder manipulation condition performance was
constant across all levels of sampled baseline performance. On
the basis of preliminary simulations we fixed the standard devi-
ation of the noise distribution to three partial credit score items;
the noise distribution was again centered on zero. An immediate
but unsurprising problem that follows from assuming constant
noise is that this produced predicted values for both baseline and
harder manipulation condition performance that were, on occa-
sion, below zero, particularly at lower sampled values of baseline
performance. Clearly it is not possible for participants to score
less than zero and so we elected to raise all such negative observed
baseline and harder manipulation condition partial credit scores
to zero. In fact, given our interest in proportional effect sizes we
raised these scores to 0.01, as a baseline score of zero leads to a
non-computable proportional effect. Figure 4 shows the resultant
plots.

Figure 4A shows that when the manipulation effects are plot-
ted in absolute terms, the constraint that performance can never
drop below zero produces an upper bound to the size of the
effect at low levels of baseline recall. This poses problems for any
analysis that would seek to fit a linear regression through these
data as the resultant slope of this regression would be artificially
reduced by these points. Similarly, Figure 4B shows two features
that follow from the fact that recall can never be negative. First, at
lower levels of baseline performance there are a number of points

Absolute effect

. Baseline recall

Proportional effect
)

-6 -

FIGURE 4 | Results of Simulation 3, showing size of the absolute effect
of the manipulation (A) or the proportional effect of the manipulation
(B) plotted against baseline level of performance.

with a proportional score of exactly +1. This follows from the
fact that referent condition performance is close to zero for these
points (as a result, the proportionalised effect = [baseline score —
0.01]/baseline score, which tends toward 1). This therefore repre-
sents a necessary upper limit on the size of the proportionalised
manipulation effect. Second, and in contrast, there is necessar-
ily no correspondingly lower limit to these proportional scores.
Indeed at low levels of baseline recall there is a preponderance
of very large negative proportional scores. These points arise
because noise in the estimate of referent condition performance
leads to a larger score for this condition than for the baseline con-
dition (i.e., overriding the proportional cost to produce a negative
manipulation effect). Large negative proportional scores neces-
sarily arise when negative absolute effects are proportionalised by
being divided by small baseline performance values.

Simulation 4 - Proportional Scaling with Constant
noise - Investigating the Impact of Varying Noise and
Floor Effects

Simulation 3 showed that the effect of constant (with level of
ability) noise in the estimates of baseline and referent condition
performance, coupled with the fact that these scores could never
drop below zero, produces a pattern of data that looks broadly
similar to that seen in Figure 1. In Simulation 4 we therefore fur-
ther explored the effects of varying the size of constant noise and
the level of floor performance, and modeled the resultant data
using negative exponential growth functions of the form shown
in Figure 1. Specifically, SD of noise values of 2, 3, and 4 partial
credit score items were examined, again with the noise distribu-
tion centered on zero, coupled with floor values of 0 (in fact 0.01),
1, or 2 items. The notion of a functional floor above zero follows
from the fact that there are reasons to suspect that recall of zero
items is unlikely to be observed in any verbal short-term memory
experiment. Indeed, although models of immediate recall some-
times suggest that the core capacity short-term memory is less
than the total amount of items recalled on a task (Cowan, 2001;
Oberauer, 2002), these models would argue for a focus of atten-
tion that, in the limit, would not be expected to ever be less than
one item. Furthermore, in any study investigating the phonolog-
ical similarity effect in children one can only predict a similarity
effect on lists that contain at least two items, because by defini-
tion similarity depends on the overlap between items in the list.
Consequently, individuals might well be expected to recall 1 item
even on similar lists.

Simulation 4 therefore produced nine datasets (3 values of
noise x 3 values of floor), which are represented in Figure 5.
Each model contained 2000 data points as in Simulations 2 and
3, although these data points are not shown in the figure (for rea-
sons of clarity). Instead, Figure 5 plots the results of the negative
exponential growth functions that were fitted to the resultant pro-
portionalised effect data sets (note that absolute effects are not
plotted in Figure 5, in contrast to Figures 2-4).

The figure shows that when the floor is set at zero (or, more
accurately, 0.01 partial credit score points) functions that look
broadly similar to that seen in Figure 1 emerge (see Figure 5A),
but with a more rapid rise to the asymptotic value and a corre-
spondingly earlier inflection point in the function. In addition,

Frontiers in Psychology | www.frontiersin.org

March 2015 | Volume 6 | Article 299


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Measuring the markers of the development of rehearsal

Jarrold et al.
A 1o
T | aeeeeeeesieieeiiiiiiieiiiiiieee e e e e
g 0
° . 1 5 10 15 20
‘g g Baseline recall
S 2 i
8 l
g 2
4 -
B
1 .
-og 0 T T 1
= 10 15 20
) 1 A
IS Baseline recall
I
kS 2
T
8 3 -
&
4
C
1 .
3
g 0 T T 1
) 1 10 15 20
§ ) Baseline recall
€ 2
g
g
4 -
FIGURE 5 | Results of Simulation 4, showing negative exponential
growth functions fit to the simulated data for proportional effect of the
manipulation plotted against baseline level of performance. Functional
floor values are set to either O (A), 1 (B), or 2 (C) partial credit score values,
with each panel showing the effect of SDs of noise of 2 (dotted line), 3 (solid
line), or 4 (dashed line) partial credit scores.

the three different functions plotted in Figure 5A produce slightly
different asymptotic levels of proportional cost, specifically 0.210,
0.086, and 0.003 for noise of 2, 3, or 4 SDs distribution respec-
tively. This shows that these negative exponential growth func-
tions are not adequately capturing the data, as all three models
should converge on an asymptotic value of 0.30. One potential
explanation for this failure is that there are insufficient nega-
tive proportional effect scores at low baseline performance levels.
As a result, the model fails to adequately capture this section of
the observed function (cf. Figure 1). However, it appears that
these negative proportional effects do affect the overall function
in a different way, essentially by lowering the asymptote value.
In essence these functions are more linear (and negatively shifted
down the Y-axis) than one would ideally want in order to recreate
the function shown in Figure 1.

In contrast, when a floor that is greater than zero is employed
(Figures 5B,C), the functions much more clearly mirror that
shown in Figure 1; the larger floor value giving rise to fewer
very negative proportional effect scores at low levels of base-
line recall. Furthermore, the greater the noise associated with
the estimates of baseline and referent performance, the longer
the function takes to reach its asymptotic value. Importantly,

in panels B and C the functions do converge on the same
asymptote value, corresponding to a 30% proportional cost of the
manipulation.

Discussion

The first aim of this paper was to present a series of simu-
lations of children’s potential short-term memory performance
under different experimental conditions. This was done in order
to test whether a proportional scaling model can effectively
account for the pattern of data seen in developmental studies,
and to explore what additional assumptions might be needed
to adequately capture the full range of performance observed
at all ages. The second aim was to provide an indication
of the ways in which future empirical research in this area
might take proportional scaling into account, and how devel-
opmental data might be best measured and modeled in such
studies.

Although there is previous evidence to suggest that manipu-
lations such as the phonological similarity effect do scale pro-
portionally (Logie et al., 1996; Beaman et al., 2008; Jarrold and
Citroén, 2013), it also appears that such effects are smaller than,
and sometimes even in the opposite direction to, those predicted
by a simple proportional scaling account among very young
children (Jarrold and Citroén, 2013). Indeed, the preliminary re-
analysis of the Jarrold and Citroén (2013) data presented briefly
above showed that the developmental change in the size of the
proportional phonological similarity effect could be modeled by
a single mathematical function, namely a negative exponential
growth function. We do not wish to argue that this particular
function necessarily provides a better fit to existing data than,
say, a power law relation. However, it does capture the fact that
proportional effect sizes range from small positive magnitudes to
large negative magnitudes when baseline levels of recall are low,
but are positive and constant at higher levels of baseline perfor-
mance. Note also that here, and throughout, we are using base-
line level of recall as a proxy for an individual’s developmental
level.

As noted, the starting point for these simulations was the sug-
gestion that the size of these manipulation effects in verbal short-
term memory might be proportional; that is, the absolute size
of the difference between recall of easy (short or phonologically
dissimilar words) and difficult (long or phonologically similar
words) items would be proportional to overall level of recall.
There are good theoretical reasons for making this assumption
in the context of studies of the word length and the phonolog-
ical similarity effect. If the word length effect is caused by the
greater interference that results from longer words containing
more phonemes (cf. Brown and Hulme, 1995; Lewandowsky and
Oberauer, 2008), then the size of this effect would be expected to
scale with the number of such words held in memory. Similarly,
the phonological similarity effect necessarily depends on the
overlap between items within the just-presented list; the greater
the number of these items, the greater one would expect the abso-
lute effect of similarity to be (cf. Page and Norris, 1998; Baddeley,
2012).
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However, as Figure 2 shows, a simple proportional scaling
model fails to replicate the pattern shown in Figure 1, because
it necessarily fails to reproduce the negative proportional manip-
ulation effects that are seen at lower levels of baseline recall.
Simulation 2 showed that assuming noise in the data whose
spread was proportional to an individual’s level of overall recall
also failed to produce a function that mirrored that seen in
Figure 1. One might well expect noise to scale in line with overall
level of performance, because as baseline performance increases
so there is a greater range over which performance in the harder
manipulation condition might range, giving rise to the often
observed statistical phenomenon of heteroscedasticity. However,
while such noise necessarily leads to observed heteroscedasticity
when plotting absolute scores (see Figure 3A), the fact that noise
was centered around zero and was drawn from a distribution
whose spread was proportional to baseline recall means that its
effects are symmetrical and constant when the size of the overall
manipulation effect is coded proportionally (see Figure 3B).

Instead, assuming that the spread of the noise distribution
remains constant over all levels of recall (Figure 4B) did provide
a simulated dataset that matched that seen in Figure 1. This is
because noise of a constant spread has the same absolute effect
on all predicted scores, but a relatively greater influence on small
than on large predicted scores when these are proportionalised
(i.e., random variation of plus or minus 2 partial credit score
points has a greater proportional effect on predicted scores of 4
than on predicted scores of 8). In addition, noise of a constant
magnitude can lead to performance in the harder manipulation
condition dropping to floor (which in the case of Simulation 3
was a partial credit score of 0.01). This imposes an upper limit on
the size of the absolute manipulation effect that equals the level
of performance in the baseline condition (baseline score - 0.01,
see Figure 4A). This, in turn, necessarily limits the proportional
size of the manipulation effect ([baseline score — 0.01]/baseline
score, which tends to 1, see Figure 4B). In contrast, there is no
equivalent lower limit to either absolute or proportional mea-
sures of the manipulation effect. This is because when noise
randomly increases the observed harder manipulation condition
score beyond that predicted by proportional scaling, then this
only leads to negative absolute and proportional manipulation
effects. Indeed, when baseline scores are particularly low, propor-
tional scoring produces large negative effects at these low levels of
recall because negative absolute effects are then divided by small
baseline values.

This raises the question of whether one should plot propor-
tionalised effect scores in the first place; if statistical artifacts
affect this function at low baseline levels, does this provide an
appropriate way of representing the data? We would argue that
proportionalising is appropriate, and in fact produces a more
comprehensible representation of the data than a plot of absolute
scores. As Figure 4A shows, the problem of noise producing floor
values for the observed harder manipulation condition score
means that one cannot simply fit a linear regression through the
absolute measure of the effect and expect to produce a function
whose slope equals the proportional cost of the manipulation
(which otherwise would be a sensible approach, see Figure 2A).
In contrast, although the interpretation of proportional effects at

low levels of recall is somewhat complicated, a plot of propor-
tional effects does produce a function that levels off to indicate
the proportional cost of the manipulation (see Figure 4B, and
also Logie et al., 1996).

Indeed, Simulation 4 showed that by plotting proportionalised
effects one can clearly reveal the influence that variations in the
spread in the noise distribution and in the level of floor perfor-
mance has on these functions. In particular, a larger spread in the
noise distribution produces functions that level off at relatively
higher levels of baseline performance for the reasons outlined
above. In addition, in these simulations a floor of essentially zero
did not produce curves that mirrored that seen in Figure 1. In
this case, although the underlying distribution of data points
was necessarily similar to that shown in Figure 4B, there were
insufficient negative scores in these simulations to allow for a neg-
ative growth function to fit the data in the way that it should.
Instead negative growth functions fitted the data more appro-
priately when floor scores were higher, by virtue of producing
relatively more negative proportionalised effects at higher levels
of baseline recall. Again we would argue that a ‘functional floor’
above zero is not an unreasonable assumption. If one is manip-
ulating either word length or phonological similarity then there
will be a list length below which this manipulation would not
be expected to be effective — for example, phonological similar-
ity necessarily cannot occur with only one item in the list. In
addition, one might expect individuals to be able to recall at least
one item from any list, however long the list and however long
or confusable the memoranda, by virtue of just maintaining the
last-presented item.

The other assumption that one might question, and which
underpins the successful simulations represented in Figures 4B
and 5, is that of a noise distribution whose spread remains con-
stant in size across all levels of performance. As noted above, one
might instead expect the size of any noise distribution to scale
with level of performance. One point to note in response is that
one could potentially produce a simulation that combined two
noise distributions, one whose spread was constant and another
whose spread scaled with baseline performance. Such a simula-
tion is not reported here, partly for the sake of clarity, and also
because it is not obvious what it would add to our arguments.
We have shown that noise with constant spread is necessary
to reproduce the observed data. However, there is every rea-
son to suspect that a combined model that also included noise
with proportional spread would produce a broadly similar pat-
tern, provided that the relative balance of the two noise effects
was not weighted too heavily in favor of the latter. The second
point to highlight is that there are reasons for thinking that noise
with a constant spread would be associated with verbal short-
term memory tasks of the form employed here. Specifically, most
developmental studies use a span procedure to measure verbal
short-term memory capacity. This involves presentation of a set
number of trials at each list length, beginning at short list lengths
and stopping when the participant fails to recall trials correctly at
a particular upper list length. Although the total number of trials
that a participant receives will therefore vary, depending on their
verbal short-term memory span, all participants receive the same
number of trials at their upper list length. If one assumes that all

Frontiers in Psychology | www.frontiersin.org

March 2015 | Volume 6 | Article 299


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Jarrold et al.

Measuring the markers of the development of rehearsal

participants can recall all trials on list lengths below or up to
their span, but are unable to recall all of the items on all trials
at list lengths above their span, then any noise in the estimate
of their memory capacity will come from the fixed number of
trials that are presented at the final, highest list length that they
receive. This will particularly be the case when using partial credit
scoring. A further reason why noise might have a constantly
sized distribution reflects the measurement error that comes from
that the fact that performance is not measured on a continu-
ous scale, but instead necessarily increments in discrete steps.
There are of course other threats to validity that can cause noise
in experiments, see Shadish et al. (2002) for an extensive list,
but we think that these are the most relevant to our type of
simulation.

To summarize the above points in the context of the first aim
of this paper, two of the simulations (Simulations 3 and 4) pro-
duce a pattern of data that matches that observed by Jarrold
and Citroén (2013). This shows that such data can be gener-
ated by making three simple assumptions. The first is that a
manipulation (which could be of word length or of phonolog-
ical similarity) produces effects that are proportional in size to
overall level of recall. The second is that the measurement of
the data points that underpin these effects is subject to noise
whose distribution has a constant spread across levels of per-
formance. The third, which is arguably less crucial but which
may be important in some data sets, is that there is a floor to
performance below which recall levels cannot drop. We have
argued above that these assumptions are reasonable ones to
make in the context of studies of children’s verbal short-term
memory.

Turning to our second aim, we would therefore expect that
other researchers working in this area would generate data that
match those shown in Figure 1, and that could also be fit
with negative exponential growth functions of the form used
in Figures 1 and 5 if coded in terms of proportionalised word
length or phonological similarity effects. Importantly, this paper
has shown that such plots do not produce the flat functions
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