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Drawing on theoretical and computational work with the localist dual route reading
model and results from behavioral studies, Besner et al. (2011) proposed that the
ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics
when naming Arabic numerals, and phonology when evaluating the parity of number
words) necessitate the ability to modulate the strength of connections between cognitive
modules for lexical representation, semantics, and phonology on a task- and stimulus-
specific basis. We used functional magnetic resonance imaging to evaluate this account
by assessing changes in functional connectivity while participants performed tasks
that did and did not require such stimulus-task default overrides. The occipital region
showing the greatest modulation of BOLD signal strength for the two stimulus types
was used as the seed region for Granger causality mapping (GCM). Our GCM analysis
revealed a region of rostromedial frontal cortex with a crossover interaction. When
participants performed tasks that required overriding stimulus type defaults (i.e., parity
judgments of number words and naming Arabic numerals) functional connectivity
between the occipital region and rostromedial frontal cortex was present. Statistically
significant functional connectivity was absent when the tasks were the default for the
stimulus type (i.e., parity judgments of Arabic numerals and reading number words).
This frontal region (BA 10) has previously been shown to be involved in goal-directed
behavior and maintenance of a specific task set. We conclude that overriding stimulus-
task defaults requires a modulation of connection strengths between cognitive modules
and that the override mechanism predicted from cognitive theory is instantiated by
frontal modulation of neural activity of brain regions specialized for sensory processing.

Keywords: task set, fMRI, Granger causality, reading, parity, numerical cognition, rostromedial frontal cortex

Introduction

The chain from sensation to perception and action is forged by context, and therefore, experience
predisposes us to interpret certain stimuli in particular ways. In response to task demands we can
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overcome these biases, but the predispositions for action are still
revealed by the time it takes us to act. As an example, when
shown the word “three” we can either read it aloud or report its
parity, and we can do the same when shown the numeral “3.”
It turns out that the time to respond interacts with the nature
of the format and reveals the omnipresent effect of a stimulus-
task predisposition. Besner et al. (2011) found that participants
were much faster at making parity judgments to Arabic numerals
than to numbers presented alphabetically (hereafter referred to as
“number words”), but took about the same amount of time when
reading/naming these different stimuli aloud1. To explain their
findings, Besner et al. (2011) proposed a general account in which
there are various special purpose modules, each of which com-
putes specific information-processing routines. An example of
such an account can be seen in Figure 1, which is adapted in large
part from several well known and highly successful computa-
tional accounts of reading aloud (e.g., Coltheart et al., 2001; Perry
et al., 2007). The lexical representations are localist and linguis-
tic in nature. Each node in the alphabetic input lexicon consists
of the spelling of a word known to the reader. The nodes in
the Arabic input lexicon represent, minimally, each single Arabic
numeral from 0 to 9. The semantic system is conceptual and con-
tains general knowledge of the world. Both input lexicons and
the semantic system also activate the phonological output lexi-
con, which contains information about how each item the reader
knows should be pronounced. The additional but theoretically
central point here is that the strength of the format-task associ-
ations reflects both predispositions (some format-task pairings
are more natural and experienced than others; Figure 1A), and
task-induced modulation of the routes connecting the relevant
cognitive modules (Figure 1B).

This account differs from previous accounts in its emphasis
on the assertion that the connections between different represen-
tations differ in strength. The Arabic numeral format (an input
module) is more strongly associated with semantics than is the
number word format (hence parity judgments are faster for the
former than the latter). In contrast, the number word format
(input module) is more strongly associated with phonology, as
compared to Arabic numerals. Indeed, so strongly that it over-
comes the fact that Arabic numerals are more frequently encoun-
tered in the world than are their number word counterparts
(and hence Arabic numerals, despite the fact that they are more
frequent than their number word counterparts, are not named
faster). Such a framework implies the need for some sort of
mediator that functions as an arbiter of task demands. Such task
demand units (e.g., see the seminal paper by Cohen et al., 1990)
could favor some modules over others (e.g., by inhibition and/or
activation), and/or modulate the strength of connections between
different modules (see also Norman and Shallice, 1986; Monsell

1Support for this strength of connections account has been reported by Adelman
et al. (2014) who compared two versions of a computational model for reading
words aloud. The model in which word frequency affects the strength of con-
nections (stronger for high- than low-frequency words) between an orthographic
input lexicon and a phonological output lexicon accounts for more variance in
reading aloud response times than does the otherwise identical model in which
word frequency affects the resting levels of activation (higher resting levels for high-
than low-frequency words) in these same modules.

and Driver, 2000; Kane and Engle, 2003). Seeking converging
evidence to support this hypothesis, the present work assessed
whether this cognitive account has a neurological correlate by
measuring changes in functional connectivity in functional mag-
netic resonance imaging (fMRI) scans of participants engaged in
our reading/parity tasks with number words and Arabic numeral
stimuli.

Choosing a Functional Analysis
Methodology
Earlier we proposed that there must be changes in the connection
strength betweenmodules that aremodulated by combinations of
task demands and stimulus characteristics (Besner et al., 2011).
To provide evidence for our claim, we repeated our behavioral
task while performing fMRI. We were specifically interested in
whether we could observe changes in cortical functional con-
nectivity for particular task-stimulus combinations. While the
cognitive model per se is agnostic about underlying cortical
anatomical localization, the claim about changes in connectiv-
ity is more generic. As long as the brain is the physical substrate
implementing the cognitive components, functional changes in
cognitive module connectivity should produce some correspond-
ing changes in brain signals. The key question is whether the
brain changes occur for particular task-stimulus set combinations
that are predicted by the cognitive model, rather than whether
the brain changes occur in particular brain regions. However, if
changes are found, the knowledge about the localization of cog-
nitive functions from prior functional imaging work does provide
a powerful check on the plausibility that the changes in functional
connectivity are meaningful.

Functional connectivity assessments in fMRI are relatively
new, and there are several available procedures, and no one
method has been clearly established as superior to the others
(Rogers et al., 2007). Therefore, the choice of which one is used
rests to a large extent on the familiarity and experience of the
researchers involved. Perhaps the only real choice is whether
there is sufficient a priori information available to warrant estab-
lishing a causal model in advance of experimental measurements.
If not, and the experiment is largely exploratory then most of the
available methods could be justified, though as will be reviewed
shortly, only the Granger metric offers the potential for support-
ing a claim about the causal nature of the relation between two
brain regions.

Essentially, functional connectivity is a way of measuring to
what degree different voxels from a series of functional images
move in sync together. Procedures for measuring this type of
functional connectivity include GCM, psychophysiological inter-
action (PPI), and various graph theoretic measures. The excep-
tion to this approach may be dynamic causal modeling (DCM)
where the emphasis is more on comparing particular models
of brain module connectivity than exploring what voxels show
activation patterns that are correlated.

One of the more direct approaches to functional connectiv-
ity is the graph theoretic (Cao et al., 2014). For this technique
(Bullmore and Bassett, 2011) the BOLD signal for each voxel
can be assessed over time. These time series are then corre-
lated against each other to see which voxels are correlated with
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FIGURE 1 | (A) The default connection strengths between Arabic and
alphabetic input lexicons and semantics, and between the input lexicons and
the phonological output lexicon. Performing parity judgment requires access to
semantics to evaluate whether the number is odd or even. In contrast, when
reading a number word aloud or naming an Arabic numeral aloud, the direct
connection between their respective input lexicons and the phonological output
lexicon suffice. Thicker lines reflect stronger connections between modules.

(B) The hypothetical role of task set is to increase and/or decrease connection
strengths between various modules so as to over-ride the default connection
strengths. For example, in B. (ii), the connection strength from the alphabetic
input lexicon to semantics is increased when making parity judgments to
number words, and at the same time the strength of connections from
alphabetic input lexicon to output phonology is decreased so as to reduce
competition between these two routes.

Frontiers in Psychology | www.frontiersin.org 3 March 2015 | Volume 6 | Article 321

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Anderson al. Granger causality and connection strength

which other voxels. Of course, adjacent voxels are likely to
show high correlations, and therefore it is more customary to
first define particular brain nodes and to assess the correlation
between nodes. From this large correlation matrix a threshold
is selected, and all pairs of nodes showing correlations greater
than the threshold are coded as one and the remainder as zero.
This produces the connectivity graph from which common graph
theoretic quantities (Rubinov and Sporns, 2010) may be com-
puted. Graph theoretic measures of connectivity have been used
for defining multimode networks and to compare the metrics of
these networks across conditions.

Another correlation-based method is PPI. In PPI a seed region
is selected, typically on the basis of this region showing some
changes in activation as a function of task or condition. Then the
time series of this voxel is extracted and the mean is subtracted. A
dummy variable for the task conditions of interest is constructed
and convolved with a hemodynamic response function, and this
is also demeaned. Then the point-wise combination of these time
series is constructed and used as a regressor in a conventional
regression analysis. The effect of this point-wise product of the
seed region time series and the task time series is to produce a
time series where some epochs are anti-correlated to the task,
and others are positively correlated. Voxels where this product
regressor shows an interaction will identify other voxels that are
functionally connected to the seed region and are modulated by
task (O’Reilly et al., 2012). This procedure does not measure if
the relations are causal, but only if there are significant interac-
tions. In common with all the functional connectivity procedures
there is the challenge of low power and of spurious correlations.
The latter emerges because there may be common linkages that
we are not aware of, and also because of the large number of
shared variables that influence BOLD measurements across time
and voxels.

Unlike the twomethods just considered, the next twomethods
are potentially able to make causal assertions about the nature
of the relations between brain regions and functional measure-
ments of voxels (which is not limited to fMRI, but can also be
applied to other imaging methodologies as well as electrophysiol-
ogymeasures). DCM is a general approach that comes in different
varieties. The common element in DCM is that specific mod-
els are constructed before data collection, and then the different
models are compared for their ability to explain the observed acti-
vation patterns. Typically this procedure involves a specification
of hidden neural dynamics, often with differential equations, that
are linked by other equations to predictions for measured data.
The probability of observing the data given the models are fit with
Bayesian inversion principles and then model selection principles
(Stephan and Roebroeck, 2012) are used to pick the best of the a
priorimodels.

Granger causality mapping is another measure of effective
connectivity. Unlike DCM it is best considered as a method of
exploration rather than confirmation (Bressler and Seth, 2011).
While graph theoretic analyses and PPI are correlative, GCM
was developed with the idea of an autoregressive model, though
this is not an obligatory component of statistical tests for GCM.
However, the autoregressive origins of GCM give the key insight.
GCM relies on the fact that causes precede consequences. If we

are to compare two variables X and Y, and we can better predict
X from knowledge of Y (even when we use all prior observa-
tions of X in our model), then we can assert that Y is Granger
causal of X (Stephan and Roebroeck, 2012). According to these
authors, true functional connectivity measures are correlative
and “. . .a careful interrogation of temporal order structure in
fMRI data should start (but not end) with looking for experimen-
tally induced changes in the detected G-causality” (Stephan and
Roebroeck, 2012, pg 859).

For our analysis we used GCM as our measure of connectivity
because it was the method best known to us, we had an estab-
lished fMRI tool box for its calculation, we could in principle
(though we did not in practice) establish a causal direction for
any functional connections found, and we were engaged in an
exploratory study, a role for which GCM is thought to be well
suited. We further explore the results of our GCM analysis in the
Section “Results and Discussion.”

In summary, to examine our hypothesis that task specific con-
texts modulate connection strengths between cognitive modules
we performed an fMRI experiment where participants performed
a behavioral task that required them to either name/read Arabic
numerals/number words or report the parity of these same stim-
uli. Our critical analysis examined whether there were changes in
the strength of functional cortical connectivity as a function of
task∼stimuli conjunctions.

Materials and Methods

Subjects
Fifteen neurologically normal participants (eight female; average
age = 24.8, SD = 2.4; 11 right-handed) with normal or corrected
to normal vision were paid $50 to participate in the fMRI ses-
sion at Grand River Hospital in Kitchener, ON, Canada. Thirteen
of these participants were paid an additional $5 to complete a
subsequent behavioral session in which response times (RTs) and
errors were recorded (two could not participate due to schedul-
ing difficulties). All participants completed the fMRI session
before completing the behavioral session. Informed consent was
obtained from each participant, prior to each session. The Office
of Research Ethics, University of Waterloo and Tri-Hospital
Research Ethics Board of Waterloo, ON, Canada approved the
study.

Study Design
During the fMRI session, stimulus presentation was controlled by
a Dell laptop computer running E-Prime software (Version 1.1;
Schneider et al., 2002). Two behavioral tasks were used within
a block design (Figure 2). Each block consisted of eight tri-
als lasting 2000 ms per trial. Prior to each block of trials an
instruction message, either the word “READ” or “ODD/EVEN,”
was presented for 2000 ms. Prior to the study, participants were
instructed to perform the given task silently on all subsequent
trials until they saw the next instruction slide. Specifically, the
researcher instructed them that “when the task is to read, think
the number word silently in your head, and when the task is par-
ity think the correct word (odd or even) silently in your head.”
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FIGURE 2 | Schematic diagram of the experimental procedure
showing the instruction slide (instructing participants to either read or
perform parity judgments) and an example of the first trial of a given
block. Each run starts with a fixation symbol (lasting 16 s), followed by 16
blocks of experimental trials (each block lasting 18 s, and displaying either
number words or Arabic numerals for the entire block), ending with another
fixation symbol (16 s).

On each trial a number word or Arabic numeral appeared in the
center of the screen for 1500 ms, followed by a 500 ms blank
screen. Within each block the numbers 2 through 9 appeared in
random order. Stimulus type (number words or Arabic numer-
als) was held constant within each block. Each experimental run
began and endedwith a 16 s fixation epoch.Within a single exper-
imental run there were 16 task epochs lasting 18 s each for a
total run length of approximately 5.5 min. Within each run, task
(reading/naming or parity) and stimulus type (number words or
Arabic numerals) was repeated four times (Figure 2). Each par-
ticipant completed four experimental runs in which the order of
the tasks and stimulus type was different.

During the behavioral session vocal responses were collected
using a Plantronics (Santa Cruz, CA, USA) LS1 microphone
headset and a voice-key assembly. The study design was the same
as the fMRI session with the following exceptions: first, the fix-
ation symbols that began and ended each run were presented
for only 2 s (because no baseline rest period was needed dur-
ing this session). Second, participants were to say all responses
aloud, into a microphone, and a blank screen replaced the tar-
get once the voice-key registered a response. Finally, after each
trial, the experimenter coded responses as correct, incorrect, or
mistrial (mistrials represent voice-key errors, or extraneous back-
ground noise). Once the response was keyed in, the blank screen
remained for another 100 ms, at which time the next trial began.

fMRI Data Collection
Functional data were collected using gradient echo-planar T2∗-
weighted images acquired on a Philips 1.5 Tesla machine
(TR = 2000 ms; TE = 40 ms; slice thickness = 5 mm
with no gap, 26 slices; FOV = 220mm × 220 mm; voxel
size = 2.75 mm × 2.75 mm × 5 mm; flip angle = 90◦). An
experimental run consisted of 26 slices/volume, 160 volumes,
eight per fixation baseline at the beginning and end of each run,
and nine per block for the four experimental conditions (each
repeated four times in a single run). At the beginning of the
session, a whole-brain T1-weighted anatomical image was col-
lected for each participant (TR = 7.5 ms; TE = 3.4 ms; voxel
size = 1 mm × 1 mm × 1 mm; FOV = 240 × 240 mm; 150
slices; no gap; flip angle, 8◦). Stimuli were presented on an Avotec

Silent Vision (Model SV-7021) fiber-optic visual presentation sys-
tem with binocular projection glasses controlled by a Dell laptop
running E-Prime software synchronized to trigger-pulses from
the magnet.

fMRI Data Processing
Imaging data were analyzed using Brain Voyager QX (ver-
sion v2.4.2.2070, Brain Innovation B. V., Maastricht, The
Netherlands). Anatomical images were transformed to Talairach
coordinates with a voxel resolution of 1 mm × 1 mm × 1 mm
using sinc interpolation (Talairach and Tournoux, 1988). Each
functional run was visually inspected for motion artifacts by
playing a virtual movie of each functional volume in sequence
(Culham et al., 2003). Trilinear interpolation was used to
correct for motion artifacts in all functional runs and data
were pre-processed, which included slice-time correction, linear
trend removal, and three cycles of temporal high pass filtering.
Functional images underwent 3D motion correction and tempo-
ral filtering using a frequency-space filter (FFT) with a cut-off of
three cycles. No spatial or temporal smoothing was applied to the
data.

Data Analysis
The hemodynamic response function for each functional run
was convolved to the Boynton HRF. Next, four linear predictors
of the BOLD response were created for each participant, cor-
responding to the four tasks (read number words, read Arabic
numerals, parity judgments on number words, parity judgments
on Arabic numerals). These 60 linear predictors (15 partici-
pants × 4 predictors each) were then entered into a random
effects general linear model. GCM (GCMPlugin 1.5 for Brain
Voyager v2.4.2.2070; Roebroeck et al., 2005) was used to examine
the functional connectivity related to the different tasks and stim-
uli. All reported significance values were Bonferroni corrected for
multiple comparisons. Seed areas for GCM were chosen for each
of the principal task and stimulus selective regions. Ultimately,
the largest seed region, and the one that produced theoretically
important results was the left medial occipito-temporal area. We
discuss GCM and our rationale for choosing the seed region in
detail in the relevant results section below.

Results

Behavioral Results
Mean RTs were entered into a 2 (naming/reading-aloud task vs.
parity task) × 2 (Arabic numerals vs. number words) ANOVA.
All factors were within subjects. Mean RTs and percentage errors
for each condition can be seen in Table 1. Errors (0.7% of all
responses) and mistrials (4.2%) were removed prior to the RT
analysis. Given the very small number of errors, we did not ana-
lyze them further. RTs for the naming/reading-aloud task were
faster than RTs for the parity task, F(1,12) = 73.2, MSE = 4669.5,
p < 0.001. There was also a main effect of stimulus type in which
Arabic numerals were responded to faster than number words,
F(1,12) = 21.1, MSE = 164.7, p < 0.01. Critically, we repli-
cate the pattern reported by Besner et al. (2011) in that there
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TABLE 1 | Mean RTs (ms) and percentage errors (%E) in the
naming/reading aloud and parity tasks as a function of presentation
format.

RT %E

Parity Reading aloud Parity Reading aloud

Number words 686 500 1.2 0.4

Arabic numerals 645 507 0.7 0.3

Difference 41 −7 0.5 0.1

was a significant interaction between task and stimulus type,
F(1,12)= 53.2, MSE= 141.1, p< 0.001. The mean RTs in Table 1
show that the interaction between task and stimulus type reflects
the fact that when performing parity judgments responses are
faster to Arabic numerals than to number words, t(12) = 6.94,
p < 0.001, but when reading aloud the number words are read
aloud slightly (but only marginally significantly) faster than the
Arabic numerals are named, t(12) = 2.12, p < 0.0562.

fMRI Results
Task and Stimuli Contrasts
We first addressed the question of which brain areas were asso-
ciated with main effects of task (reading/naming or parity judg-
ment) and stimuli (Arabic numerals or number words). We
examined the main effects of task and stimulus type and their
interaction and found significant activation in a total of eight
brain regions. Talairach coordinates and cluster sizes of these
regions can be seen in Table 2. Significantly higher activation for
number words vs. Arabic numerals was observed in the left and
right lingual gyri (BA 17/18), and in the left fusiform area (BA 37).
The reverse contrast (Arabic numerals > number words) found
no areas of significant activation.

When contrasting activation for reading/naming vs. parity
judgments (reading/naming > parity), increased BOLD activity
was observed in the left superior occipital region (BA 19). The
reverse contrast (parity > reading/naming) revealed significant
activation in the left medial frontal area (BA 6), left precentral
gyrus (BA 6), the left inferior parietal area (BA 40), and the
right cerebellum. Finally, we found no regions of increased BOLD
signal for the interaction term.

Granger Causality Modeling
In our introduction we explained our reasoning for choosing
GCM as our method for examining functional connectivity in
the brain. Now we would like to explain GCM itself in more
detail. GCM is a method for determining the direction of causal
relations (Granger, 1969) between time series data. A time series
is essentially a list of data where each element in the list is
indexed by a time, (e.g., the daily high temperatures recorded
by weather stations, or the BOLD signal measured from an MRI
voxel across a sequence of functional images). Given two such
lists of BOLD activity and their times of occurrence, GCM repre-
sents one approach for determining whether there is a functional

2Damian (2004) reported a similar pattern of results, except that in his experiment,
reading aloud number words was significantly faster than naming Arabic numerals.

relation between them, and possibly also a direction of causal
influence. The logic can be demonstrated through the use of mul-
tiple regression analysis. Imagine that we have one voxel labeled
A, and another labeled B. For each of them, A and B, we can
designate the value at a particular time with A(t) or B(t). Earlier
times would be notated as A(t−1) or B(t−10) for example. We
can imagine that if there is some autocorrelation then earlier
values of A would predict later values of A. We could quantify
this relationship by constructing a regression model in which we
compute the statistical relation between A(t) and earlier times
as A(t) ∼ A(t−1) + A(t−2) + . . . + A(t−n) for some n that
we believe, or can demonstrate, is as large as necessary to con-
tain the period of self-influence. If we then fit another regression
model A(t) ∼ A(t−1) + . . . + A(t−n) + B(t′) and it provides
a statistically significant improvement in fit, then we know that
B is related to A. If t′ is equal to some earlier point in time,
(e.g., t−1), then we can say that B is “Granger Causal” of A. If
instead, it is earlier times of A that predict something about B
not obtainable from earlier times in the B time series then we can
say that A is “Granger Causal” of B. If t′ is equal to t then B is,
in the language of fMRI, “functionally connected” to A and the
direction of causality is unknown. Because of the relatively slow
nature of the hemodynamic response function, this result is not
uncommon.

Granger causality is a theory of binary relations. It does not
exclude the possibility of a third location causally affecting both of
the studied time series (A and B in the example above). This is of
concern in fMRI because many factors may have joint effects on
multiple voxels, perhaps with a fixed temporal offset. Thus, find-
ing aGranger causal relation is easier to interpret when the degree
of relation varies across experimental conditions. This makes it
unlikely that unknown mechanical or physiological factors hav-
ing a common effect throughout an MRI acquisition session can
explain the presence of the functional or causal relations.

In the present study, seed areas for GCM were chosen based
on the thresholds and cluster sizes of activated regions. GCM
was performed on the pooled data for all participants subdi-
vided by the four stimulus-task combinations. The threshold was
increased until the activation areas were limited to relatively large
cluster sizes of 100–300 voxels (Table 2), to ensure that an area
that barely met the threshold was not chosen over an area with
greater activation. The above process resulted in three candidate
seed regions: a cluster of 189 voxels in the left frontal region at
a threshold of p < 0.0001, a cluster of 235 voxels in the left
occipito-temporal region at a threshold above the maximum of
p < 0.0001, and a cluster of 137 voxels in the left parietal region
at a threshold of p < 0.00013.

The only seed region from the above candidates that pro-
duced any simultaneous association of interest in the GCM
was the left occipito-temporal region identified from contrast-
ing the presentation of number words with Arabic numerals
(Figure 3A). Robust Granger causal relations were identified by
the GCM procedure between this seed region and an anterior

3The threshold surpassed the point at which the p-value gives ameaningful number
(the last meaningful number is on the order of e-43, beyond that, 0.0000e + 00 is
shown).
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TABLE 2 | Results of overall fMRI brain analysis.

Region Hemisphere Talairach coordinates BA Threshold Cluster size

x y z

Number words > Arabic
numerals

Lingual gyrus L −17 −88 −13 17/18 p < 0.0001 17,171

R 17 −86 −13 17/18 p < 0.0001 11,348

Fusiform L −40 −48 −24 37 p < 0.0001 2,698

Reading > parity

Superior occipital L −40 −81 22 19 p < 0.0001 789

Parity > reading

Medial frontal L −5 2 53 6 p < 0.0001 1,565

Precentral gyrus L −50 −3 −43 6 p < 0.0001 283

Inferior parietal L −47 −40 40 40 p < 0.0001 992

Cerebellum R 33 −59 −26 p < 0.0001 1,768

frontal region, but only when the time series were contempo-
raneous (aka “instantaneous”; Goebel et al., 2006). That is, we
did not observe any robust associations when the time series
were lagged to precede or succeed one another. Nevertheless, set-
ting the left medial occipito-temporal region as the seed region
for the GCM yielded a theoretically important dissociation. As
demonstrated in the instantaneous GCM in Figure 3B, there is
a strong association for BA 10 (fronto-polar cortex), predomi-
nantly at the frontal polar region, extending more medially than
laterally, and the occipital temporal seed region only when nam-
ing Arabic numerals or performing parity judgments on number
words.

One limitation of our procedure, and in keeping with the
exploratory role for GCM, is that we cannot do an “interac-
tion” analysis as one might do with an ANOVA procedure
to demonstrate the differences seen across conditions is “sta-
tistically significant.” Given the association found here, future
studies could use DCM methods to statistically compare mod-
els that include a contextually modifiable connection between
BA 10 and inferior occipital-temporal regions to models that
do not.

Discussion

We have previously proposed that the interaction between tasks
and stimulus format observed in behavioral experiments can
be understood in terms of differences in stimulus-specific mod-
ule connectivity (Besner et al., 2011). In this paper we explored
whether fMRI can be a useful adjunctive source of information
for evaluating this cognitive account.

We assert that fMRI can be used analogously to RT data for
evaluating cognitive theories. The assumption underlying the use
of RT data for evaluating cognitive accounts is that a change
in RT reflects a change in some aspect of cognitive operations.
Our claim here is that changes in the magnitude and patterns
of cerebral metabolic activity recorded with fMRI are another
source of such data. In addition, because functional roles have
been established for many brain regions, the specific brain region

indicated by an fMRI study and its functional associations can be
used to evaluate the plausibility of a particular cognitive account.
In the present study we replicated, at the behavioral level, what
we reported previously: parity judgments to Arabic numerals
are much faster than parity judgments for number words, but
this difference is eliminated when reading/naming aloud. This is
consistent with our prior account of changes in the task driv-
ing changes in the strength of connectivity between modules
so as to permit the correct task to be performed. We support
this account with the central finding of our fMRI experiment.
That is, that metabolic activity in BA 10 reveals stimulus-selective
functional connectivity to posterior visual areas only when task
demands conflict with the natural stimulus-task predispositions
(i.e., conflict is present when naming Arabic numerals and mak-
ing parity judgments to alphabetically presented number words).
Specifically, despite finding no regions of increased BOLD sig-
nal for the interaction between task and stimuli, the important
dissociation is present when examining the correlated activa-
tions of the fronto-polar cortex and the medial occipito-temporal
region across task-stimulus combinations. As predicted by our
task/stimulus-set hypothesis, this indicates that the difference in
processing across task-stimulus combinations is not local to a
specific brain region, rather it reflects differences in the connec-
tivity between regions as a function of task context. We found
a frontal region (BA 10) that showed a significant increase in
functional connectivity as measured by GCM only for the two
combinations of stimulus type and response mode that violated
“natural” (learned) predispositions. That is, stronger functional
connectivity between BA 10 and the medial occipito-temporal
region is seen when the participant must inhibit the tendency to
read aloud the number words in order to make parity judgments
of them, and conversely, when the participant has to inhibit the
tendency to activate semantic (parity) information in order to
name Arabic numerals. Such frontal activation is not seen when
reading aloud number words and making parity judgments to
Arabic numerals (by hypothesis, the stronger and more natural
associations).

The above finding is even stronger given prior knowledge
of the roles of the fronto-polar cortex, and BA 10, in the
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FIGURE 3 | (A) BOLD signal contrasts. The upper panel shows medial
frontal activity when contrasting parity > reading. The lower panel
highlights the posterior activity found for contrasting number
words > Arabic numerals, which was later used as the seed region
for the Granger causality mapping (GCM). The graphs to their right
provide the time course for BOLD signals in these regions subdivided

by task (upper) or stimulus type (lower). (B) In this GCM correlation
map, the red and white arrows point out the presence and absence
of activation in the fronto-polar cortex, respectively. The red boxes
highlight the resulting dissociation, in which frontal activation is only
present when performing the non-default tasks: naming Arabic numerals
and performing parity judgments on number words.
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maintenance of a task set. The fronto-polar region, including
BA 10, shows a pattern of activation consistent with the role of
overriding a natural predisposition so as to permit a different
task (dictated by the instructions or situational context) to be
engaged (Koechlin and Hyafil, 2007; see also the task demand
unit account proposed by Cohen et al., 1990). In a study that
examined the neural involvement in exercising endogenous con-
trol in a task-switching context, Forstmann et al. (2005) found
significant involvement of the fronto-polar area and the infe-
rior frontal gyrus when participants needed to follow endogenous
cues that were directly related to the task set and to transition-
ing from one task to another. Similarly, Koechlin et al. (2000)
found that BA 10 was involved in processing both endogenous
and exogenous plans, and that areas in the fronto-polar prefrontal
cortex were “selectively activated when subjects have to keep
in mind a main goal while performing concurrent (sub)goals”
(Koechlin et al., 1999, p. 148).

The finding of BA 10 modulation by task demands also fits
well with the model of rostral frontal cortex (BA 10) proposed by
Burgess et al. (2007). This model was developed to account for the
paradox that frontal activations are often seen for tasks that are
relatively unaffected by frontal leisons. Burgess, Dumontheil, and
Gilbert propose that BA 10 functions as a gateway for mediating
the relative weighting of stimulus driven and stimulus indepen-
dent access to central representations. One component of the
proposal is a balancing of responses driven by sensory input
and schema maintained by top–down control. The variation in
GCM fits well with this model in that our tasks differ in the
extent to which they are more and less “automatic” despite using
the same physical stimuli. Another interesting connection to the
Supervisory Attentional Gateway hypothesis is that this model
has been explicitly connected to RT differences, which are an
important component of the disassociation reported here.

In light of this existing knowledge regarding BA 10 and
its involvement in goal-directed processing, task-maintenance,
planning, and attentional gating we find the double-dissociation
in BA 10 GCM, where it is only significant when there are com-
plex task-stimulus type combinations, as corroborating evidence
for a mechanism that controls and modulates action when the
task set is in conflict with the default set.

In summary, we used GCM to examine functional connec-
tivity in the brain analogous to that proposed by our cognitive
account, and found changes in the coupling of frontal and poste-
rior brain regions. These changes in coupling magnitude showed
a qualitative pattern that complements our RT data. We con-
clude that stimulus-task interactions in single number word
reading/Arabic numeral naming and parity judgments reflect
dynamic differences in module connectivity. In particular, frontal

activation is associated with control over holding the appropriate
task set in mind so as to permit the correct response to be made
despite competition from the learned associations between stim-
uli and psychological processes. With the prior findings of the
role of BA 10, we take these the present results as support for
our cognitive account that differing connection routes or connec-
tion strengths between cognitive modules are associated with the
maintenance of a task set.

Finally, it is important to note how the present findings
do not fall victim to the consistency fallacy: If an explanation
takes consistency between obtained neuroimaging results and the
predictions of a cognitive theory as corroboration of the cogni-
tive theory, without enumerating other possible results that, if
obtained, would have falsified the cognitive theory, the explana-
tion commits a consistency fallacy (Coltheart, 2013). In the work
reported here, any other possible pattern in the GCM analysis
would have been inconsistent with the predictions of the task set
account. The only pattern that supports the cognitive account is
one in which the fronto-polar cortex is primarily active when the
task conflicts with the default set (i.e., naming Arabic numerals
and performing parity-judgments on number words). That is, it
is logically possible that area BA 10 would have been active (a)
in all combinations of task and default set, (b) in none of those
combinations, (c) in only one of them, and so on. In any of those
cases, the fMRI results would have run contrary to the cognitive
account.

At the global level, we conclude that fMRI results, coupled
with GCM, are another source of data, like RTs and errors, which
can be usefully applied to the evaluation of cognitive accounts. At
the local level, the fMRI results are consistent with an account
in which the interaction between stimulus type and tasks can
be understood as a reflection of differing connection strengths
between various cognitive modules (the default set). Correct task
performance in the current context depends upon coordinated
frontal regulation that overrides the dominance of the default set
so as to enable and maintain the appropriate task set.
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