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Instruction in information structuring
improves Bayesian judgment in
intelligence analysts
David R. Mandel *

Socio-Cognitive Systems Section, Defence Research and Development Canada and Department of Psychology, York

University, Toronto, ON, Canada

An experiment was conducted to test the effectiveness of brief instruction in information

structuring (i.e., representing and integrating information) for improving the coherence

of probability judgments and binary choices among intelligence analysts. Forty-three

analysts were presented with comparable sets of Bayesian judgment problems before

and immediately after instruction. After instruction, analysts’ probability judgments were

more coherent (i.e., more additive and compliant with Bayes theorem). Instruction

also improved the coherence of binary choices regarding category membership: after

instruction, subjects were more likely to invariably choose the category to which they

assigned the higher probability of a target’s membership. The research provides a rare

example of evidence-based validation of effectiveness in instruction to improve the

statistical assessment skills of intelligence analysts. Such instruction could also be used

to improve the assessment quality of other types of experts who are required to integrate

statistical information or make probabilistic assessments.

Keywords: instructional methods, Bayesian judgment, probability judgment, information structuring, coherence

Introduction

Categorization under uncertainty is a basic fact of life. In a wide range of contexts, both personal
and professional, people strive to accurately categorize “objects,” including, at times, themselves.
Yet in many, if not most, cases, the correct category to which an object belongs is not immediately
apparent. Instead, one might have to generate hypotheses about putative category membership.
Moreover, the evidence one has at one’s disposal is usually inconclusive, serving at best to amplify
or attenuate support for the hypotheses under consideration. In other words, the evidence may not
fully eliminate uncertainty about category membership yielding a definitive answer. Indeed, it is
primarily because most everyday judgment and reasoning is made under conditions of uncertainty
that the dominant normative paradigm for assessing reasoning quality has shifted from a truth
functional logic of certain deduction to a Bayesian logic of uncertain deduction (e.g., Oaksford and
Chater, 2007; Evans, 2012; Baratgin et al., 2014).

The literature on Bayesian reasoning is rich and the focus of this paper is restricted
to two aspects of it: Bayes theorem and the complementarity constraint (Baratgin and
Noveck, 2000), which is a special case of the axiom of finite additivity of closed sub-
sets, often called the additivity principle in cognitive psychology (e.g., Tversky and Koehler,
1994; Villejoubert and Mandel, 2002). The paper does not, for instance, address aspects
of Bayesian reasoning having to do with the alternative logical and subjectivist stances
on Bayesianism, nor does it examine adherence to the dynamic coherence criterion
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known as the conditioning principle (for an overview of these
other issues, see Baratgin and Politzer, 2006). Rather, the aspects
addressed here pertain to static coherence criteria reflecting the
normative view that probability is additive (Kolmogorov, 1950).
Finally, although my focus is on the aforementioned aspects of
Bayesianism, I neither presume nor wish to suggest that Bayesian
approaches are the only viable normative frameworks for reach-
ing probabilistic inferences under conditions of uncertainty (e.g.,
Lewis, 1976; Thagard, 1989; Douven and Schupbach, 2015).
Indeed, as few others have noted (e.g., see Walliser and Zwirn,
2002; Baratgin and Politzer, 2006, 2010), Bayesian revision is nor-
mative in a restricted set of problem representations known as
focusing cases—namely, cases where the original set of possible
worlds is preserved rather than transformed over time. This is
the type of problem studied in the present research, where only
two categories exist and new information cannot invalidate either
category. However, in many other cases (e.g., see Baratgin, 2009;
Cozic, 2011) new informationmay transform the set of categories
(or hypotheses) being considered. In such updating cases, Lewis’s
(1976) imaging rule provides a normative solution for probability
redistribution.

For our purposes, let � represent an event space comprised
of elementary events, wi, that is partitioned into a non-empty,
closed family of subsets A. The focus in this paper is specifically
on subset families that exhibit binary complementarity; namely,
in which {A, B} ∈ A, A ∩ B= ∅ (i.e., A and B are mutually exclu-
sive), A ≡ A ∪ B (i.e., A and B exhaustively partition A). Indeed,
since A⇔¬B (and likewise B⇔¬A), let us use ¬A instead of B
to remind ourselves that the two subsets are binary complements.
For our purposes, let HA and H¬A represent mutually exclusive
and exhaustive hypotheses about the category membership of a
focal elementary event,w, which in subsequent examples given in
this paper is a person whose category membership is unknown.
Thus, HA and H¬A stand for the propositions that w ∈ A and
w ∈ ¬A, respectively. In the Bayesian context, the probabilities
assigned to these complementary hypotheses may be revised in
light of new evidence or data, D. These “posterior” probabili-
ties (see Mandel, 2014a, for an explanation of the scare quotes),
P(HA|D) and P(H¬A|D), are the focus of most studies of Bayesian
judgment, as they are in this paper.

Given the preceding definitions, the additivity principle for
binary complements states that P(HA|D ∪H¬A|D)= P(HA|D)+
P(H¬A|D), where P stands for probability, a non-negative real
number in the [0, 1] interval. Let T = P(HA|D) + P(H¬A|D).
The complementarity constraint states that T = 1. In this paper,
I break with the majority of papers that have followed Tver-
sky and Koehler (1994) by calling normative violations in which
T < 1 superadditive and violations in which T > 1 subadditive—
terms which appear to mean precisely the opposite of what they
are intended to convey. Instead, following Baratgin and Noveck
(2000), I refer to cases where T < 1 as subadditive and to cases
where T > 1 as superadditive. This properly places the empha-
sis on the additivity of the binary complements relative to unity
rather than the other way around, and it is likely to be intuitive to
readers outside this specific niche.

With some exceptions (e.g., Wallsten et al., 1993; Rottenstre-
ich and Tversky, 1997; Juslin et al., 2003; see Mandel, 2005, for

an explanation of differences obtained across studies), most stud-
ies have shown that people assign subadditive probabilities to
binary complements (Macchi et al., 1999; Baratgin and Noveck,
2000; Windschitl et al., 2003, Experiment 4; Sloman et al., 2004;
Mandel, 2005; Williams and Mandel, 2007; Mandel, 2008, Exper-
iments 5 and 6). Additivity violations have also been shown to
be systematic, following the non-normative tendency to judge
P(HA|D) and P(H¬A|D) on the basis of their inverse proba-
bilities, P(D|HA) and P(D|H¬A), respectively (Villejoubert and
Mandel, 2002). This tendency has been variably called the Fish-
erian algorithm (Gigerenzer and Hoffrage, 1995), the confusion
hypothesis (Macchi, 1995), the conversion error (Wolfe, 1995),
and the inverse fallacy (Koehler, 1996). Thus, if we let T′ =

P(D|HA) and P(D|H¬A), what Villejoubert and Mandel (2002)
found was that subjects’ T-values tracked the objective T′ values
such that they were subadditive when T′ < 1 and superadditive
when T′ > 1.

The second coherence constraint of interest in this paper is
Bayes theorem, which is a corollary of the rule of compound
probabilities, P(HA ∩ D) = P(D|HA)P(HA) = P(HA|D)P(D).
Bayes theorem can be expressed in various ways. The most com-
mon format discussed in the literature on Bayesian reasoning
performance is Bayes identity, which in general form may be
expressed,

P (Hi |D) =
P (Hi)P(D|Hi)

P (D)
=

P (Hi) P(D|Hi)
∑

i P (Hi) P(D|Hi)
. (1)

In the case of binary complements, using the terms defined
earlier, we can express Bayes identity as

P (HA |D) =
P (HA)P(D|HA)

P (D)

=
P (HA) P(D|HA)

P (HA)P (D |HA) + P (H¬A)P(D|H¬A)
. (2)

However, as the rule of compound probability makes clear, Bayes
theorem can also be expressed,

P (HA |D) =
P(HA ∩ D)

P (D)
=

P(HA ∩ D)

P (HA ∩ D) + P(H¬A ∩ D)
. (3)

When people are asked to judge P(HA|D) on the basis of infor-
mation sources such as P(HA)—the base rate—and P(D|HA) and
P(D|H¬A)—sometimes referred to as “diagnostic” probabilities,
only a minority cohere in their judgments with Bayes theo-
rem (e.g., Kahneman and Tversky, 1972, 1973; Lyon and Slovic,
1976; Casscells et al., 1978; Villejoubert and Mandel, 2002). For
example, consider the following problem:

The probability of breast cancer is 1% for a woman at age 40 who
participates in routine screening. If a woman has breast cancer,
the probability is 80% that she will get a positive mammography.
If a woman does not have breast cancer, the probability is 9.6%
that she will also get a positive mammography. A woman in this
age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer?
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Using Bayes theorem, the probability that the woman has breast
cancer given her test result is nearly 8%, yet Eddy (1982) found
that 95 out of 100 physicians presented with the problem roughly
an order of magnitude higher and similar results with physi-
cian or medical counselor samples have been found in other
studies (Gigerenzer et al., 1998; Hoffrage and Gigerenzer, 1998;
Garcia-Retamero and Hoffrage, 2013).

A ubiquitous explanation for the well-documented divergence
between people’s probability judgments and those computed on
the basis of Bayes theorem is that people neglect, or at least under-
weight, base-rate information (Kahneman and Tversky, 1972,
1973; Lyon and Slovic, 1976; Bar-Hillel, 1980). However, without
undermining the claim that base-rates are often underutilized,
there is also reason to believe that the divergences reported may
be due to the inverse fallacy discussed earlier (Eddy, 1982; Hamm,
1993; Koehler, 1996). For example, Villejoubert and Mandel
(2002) kept base rates for two mutually exclusive and exhaus-
tive categories equiprobable and invariant across a set of Bayesian
reasoning problems. They found that most subjects judged prob-
abilities in violation of Bayes theorem even though the possibility
of base-rate underutilization was eliminated in their experiment.
Moreover, the direction and magnitude of the mean difference
between subjects’ judgments and the Bayesian values tracked the
value of the inverse probabilities, just as additivity violations had
tracked the sum of the inverse probabilities1. As well, information
search in Bayesian tasks focuses significantly more on the inverse
probability of a focal hypothesis (P(D|HA)) than on either the
contrapositive conditional probability (P(D|H¬A)) or the base-
rate (P(HA)), and the more subjects focused on the inverse prob-
ability, the less they focused on the base rate (Wolfe, 1995). Thus,
base-rate neglect may be due in part to the inverse fallacy. Finally,
even in cases where base-rate neglect has been invoked as an
explanation of non-conformity with Bayes theorem, such as Eddy
(1982) results for the mammography problem described ear-
lier, the inverse fallacy better accounts for the aggregate findings
(Mandel, 2014a).

Improving the Coherence of Probability
Judgments
The literature reviewed earlier shows that people often do not
conform to two important coherence constraints on probabil-
ity judgment when given statistical information as input to their
judgment process: they systematically deviate from both the
complementarity constraint and Bayes theorem. These mani-
festations of incoherence are particularly troubling when made
by professionals whose judgments may, in turn, provide input
to consequential decision-making. Much attention, as already
noted, has been devoted to normative violations of probability
judgment committed by medical professionals.

Another group of experts who make probabilistic judgments
are intelligence analysts. Intelligence analysis plays a vital role
in national and international security, serving as key sources of
information for a wide range of decision-makers including state

1This is by necessity: if T < 1, then the mean bias (i.e., the mean deviation between

the subject’s posterior probability and the values given by Bayes theorem) must be

negative, representing underestimation, by the same degree. Likewise when T > 1;

then, mean bias must represent overestimation to the same degree.

leaders, policy makers, and military commanders. Despite the
importance of intelligence analysis—and the centrality of prob-
abilistic judgment in intelligence products (Kent, 1964; Zlotnick,
1972; Friedman and Zeckhauser, 2012), there are few behavioral
studies of analytical judgment quality (Pool, 2010). Probabilis-
tic assessments underlie virtually all forecasts made by intelli-
gence agencies. Moreover, intelligence analysts, managers, and
trainers acknowledge that the predictive function of intelligence
is roughly as important as the narrative descriptive function
(Adams et al., 2012). Although one study has found that strategic
intelligence forecasts showed good discrimination and calibra-
tion (Mandel and Barnes, 2014), the extent to which analytical
judgments are coherent has not been addressed in an intelligence
analyst sample. Such research is needed because intelligence ana-
lysts must often revise their hypotheses and beliefs based on
missing and uncertain evidence.

Nevertheless, few, if any, analysts receive training in prob-
abilistic belief revision. More commonly, analysts receive brief
training lessons that highlight the “mindsets and biases” to which
all humans are prone. In such training, analysts are taught, for
instance, to “beware of overconfidence” and to “avoid confirma-
tion bias,” but they are not routinely taught how to assess their
own or others’ coherence or accuracy. Few of the structured ana-
lytic techniques that analysts may use to support their assess-
ments have been scientifically tested (Pool, 2010). Most are based
on what made sense to their developers, most of whom do not
have backgrounds in behavioral science. Moreover, members of
the intelligence community have identified the need for evidence-
based research on analytical processes that support effectiveness
as a priority (Adams et al., 2012). One aim of the present research
was to examine the extent to which intelligence analysts’ proba-
bility judgments conform to the complementarity constraint and
Bayes theorem in statistical integration tasks like themammogra-
phy problem. And a second aim was to test whether brief instruc-
tion in information structuring would have a positive effect on
the quality of intelligence analysts’ probability judgments. In that
regard, the present research represents a rare test of the effec-
tiveness of instruction that could be used to improve intelligence
analysts’ probabilistic reasoning skill.

The present research leverages recent developments in
improving Bayesian reasoning. It is well established that a greater
proportion of subjects in Bayesian reasoning studies provide
Bayesian answers or describe a Bayesian computational process
when the information provided to them is expressed in terms
of natural frequencies (Gigerenzer and Hoffrage, 1995; Cosmides
and Tooby, 1996; also see Kleiter, 1994). To express in natural
frequencies information such as that given in the mammography
problem, one would begin with a hypothetical reference class that
could be easily broken down into subsamples. For instance, one
might start with 1000 women aged 40 who participate in routine
screening. The 1% base-rate would then be represented by sub-
sets of 10 women who have breast cancer (HA) and 990 who do
not (H¬A). The former subset is further decomposed into true-
positive (HA ∩ D+, where D+ stands for the positive-test result)
and false-negative (HA ∩ D−, where D− stands for the negative-
test result that was not obtained) subsets (8 and 2 cases, respec-
tively), and the latter is likewise decomposed into true-negative
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(H¬A ∩ D−) and false-positive (H¬A ∩ D+) subsets (895 and 95
cases, respectively). When the information is represented as such,
it is easier to calculate the “short form” of Bayes theorem shown
in Equation 3. The numerator of this equation is already iden-
tified (f (HA ∩ D+) = 8) and the denominator simply involves
adding the two subsets containing D+ (i.e., 8 + 95 = 103). Even
without dividing, one might appreciate that the value 8/103 is
slightly less than 8%.

Although the finding that restructuring of statistical informa-
tion, such as that given in the mammography problem, into the
natural frequency format just described yields better correspon-
dence to Bayes theorem, the bases for the effect are the subject
of much debate. Given that the present research does not focus
on that “why” question, but rather uses the descriptive find-
ings to explore whether Bayesian reasoning may be improved
through instruction, I merely note that it is important to sep-
arate the descriptive findings from the theoretical accounts of
them that have been proposed. As well, most adaptationists (e.g.,
see Gigerenzer and Hoffrage, 2007) and dual-systems theorists
(Barbey and Sloman, 2007) do not strongly disagree that the ben-
eficial effect of natural frequency formats derive from a combi-
nation of factors, including clarifying nested set structure of the
relevant statistical data, improve the compatibility between evi-
dence and queries, and reduce the computational complexity of
task at hand (Mandel, 2007; Ayal and Beyth-Marom, 2014). More
importantly, for the present purposes, most researchers agree
that natural frequency presentations of statistical information in
Bayesian reasoning tasks tend to facilitate Bayesian reasoning and
improve Bayesian judgment.

The use of natural frequencies to convey probabilistic evi-
dence is further augmented by the use of visual representations
that reinforce the nested-set structure of diagnostic and base-rate
evidence (Cosmides and Tooby, 1996). Indeed, visual represen-
tations can facilitate Bayesian reasoning by clarifying nested-
set relations even when natural frequencies are not explicitly
encoded in the representations (Sloman et al., 2003; Sirota et al.,
2015). Such representations can also clarify the logical relations
and the structure of arguments in support of alternative norma-
tive views on belief revision tasks (Mandel, 2014b). However, in
at least some studies, visual representations that encode natural
frequency information directly through icons or numerical val-
ues have been shown to be more effective than visualizations that
clarify set structure but do not explicitly encode the frequency
data, such as Euler diagrams (Sedlmeier, 1999, chapter 6; Brase,
2008, 2014). Although not all studies have shown such an advan-
tage (e.g., Sirota et al., 2015), no study has reported the opposite
effect; namely, better performance with nested-set representa-
tions that do not include explicit frequency encoding than with
nested-set representations that do include such coding.

The use of visual representations of natural frequencies
has also been shown to be an effective instructional method
for improving compliance with Bayes theorem. Sedlmeier and
Gigerenzer (2001; see also Sedlmeier, 1999) found that a single
1–2 h session of practice-based instruction in Bayesian reasoning
facilitated performance on Bayesian judgment tasks. The per-
formance boost immediately after instruction was large regard-
less of whether the instruction used rule-based training in the

application of Bayes theorem or whether it used a natural sam-
pling representation such as a frequency grid or frequency tree.
The long-term effect of instruction, however, showed a clear
advantage for instruction that relied on a natural sampling rep-
resentation of the information provided in a given problem.
In three experiments, on average, subjects who received such
instruction performed as well at the longest-term test phase (i.e., 5
weeks in two experiments and 3 months in another experiment)
as they did in the immediate test phase. In contrast, rule-based
instruction showed substantial decrements by the last test phases
in all experiments.2 The instructional benefit of frequency-based
visual representations on Bayesian reasoning has been confirmed
in other studies as well (Kurzenhäuser and Hoffrage, 2002; Rus-
cio, 2003; McCloy et al., 2007).

The present research examined the effect of instruction in
information structuring on adherence to the complementarity
constraint and Bayes theorem in a sample of intelligence ana-
lysts who were undergoing military intelligence training. Unlike
earlier studies of instruction effects on Bayesian judgment (e.g.,
Sedlmeier and Gigerenzer, 2001; McCloy et al., 2007; Sirota et al.,
2015), the aim of this research was not to compare different
modes of instruction. Rather, the effect of a single instructional
mode using a natural sampling approach with natural-frequency-
tree diagrams was examined, given that this mode has already
been shown to yield stable long-term improvement in condi-
tional probability judgment. Unlike earlier research on instruc-
tion, however, this research used a pre-post design to assess the
effect of instruction on complementarity constraint violations
and deviations from Bayes theorem. The vast majority of stud-
ies of Bayesian reasoning have used problems with binary out-
come categories corresponding to HA and H¬A but have only
queried subjects about one of the two hypotheses,HA. Thus, they
were unable to examine the effect of Bayesian instruction on the
additivity of subjects’ judgments.

Moreover, the study was designed so that predictions regard-
ing the direction of error could be made on the basis of the
inverse fallacy, which, as noted earlier, has successfully accounted
for both additivity violations and deviations from Bayes theorem
(Villejoubert and Mandel, 2002). Specifically, assuming that the
grand mean of T across subjects, hypotheses, and test items is
additive, it was predicted that T < 1 if T′ < 1 and that T > 1 if
T′ > 1. Naturally, if there were to be an overall bias toward
a form of nonadditivity, the predictions would be relaxed, tak-
ing the form of the mean difference prediction T|(T′ < 1) <

T|(T′ > 1). That is, a general bias in additivity would negate the
predicted reflection around additivity. Given that most studies
of adherence to the complementarity constraint have reported
subadditivity, this form of nonadditivity is the likelier candidate.
Indeed,Williams andMandel (2007) found subadditivity for con-
ditional probability judgments of binary complements. Although
Villejoubert and Mandel (2002) did not report whether there was
an overall bias in T, it is evident by averaging the mean T-values
in the last column of Table 2 in that paper that the grand mean

2The one exception was in Study 1b of Sedlmeier and Gigerenzer (2001) where

subjects were incentivized through bonuses and where rule-based and natural

sampling methods yielded comparable performance.
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(where the simple means were elicited within subjects) is equal to
0.916, a value that reflects subadditivity. Given that the numerical
characteristics of the test items used in the present research were
drawn fromVillejoubert andMandel (2002), there is good reason
to expect an overall bias toward subadditivity.

Finally, an aim of the research was to examine the coherence
between subjects’ probability judgments and their binary forced
choice of the target’s category membership. Presumably, subjects
would choose the category to which they assigned a higher prob-
ability. However, studies of Bayesian judgments have not asked
subjects to make a discrete choice in addition to making their
probability judgments. Thus, it is of interest to verify whether,
in fact, subjects do invariably choose in accordance with the
higher assigned probability. And, to the extent that they do not,
it is of interest to examine whether instruction might attenuate
this form of incoherence. Since judgments are often a precursor
to decisions and actions, this is a question that is of more that
academic interest.

Materials and Methods

Subjects
Forty-three intelligence analyst trainees participated in the
research during regular course time at the Canadian Forces
School for Military Intelligence at Canadian Forces Base
Kingston in Kingston Ontario, Canada. Twelve trainees were
from a senior analysts’ course, 16 were from an intermediate,
basic intelligence officers’ course and 15 were from a junior
course. The entry requirements were an undergraduate degree
for the intermediate course and completion of Grade 10 high
school for the junior course. Trainees in the senior course had
to have successfully completed the intermediate course. Demo-
graphic information was not recorded. However, over 90% of
subjects were male. Subjects were informed that their participa-
tion was voluntary and that they would not be remunerated for
their time. No student refused to participate.

Procedure
Subjects were introduced to the study in class by being told that
intelligence analysts are routinely called upon to make assess-
ments under conditions of uncertainty, where the information
they receive may be probabilistic in nature. Subjects were further
told that analysts must often revise their beliefs about hypotheses
or events on the basis of new, but once again, uncertain infor-
mation. After this preliminary statement, subjects were informed
that they had the opportunity to participate in research aimed at
improving their judgment abilities. After consenting to partici-
pate, subjects were given a pre-instruction booklet that contained
eight probability judgment problems, described in detail below.
Participants worked on the problems individually at their desks.
The task was not strictly timed. However, subjects were told that
they would have approximately 15min to complete the task. All
subjects completed the task in the allotted time. An anonymous
subject code was generated by the subject and written on the pre-
instruction booklet before it was returned to the experimenter so
that it could be matched to the post-instruction booklet.

After returning the pre-instruction booklets, the experimenter
told subjects that they would now be given a brief tutorial on how
to accurately integrate different sources of probabilistic informa-
tion to arrive at their own probabilistic assessments of different
hypotheses that one might wish to test. The first run of this
experiment was conducted on the senior course and the tuto-
rial included a series of medical diagnosis examples. The second
and third runs in the other courses used an alternative version
of the tutorial, which was deemed by the senior instructor at the
Canadian Forces School for Military Intelligence to be more rel-
evant to the intelligence and security context, and which focused
on detecting whether a human target was an insurgent. The two
versions, however, had the same structure, length, and relevant
content, differing only in terms of the domain of examples (i.e.,
medical diagnosis vs. intelligence target detection). Both versions
of the full tutorial are presented in the Supplementary Materials.

The tutorial began with an example that presents the base-
rate of a focal hypothesis, P(HA), and diagnostic probabilities,
P(D+|HA) and P(D+|H¬A), where D+ stands for data indicating
a positive result on a diagnostic test. Subjects were asked how they
might use that information to assess the conditional probability,
P(HA|D+)—namely, the probability that the focal hypothesis was
true given the data indicating a positive test result.

After being presented with the initial assessment task, sub-
jects were asked to think about how they would go about making
the assessment and to record their assessment. Next, the exper-
imenter showed subjects how they could systematically work
through the problem. Slides 3–5 in the tutorials were designed to
show subjects how they could represent the information given to
them as a natural-sampling-tree diagram. As each slide was pre-
sented, the experimenter read the textual content and pointed to
the appropriate part of the diagram. Subjects were able to see the
slides on a large projection screen located at the front of the class-
room as well as on personal computer screens located directly
in front of them on their desk spaces. On Slides 6–7, the experi-
menter worked through the solution, showing subjects how the
information represented in the diagram could be arranged to
answer the relevant question. The tutorial advises trainees to first
identify the relevant set of cases that correspond to the condition,
D+, specified in the conditional probability, P(HA|D+). Then,
trainees are directed to identify the subset of those cases that
conforms to the hypothesis—namely, f (HA ∩ D+). The corre-
sponding diagrams made these points salient by color-coding the
relevant sets of cases. The solution shown on Slide 6 represented
those color-coded sets as an equation corresponding to the short
form of Bayes theorem (Equation 3).

After being presented with the solution, subjects were asked to
reflect on how it compared to their initial assessment (see Slide 7).
Although this comparison was for pedagogical purposes, it is
worth noting that many subjects commented that their estimates
deviated from the correct value, and some confessed to not know-
ing how to integrate the information supplied (reinforcing Juslin,
2015, claim that while estimation may be very good, integration
often falters).

After answering any questions subjects may have had, the
experimenter moved onto the second example, which used the
same cover story but asked subjects to imagine that the test result
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had been negative (D−) instead of positive. Subjects were asked to
consider how they would assess the probability that the hypoth-
esis was true given the negative test result, P(HA|D−). After
subjects gave their initial assessment, the experimenter worked
through the problem in the same way as before, after which sub-
jects compared their answers to the correct solution (see Slides
10–14).

The third example served to further illustrate that the
approach taught could be used to answer other related ques-
tions, including questions framed in complementary ways (see
Slide 15). Thus, whereas the second example asked subjects
to assess P(HA|D−), the third asked them to assess the prob-
ability of the alternative hypothesis given the same negative
test result, P(H¬A|D−). Once again, the solution was presented
using a natural-sampling-tree diagram (see Slides 16–17). How-
ever, subjects’ attention was also drawn to the fact that the
answers to the two last problems summed to 100%, and they
were informed that this was no coincidence. Figure 1 shows the
natural-sampling-tree diagram with solutions to P(HA|D−) on
the left and P(H¬A|D−) on the right for the intelligence version
of the tutorial.

On the next slide (Slide 18), the implicit lesson about the com-
plementarity constraint just conveyed was made explicit. Sub-
jects were introduced to the additivity principle and told that
violations of additivity represented a form of incoherence in
probability assessment. The tutorial then concluded with a sum-
mary of the following key points (see Slides 19–22): first, try
to visually represent the information provided, such as in the
natural-sampling-tree diagrams used in the tutorial; second, in

preparation for information integration, think about the proba-
bility being assessed as a ratio and identify the relevant subsets
that comprise the numerator and denominator, starting with the
denominator because the numerator is always a subset of the
denominator; and, finally, do the arithmetic required to produce
the estimate.

After answering any questions subjects may have had, the
experimenter administered the post-instruction booklet to sub-
jects, which had an alternative set of problems much like the
pre-training set (detailed in subsection Judgment Tasks). Once
again, subjects were given approximately 15min to complete the
set of problems and they completed the task in the allotted time.
When the booklets were returned, subjects were thanked, orally
debriefed, and the experiment concluded.

Judgment Tasks

The primary judgment task assigned to subjects before and after
instruction was adapted from that used by Villejoubert and Man-
del (2002). The pre- and post-instruction booklets are included
in the Supplementary Materials.

To summarize the task, subjects were asked to imagine that
they were contestants on a game show who would be asked
a series of skill-testing questions. They were to meet eight
“mystery people” and, for each one, they would learn, follow-
ing a query from the game-show host to the mystery per-
son, whether a particular attribute (e.g., being a smoker) was
present (D+) or absent (D−) in the individual. Half of the mys-
tery people possessed the relevant attribute and the other half
did not.

FIGURE 1 | Example from tutorial showing use of a natural sampling tree and providing solutions for assessments of alternative hypotheses defined

by mutually exclusive and exhaustive subsets.
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Subjects’ task was to probabilistically assess the mystery per-
son’s group membership. Each person either belonged to Group
A or Group B. For continuity with the prior discussion, let HA

stand for the hypothesis that the target person is a member of
Group A and let H¬A stand for the mutually exclusive, alterna-
tive hypothesis that the target person is a member of Group B.
Subjects were informed that the overall population from which
the sample of eight were said to be drawn was evenly divided and,
thus, P(HA) = P(H¬A) = 0.5. For each of the eight “encounters,”
subjects also learned the diagnostic probabilities of the attribute,
P(D+|HA) and P(D+|H¬A). Subjects were asked to estimate the
probability that the target person was a member of Group A and
then to estimate the probability that the person was a member
of Group B on a “percentage chance” scale ranging from 0 (abso-
lutely no chance at all) to 100 (absolutely certain) by writing a
numerical value in a space provided. After giving their estimates,
they were asked to make a binary choice regarding whether they
thought the relevant mystery person was a member of Group A
or Group B by circling one of the two options.

The diagnostic probabilities for the eight attributes (one per
mystery person) are summarized in Table 1. Note that the pre-
and post-instruction booklets had the same stimulus character-
istics but the problems were varied by altering problem order
and the attribute labels associated with each information con-
figuration. For example, as Column 1 in Table 1 shows, the
Bayesian probabilities for the encounter with mystery person
5 in the pre-instruction booklet are identical to those for the
encounter with mystery person two in the post-instruction book-
let. Thus, task difficulty was precisely matched between pre- and
post-instruction testing sessions.

Design
The stimulus characteristics shown inTable 1 take the form of a 2
(Feature: present, absent) × 2 (Expected Error Direction: subad-
ditive, superadditive) × 2 (Expected Error Magnitude: smaller,
larger) within-subjects factorial design. The values of the first
factor are shown in Column 2 of Table 1. The values of the sec-
ond factor are encoded in column 7, where the values 0.44 and
0.80 indicate that subadditive judgments are expected if subjects
commit the inverse fallacy and where the values 1.20 and 1.56
indicate that superadditive judgments are expected if subjects

commit the inverse fallacy. The values 0.80 and 1.20 represent
the smaller predicted errors, whereas the values 0.44 and 1.56
represent the larger predicted errors. Taking the pre-post manip-
ulation into account, the experiment utilizes a 2 (Instruction) ×
2 (Feature) × 2 (Expected Error Direction) × 2 (Expected Error
Magnitude) within-subjects factorial design.

Results

Experience, as indexed by the level of course taken (i.e., 1 =

junior, 2 = intermediate, and 3 = senior), was not significantly
correlated with bias (r = −0.07, p = 0.67) or absolute bias
(i.e., the degree of inaccuracy irrespective of whether it repre-
sents under- or over-estimation; r = −0.15, p = 0.33). Thus,
experience is not statistically controlled in subsequent analyses.

Probability Judgment
To avoid redundancy in the presentation of the results, analy-
ses are conducted on the additivity of probability judgments for
Groups A and B. The statistical analyses accompanying these
analyses are, of necessity, identical in inferential characteristics,
such as significance levels and effect sizes, to those focusing
instead on mean bias as a measure of inaccuracy, where bias is
defined as the deviation between subjects’ probability judgments
and the estimates based on Bayes theorem. For instance, where
T′ = 0.44 or 1.56, a subject who invariably uses the inverse strat-
egy would show a bias in his or her forecasts equal to |0.56|. Like-
wise, the subject would show an additivity violation, whereby T
(i.e., the sum of his or her judgments for Groups A and B) would
either exceed (when T′ = 1.56) or fall short (when T′ = 0.44) of
unity by the same degree (i.e., 0.56).

Subjects’ T-values were analyzed in a 2 (Instruction)× 2 (Fea-
ture) × 2 (Expected Error Direction) × 2 (Expected Error Mag-
nitude) within-subjects factorial analysis of variance (ANOVA)
model. There was a significant and large instruction effect show-
ing that the additivity (and, by implication, mean agreement
with Bayes theorem) of subjects’ judgments improved from pre-
instruction (M = 0.91, SE = 0.028) to post-instruction (M =

0.99, SE = 0.008) testing, F(1, 42) = 6.82, p = 0.012, η
2
p =

0.14. As the estimatedmarginal means show, prior to instruction,
subjects’ judgments, on average, were subadditive.

TABLE 1 | Summary of stimulus characteristics in judgment task.

Task no. (pre, post) D P(D+ |HA) P(D+ |H¬A) P(D|HA) P(D|H¬A) T′ P(HA |D) P(H¬A |D)

5, 2 Present 0.42 0.02 0.42 0.02 0.44 0.95 0.05

6, 1 Absent 0.58 0.98 0.42 0.02 0.44 0.95 0.05

8, 3 Absent 0.40 0.80 0.60 0.20 0.80 0.75 0.25

7, 4 Present 0.60 0.20 0.60 0.20 0.80 0.75 0.25

3, 8 Present 0.80 0.40 0.80 0.40 1.20 0.67 0.33

4, 7 Absent 0.20 0.60 0.80 0.40 1.20 0.67 0.33

1, 6 Present 0.98 0.58 0.98 0.58 1.56 0.63 0.37

2, 5 Absent 0.02 0.42 0.98 0.58 1.56 0.63 0.37

D+, target has attribute; D, the result for the target (either has or doesn’t have attribute); HA, hypothesis that target belongs to Group A; H¬A, hypothesis that target belongs to Group

B. T ′ = P(D|HA) + P(D|H¬A).
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TABLE 2 | Estimated mean T-values by instruction and expected error

direction.

Expected Instruction

Error Pre Post

Direction M LB UB M LB UB

Subadditive 0.83 0.75 0.90 0.95 0.91 0.99

Superadditive 0.99 0.91 1.07 1.02 0.99 1.05

LB and UB = 95% CI lower and upper bounds, respectively.

As predicted, the effect of instruction on additivity was mod-
erated by the expected error direction, F(1, 42) = 10.13, p =

0.003, η
2
p = 0.19. Table 2 shows the estimated marginal mean

T-values with 95% confidence intervals (CI). As Table 2 shows,
instruction had a strong, beneficial effect on tasks in which sub-
addivity was predicted, F(1, 42) = 10.27, p = 0.003, η

2
p =

0.20. In that task subset, subadditivity was virtually eliminated
post-instruction. In contrast, instruction had no effect when
superadditivity was expected (F < 1). However, given that
superadditivity was not found, the null effect of instruction in
that context is to be expected. Rather, in that context, subjects’
judgments, on average, were additive before and after instruc-
tion. No other effect in the full factorial model was significant at
p < 0.05.

The former additivity analyses showed that subjects’ judg-
ments were subadditive, which implies that, on average, they
underestimated the normative estimates. As Table 1 shows,
P(D|HA)> P(D|H¬A) and, likewise, P(HA|D)> P(H¬A|D). Thus,
one might expect that bias expressed in absolute terms would be
more pronounced for judgments of P(HA|D) than judgments of
P(H¬A|D). To test this hypothesis, the absolute deviation between
judged and normative probabilities were analyzed in a 2 (Instruc-
tion) × 2 [Judgment type: P(HA|D), P(H¬A|D)] within-subjects
ANOVA. In fact, mean absolute bias was greater for judgments of
P(HA|D) (M = 0.144, SE = 0.013) than judgments of P(H¬A|D)
(M = 0.009, SE = 0.011), F(1, 42) = 12.38, p = 0.001,
η
2
p = 0.23. As Figure 2 shows, judgment type also moderated the

effect of instruction, such that there was a greater effect for judg-
ments of P(HA|D) than judgments of P(H¬A|D), F(1, 42) = n6.67,
p = 0.013, η2

p = 0.14. In other words, instruction had a greater
effect on bias reduction (i.e., improving agreement with Bayes
theorem) where bias was greater to begin with.

The preceding analyses give additive analysts the benefit of the
doubt. However, it is possible that some of the expressed additiv-
ity captured in this experiment is spurious. Karvetski et al. (2013)
found that probability judgments of binary complements were
often additive because subjects assigned values of 0.5 to P(A) and
P(¬A). This pattern—known as the fifty-fifty blip (Fischhoff and
Bruine de Bruin, 1999)—is likely to reflect the subjects’ deep epis-
temic uncertainty regarding the task. Given that subjects asked to
judge probabilities are seldom given a “don’t know” option, they
tend to express that message by responding on the midpoint of
the probability scale. And when they are given a “don’t know”
option, fifty-fifty responses are greatly reduced (Mandel, 2005,
Experiment 1b).

FIGURE 2 | Estimated marginal mean absolute bias by judgment type

and instruction.

The pre- and post-instruction test data were scanned for fifty-
fifty responders. Three subjects were spuriously additive in the
pre-instruction test on at least five out of the eight problems.
However, no subject showed this pattern in the post-instruction
test. Thus, the prior results slightly underestimate the positive
instruction effect by including the spurious cases of additive judg-
ment in the pre-instruction test phase. Deletion of the three
subjects, however, had no substantial effect on the results. The
main effect of instruction on subjects’ T-values was virtually
unchanged, F(1, 39) = 6.89, p = 0.012, η

2
p = 0.15; and like-

wise for the instruction × direction interaction effect, F(1, 39) =
10.30, p = 0.003, η

2
p = 0.21. Figure 3 shows the distribution

of mean T-values before and after instruction with the three
fifty-fifty responders excluded. It is evident that instruction was
effective in improving the performance of the worst performers.
In fact, the range post-instruction was less than one-third of its
pre-instruction value (range= 0.26 vs. 0.88, respectively).

After removing the cases of spurious additivity, it is also of
interest to compare the mean proportion of additive probability
judgments before and after instruction. Instruction had a large
effect on the mean proportion of additive judgments, which was
greater after instruction (M = 0.56, SD = 0.42) than before
instruction (M = 0.75, SD = 0.31), t(39) = 2.86, p = 0.007,
Cohen’s d = 0.91. The proportion of subjects who were con-
sistently additive across the eight problems in a test session was
substantially greater after instruction (0.83) than before instruc-
tion (0.54)—a 54% increase in consistently additive responding
by subjects.

Binary Choice
Although the tutorials used in this experiment did not men-
tion choice, it was of interest to examine whether instruction
may also have had a beneficial effect on the coherence of binary
choices subjects made regarding the group to which the target
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FIGURE 3 | Frequency distribution of additivity values (T) by instruction.

belonged. Coherent choices are defined as those in which the
subject chooses the category as the target’s group to which he
or she assigned the higher probability. Conversely, if the sub-
ject chooses the group to which he or she assigned the lower
probability, the choice is defined as incoherent.

Figure 4 shows the distribution of correct choices in percent-
age terms by instruction. Unsurprisingly, the distributions are
highly skewed, with most subjects choosing coherently in all
eight problems. What may be somewhat surprising, however, is
that these distributions were not even more skewed. Clearly, the
pre-instruction group showed considerable room for improve-
ment, and improve with instruction they did. The proportion
who chose coherently in all eight problems vs. those who made at
least one incoherent choice was significantly greater after instruc-
tion (83%) than prior to instruction (53%), two-tailed binomial
p = 0.002.

Discussion

The present research adds to the body of literature showing
that Bayesian reasoning can be improved through relatively
brief instruction in how to structure information using natu-
ral frequency representations (Sedlmeier, 1999; Sedlmeier and
Gigerenzer, 2001; Kurzenhäuser and Hoffrage, 2002; Ruscio,
2003;McCloy et al., 2007; Sirota et al., 2015). In the present exper-
iment, brief instruction in how to represent base-rate and diag-
nostic probabilities as natural-frequency-tree diagrams and how
to then select the relevant subsets for calculation led to a large
improvement in the additivity of intelligence analysts’ posterior
probability judgments of binary complements. As noted earlier,
this effect also reflects the degree to which those probability
judgments corresponded with those given by Bayes theorem.

Consistent with the majority of previous studies that have
examined violations of the complementarity constraint (Mac-
chi et al., 1999; Baratgin and Noveck, 2000; Windschitl et al.,

FIGURE 4 | Frequency distribution of percentage of coherent choices

by instruction.

2003, Experiment 4; Sloman et al., 2004; Mandel, 2005; Williams
and Mandel, 2007; Mandel, 2008, Experiments 5 and 6), sub-
jects’ judgments were, on average, subadditive. Nevertheless, the
results also show that most subjects were consistently additive
in both pre- and post- instruction test phases, with a substantial
rise in that proportion after instruction. Indeed, over four-fifths
of subjects answered all eight problems additively after receiv-
ing instruction. What is also striking is that over half of them
did so even before receiving instruction. It is likely that these
proportions were as high as they were because the binary com-
plements were elicited in immediate succession. Prior studies
(Mandel, 2005; Karvetski et al., 2013) have found that spacing
binary complements apart with unrelated items or tasks reduces
the likelihood of additive responses. Thus, the proportions of
consistently coherent subjects obtained in this research should
be interpreted as having been elicited under near ideal condi-
tions (short of prompting subjects to make their related judg-
ments sum to unity; e.g., see Baratgin and Noveck, 2000). It
would be of value to assess the effect of instruction on addi-
tivity when the binary complements are elicited in a spaced
design.

The findings also showed that the degree of subadditivity
manifested across pre-instruction problem sets was consistent
with use of the inverse fallacy. That is, when the inverse (i.e.,
diagnostic) probabilities summed to less than unity (T′ < 1),
judgments were subadditive. In contrast, when the inverse
probabilities summed to more than unity (T′ > 1), the pre-
instruction judgments were additive—and significantly less sub-
additive. Nevertheless, the results of this experiment do not
confirm subjects’ commission of the inverse fallacy as strongly
as the findings obtained by Villejoubert and Mandel (2002)
because, unlike their findings which showed superadditivity
when T′ > 1, the present findings revealed additive judgment
under this condition. Simply put, exclusive reliance on the
inverse fallacy in the present task would not have led to overall
subadditivity.
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An encouraging result was that instruction benefitted intelli-
gence analysts’ probability judgments where it was needed most.
First, the effect of instruction was appropriately restricted to the
subset of problems in which the inverse probabilities summed
to less than unity. Under those conditions, instruction reduced
additivity violations. However, for the T′ > 1 task subset, where
subjects’ judgments were additive, instruction had no effect. This
null simple effect is an important result because it shows that
instruction did not merely make subjects’ assigned probabilities
larger across the board, as some other interventions appear to
have done (e.g., Williams and Mandel, 2007). The assigned prob-
abilities only became larger where they ought to have become
larger. In other words, the benefit of instruction was appropri-
ately targeted. Second, the effect of instruction on reducing mean
absolute bias was greatest for the set of judgments that yielded the
greatest absolute bias in the pre-instruction test (i.e., P(HA|D)).

The benefit of instruction, as noted earlier, was also targeted
in the sense that those who performed relatively poorly on the
pre-instruction test, showed clear signs of improvement, as indi-
cated by the large reduction in the range of performance post-
instruction as compared to pre-instruction. This was evident in
terms of both violation of the complementarity constraint and
coherence of binary choices. Moreover, the few analysts who pro-
vided fifty-fifty responses prior to instruction no longer did so
after instruction. These results are promising because they indi-
cate that large improvements in probability judgment, informa-
tion integration, and belief revision can be made by those who
need improvement the most. Of course, the present research
cannot speak to the long-term effect of instruction because the
post-instruction test was administered immediately after train-
ing. However, as noted earlier, a number of studies have shown
long-term beneficial effects on Bayesian judgment of instruction
that has relied on the use of natural frequency representations of
evidence (e.g., Sedlmeier and Gigerenzer, 2001). It would nev-
ertheless be useful to confirm that there is a long-term bene-
fit to judgmental coherence and also that such benefits can be
derived from experts who are tasked with making judgments
under conditions of uncertainty (such as intelligence analysts).

Likewise, given the encouraging results of this and other
research on the use of instruction to improve aspects of Bayesian
judgment, it would be of value to explore how such instruc-
tion might be further optimized by incorporating other effective
learning techniques (for overviews, see Dunlosky et al., 2013;
Kober, 2015). For instance, most studies of instruction effects
on Bayesian reasoning, including the present research, have used
a massed training and practice session. However, much exper-
imental evidence indicates that students learn more effectively
when they are given opportunities for distributed practice with
large time lags between sessions (Cepeda et al., 2006; Delaney
et al., 2010). While the majority of studies have demonstrated
the benefits of distributed practice using factual materials that
require mainly recall ability, Kapler et al. (2014) have shown
that distributed practice in a simulated undergraduate classroom

improves learning of higher-level reasoning that requires both
recall and manipulation of information, much as Bayesian
reasoning requires.

Finally, it is worth noting that the present research yielded not
only a large statistical effect but also a practical effect given that
the instructional method developed and tested in this research
has since been adopted in some intelligence courses in Canada.
Of course, it remains unclear to what extent such training will
ultimately affect the quality of intelligence analysis and whether,
in fact, Bayesianism is an appropriate model for belief revision
in that domain (for an insightful discussion, see Zlotnick, 1972).
Given that most assessments are communicated with verbal
probability phrases and few assessments are based on evidence
for which uncertainties are quantified, the application of aspects
of Bayesianism such as Bayes theorem are currently of lim-
ited value. Nevertheless, even verbal probabilities should respect
coherence principles such as additivity. It may bemore difficult to
verify whether “very likely that A will happen” and “slim chance
that A won’t happen” add up to unity, and such verification
would be less direct because it would require personally translat-
ing the phrases into numbers. However, even without translation
attempts, one could be reasonably confident that “almost certain
that it’s A” and “fifty-fifty that it’s not A” are superadditive. More-
over, judgment accuracy is substantially improved by giving sub-
jects in an opinion pool weight proportional to their adherence to
the additivity principle (Karvetski et al., 2013). Forecast accuracy
has also been improved by probability training that took the form
of directives and rules of thumb aimed at avoiding common pit-
falls, such as assigning probabilities of fifty-fifty to binary comple-
ments when forecasters are deeply unsure (Mellers et al., 2014).
The instructional method developed in this research could poten-
tially be used on its own or in combination with directive-based
probability training to improve the quality of forecasting in the
intelligence community and in other expert domains requiring
probability judgment.
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