
ORIGINAL RESEARCH
published: 23 April 2015

doi: 10.3389/fpsyg.2015.00471

Edited by:
Snehlata Jaswal,

Indian Institute of Technology
Jodhpur, India

Reviewed by:
Annelinde Renata Elisabeth

Vandenbroucke,
University of California, Berkeley, USA

William Sullivan,
University of Illinois

at Urbana-Champaign, USA

*Correspondence:
Marc G. Berman and Omid Kardan,

Department of Psychology,
The University of Chicago, 5848 S.

University Avenue, Chicago, IL, USA
bermanm@uchicago.edu;

okardan@uchicago.edu

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 08 November 2014
Accepted: 01 April 2015
Published: 23 April 2015

Citation:
Kardan O, Demiralp E, Hout MC,
Hunter MR, Karimi H, Hanayik T,

Yourganov G, Jonides J
and Berman MG (2015)

Is the preference of natural versus
man-made scenes driven by

bottom–up processing of the visual
features of nature?

Front. Psychol. 6:471.
doi: 10.3389/fpsyg.2015.00471

Is the preference of natural versus
man-made scenes driven by
bottom–up processing of the visual
features of nature?
Omid Kardan1*, Emre Demiralp2, Michael C. Hout3, MaryCarol R. Hunter4,
Hossein Karimi5, Taylor Hanayik5, Grigori Yourganov5, John Jonides4 and
Marc G. Berman1*

1 Department of Psychology, The University of Chicago, Chicago, IL, USA, 2 Adobe Systems, San Jose, CA, USA, 3 New
Mexico State University, Las Cruces, NM, USA, 4 The University of Michigan, Ann Arbor, MI, USA, 5 The University of South
Carolina, Columbia, SC, USA

Previous research has shown that viewing images of nature scenes can have a beneficial
effect on memory, attention, and mood. In this study, we aimed to determine whether the
preference of natural versus man-made scenes is driven by bottom–up processing of the
low-level visual features of nature. We used participants’ ratings of perceived naturalness
as well as esthetic preference for 307 images with varied natural and urban content. We
then quantified 10 low-level image features for each image (a combination of spatial
and color properties). These features were used to predict esthetic preference in the
images, as well as to decompose perceived naturalness to its predictable (modeled by
the low-level visual features) and non-modeled aspects. Interactions of these separate
aspects of naturalness with the time it took to make a preference judgment showed that
naturalness based on low-level features related more to preference when the judgment
was faster (bottom–up). On the other hand, perceived naturalness that was not modeled
by low-level features was related more to preference when the judgment was slower.
A quadratic discriminant classification analysis showed how relevant each aspect of
naturalness (modeled and non-modeled) was to predicting preference ratings, as well
as the image features on their own. Finally, we compared the effect of color-related
and structure-related modeled naturalness, and the remaining unmodeled naturalness
in predicting esthetic preference. In summary, bottom–up (color and spatial) properties of
natural images captured by our features and the non-modeled naturalness are important
to esthetic judgments of natural and man-made scenes, with each predicting unique
variance.

Keywords: esthetic preference, natural scenes, urban scenes, bottom–up processing, image features, perceived
naturalness

Introduction

Previous research has shown that interacting with natural environments such as walking in a
park or viewing images of nature can have a beneficial effect on memory, attention, and mood
(Berman et al., 2008, 2012) as well as other psychological and physical health benefits (Ulrich, 1984;
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Kuo and Sullivan, 2001a,b; Cimprich and Ronis, 2003; Kaplan
and Berman, 2010). Typically, the positive effects of interacting
with nature are compared to the effects of interacting with urban
or built environments. One reason that interacting with natural
environments has been hypothesized to be beneficial comes from
Attention Restoration Theory [ART; (Kaplan, 1995, 2001; Kaplan
and Berman, 2010)]. ART claims that most natural environments
do not tax top–down directed-attention mechanisms in the same
way that many urban environments do, and they also provide
softly fascinating stimulation that captures bottom–up involun-
tary attention mechanisms. It is this duality that is purported to
make many natural environments restorative.

What is unclear, however, is why simply viewing pictures of
nature vs. pictures of urban environments may lead to these
benefits. Presumably, pictures of these environments would
not capture attention in the same way as interacting with the
actual environments, and yet researchers have found benefi-
cial effects from simply viewing pictures of nature (Berto, 2005;
Berman et al., 2008). The fact that pictures can elicit similar
effects suggests that there may be low-level visual regularities
of natural environments that may lead to psychological benefits.
Alternatively, the very semantic idea of nature could be restora-
tive. In other words, we might be “programmed” to benefit from
low-level visual regularities in natural scenes in a bottom-up way,
possibly imposed on our perceptual system through the process
of natural selection. (See “savanna hypothesis” by Orians, 1986;
Geisler, 2008).

In order to pave the way for future studies that will directly
test this possibility, we first need to determine what the salient
features that distinguish natural and urban scenes are and how
these differential features may contribute to our preference for
nature. Here we set out to determine the contribution of low-
level statistical features versus semantics to esthetic preference
judgments of natural vs. urban scene images. We do so by assess-
ing the effects of bottom-up perceptions of naturalness that are
driven by visual features of natural environments, e.g., the color
green vs. perceptions of naturalness that cannot be predicted with
certain low-level visual features and are possibly related to expe-
rience and semantic knowledge that affect one’s judgment more
deliberately and slowly.

While preference may not necessarily correlate with the salu-
brious effects that are attributed to natural environmental inter-
ventions, it is an important starting point, since no single image
is likely to produce restorative benefits on its own (i.e., it is
likely that a set of images would be necessary). We already know
that natural images are preferred over man-made scenes (Kaplan
et al., 1972). In this study our main goal is to estimate how much
of the preference of natural images is due to bottom–up visual
regularities of natural scenes.

The first empirical research leading to models of statistical
esthetics was probably conducted by Fechner (1876) concerning
the golden ratio. He suggested that principles of esthetics could
be inspected through statistical analysis, and that esthetic prefer-
ence works in a bottom–up manner. Birkhoff (1933) formulated
a simple “Esthetic Measure” based on his studies of polygons, and
he proposed that the esthetic pleasure derived from an object is
a direct function of the number of ordered elements (symmetry,

equal sides, equal angles, etc.) and an inverse function of the num-
ber of complexity elements (number of sides, re-entrant angles,
etc.) that attract a viewer’s attention. The simple square for exam-
ple, had a very high degree of “Esthetic Measure” since it had both
a high degree of order and a low degree of complexity. Eysenck
(1957), on the other hand, argued that Esthetic Measure was
the product and not the ratio of order and complexity because
he found that preferred visual objects in his studies seemed to
have both a high degree of order and complexity. More recently,
information theory’s quantitative measures of complexity (e.g.,
Kolmogorov complexity) and measures of information redun-
dancy (entropy) have been applied to esthetics (Rigau et al., 2008;
Graham and Redies, 2010).

In addition, fractal-like statistics that are a statistical regularity
in natural images have been shown to play a role in esthetic per-
ception (Aks and Sprott, 1996; Spehar et al., 2003). For example,
Aks and Sprott (1996) created chaotic patterns using mathemati-
cal equations with unpredictable solutions and showed that the
fractal dimension (the extent to which the space is filled with
details) and the Lyapunov exponent of the patterns (degree of
unpredictibility of pattern production) correlate with esthetic
preference of the pattern, and that preferred patterns have sim-
ilar fractal dimensions to natural objects. Lastly, color-related
features of scenes, including brightness, could be important
to perception and esthetic preference (Mureika, 2005; Palmer
and Schloss, 2009; Wallraven et al., 2009; Graham and Redies,
2010; Masuda and Nascimento, 2013). For example, Masuda and
Nascimento (2013) showed that for daylights, colorful images of
food counters are perceived as more natural under illuminants
with an average correlated color temperature (CCT) of 6040 K
and are most preferable under illuminants with an average CCT
of 4410 K.

Another dimension of the scenes that is of interest in our
study is the perception of naturalness. In parallel to esthetics,
the quantification of statistical regularities in nature and how
they are sensed or perceived have been the subject of interest for
many researchers in computer vision (Ruderman, 1994; Huang
and Mumford, 1999; Oliva and Torralba, 2001; Torralba and
Oliva, 2003; Fei-Fei and Perona, 2005), mammalian vision (Field,
1987; Baddeley and Hancock, 1991; Olshausen and Field, 1996;
van Hateren and van der Schaaf, 1998), and also in the con-
text of ART (Berman et al., 2014). In this study, we sought to
investigate the involvement of statistical regularities of nature in
the esthetic judgments of different environments. We attempted
to isolate more bottom–up aspects of perceived naturalness
predicted by visual features from other factors that affect per-
ception of naturalness in a scene. We hypothesized that if we
regressed the naturalness ratings of the scenes from the low-
level visual features of the scenes, the predicted values would be
related to the more bottom–up aspects of judgments of natural-
ness (i.e., the low-level visual features impact on perceptions of
naturalness).

There are many ways to decompose images into low-level
visual features or descriptors. In this study, we were specif-
ically interested in edge-related visual features [such as total
edge density (ED), non-straight edge density and straight (SED)
that capture contrast changes in surfaces, borders, and shades],
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entropy that is related to the shape of the histogram of pixel
values in the image, and color related visual features such as
average hue, saturation, brightness, and their average variations
(standard deviations) that capture the main spectrum of col-
ors in the scene and their variations. This focus stems from our
previous research (Berman et al., 2014), which has shown that
these visual features can reliably predict the perception of nat-
uralness in images of urban, natural, and mixed urban/natural
environments.

The goal of the present study was to explore the relationships
between these quantified color and spatial image features and
people’s esthetic preferences for the images, and then to estimate
howmuch of the preference of nature images is due to bottom–up
visual regularities of more natural images compared to the other
aspects of natural scenes that are not modeled by these low-level
visual features.With this knowledge, we may be able to isolate the
effect of low-level features that occur in natural environments on
judgments of preference from the more top–down semantics of
naturalness. This information could then be used in the design of
built environments to motivate interaction with nature and also
improve psychological functioning.

Materials and Methods

Participants
All participants consented to voluntary participation via the
guidelines established by the Institutional Review Board at the
University of South Carolina and New Mexico State University.
A total of 52 participants were enrolled in the experiment (26
female, mean age = 21.1). All participants reported normal or
corrected-to-normal vision, and none reported any psychological
or physical deficits that would exclude them from participation.

Materials
Three hundred and seven images consisted of a spectrum of
natural to man-made scenes (scenery of Nova Scotia, urban
parks from Annapolis, Baltimore and Washington D.C., and
pictures of Ann Arbor, Detroit, and Chicago) were used in the
experiment. The pictures of Nova Scotia, Ann Arbor, Detroit,
and Chicago were taken from Berman et al. (2008, 2014)
and the images from Annapolis, Baltimore, and Washington,
D.C., were provided by the TKF foundation and were utilized
in Berman et al. (2014). All of the images can be down-
loaded from our PLoS ONE publication Berman et al. (2014):
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.
0114572

This sample size provides sufficient statistical power for the
study while keeping the behavioral experiments’ duration rea-
sonable (less than 40 min). The images were in three different
sizes: 512∗384, 685∗465, and 1024∗680 pixels. Importantly, all
image features were normalized to the size of the images by being
divided by the total number of pixels in the image.

Procedure
Images were presented to participants using PsychoPy (Peirce,
2007) experimental software on a desktop computer. The

experiment consisted of two tasks. In one task, participants
were instructed to rate how much they liked each scene using a
standard Likert scale from 1 to 7, with ‘7’ indicating a strong pref-
erence and ‘1’ indicating a strong dislike. During this procedure,
images were shown for 1 sec and then removed from the screen
and participants had up to 4 sec to rate each scene. This was
to prevent long preference judgments, which could lead to con-
tamination of decision with uncontrolled semantics or personal
experiences.

In the second task, participants were instructed to rate how
natural versus man-made each scene was. Again, a Likert scale
was used with a range from 1 to 7, with ‘7’ indicating that the
image was very natural and ‘1’ indicating that the image was
very man-made. During this task, participants viewed the scene
for 1.5 s before they were able to respond. This was to pre-
vent hasty judgments about natural content before examining the
image properly. After 1.5 s the scene stayed on the computer
screen so that participants could view it until they made their
response.

The order of presentation for 307 images was always random-
ized. For both tasks, participants responded using the numbers
1–7 on the computer keyboard. The order of performing the
two tasks was counterbalanced across participants (26 partici-
pants did preference rating first, and the other 26 did naturalness
rating first). Participants were instructed about each rating exper-
iment separately and did not know about their second experiment
before finishing the first rating. There was a 1- to 2-min rest
between the two rating experiments.

Behavioral Measures
Esthetic preference (Preference) for each image was calculated
as the mean preference rating across all participants. Perceived
naturalness (Naturalness) was also calculated as the mean natu-
ralness rating across all participants for each image. The reason
that ratings were averaged over all participants was that sim-
ple t-test comparisons showed that for none of the images the
average preference from the 26 participants who did preference
rating before naturalness rating was significantly different from
the average preference rating from the 26 participants who did
preference rating after naturalness rating (among all images, the
closest to significance had p = 0.103, t = −1.692, df = 25). The
same was true for naturalness ratings (among all images, closest
to significance had p = 0.202, t = −1.312, df = 25).

Quantitative Image Analysis Measures
Color Properties
In this section we describe the color features that were used
in our analysis. Color properties of the images were calculated
based on the standard HSV model (Hue, Saturation, and Value)
using the MATLAB image processing toolbox built-in functions
(MATLAB and Image Processing Toolbox Release 2012b, The
MathWorks, Inc., Natick, MA, USA). (1) Hue is the degree to
which a stimulus can be described as similar to or different from
stimuli that are described as red, green, or blue. Hue describes
a dimension of color that is readily experienced (i.e., the dom-
inant wavelength in the color). We calculated the average hue
across all image pixels and the average standard deviation of hue
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across all of an image’s pixels for each image. The average hue
represents the hue level of the image and the (2) standard devi-
ation of hue (SDhue) represents the degree of diversity in the
image’s hue1. (3) Saturation (Sat) is the degree of dominance of
hue mixed in the color, or the ratio of the dominant wavelength
to other wavelengths in the color. We calculated the average sat-
uration of each image across all image pixels, as well as the (4)
standard deviation of saturation for each image (SDsat). We
also measured the overall darkness-to-lightness of a pixel’s color
depending on the brightness of the pixel. This dimension of color
is called (5) Brightness (Bright) or the value of the color. We
computed the average brightness of all pixels for each image, as
well as the (6) standard deviation of brightness in each image
(SDbright). Figure 1 shows hue, saturation, and brightness maps
of a sample image in our experiment, and Figure 2 compares
two images in terms of their color diversity (SDHue, SDSat, and
SDbright).

1There was the concern that since high hue (hue= [0.92, 1]) and lowhue (hue= [0,
0.05]) surfaces essentially have the same color at high enough brightness and satu-
ration (Red), treating hue as a linear scale could result in incorrect representatives
of average hue and SDhue values. To check this, we changed the high hue red pix-
els with brightness and saturation above 0.5 to zero hue and recalculated the Hue
and SDhue variables. However, these recalculated variables were almost identical
to previous ones (R2 = 0.999 for both variables), hence no change was done to the
analysis. The reason that SDhue and Hue are not dependent on the high hue red
is that it happens with extremely low frequency in natural and urban photographic
sceneries (On average, less than 0.01% of the pixels in our sample of images).

Spatial Properties
In this section we describe the spatial/structural features that were
used in our analysis. A gray scale histogram of an image shows the
distribution of intensity values of pixels that construct an image.
Each pixel could have an intensity value of 0–255 (8-bit grayscale)
and for a histogram with 256 bins, the probability value of the
nth bin of the histogram (pn) shows the number of pixels in the
image that have an intensity value of n-1 over the total number of
pixels in the image. (7) Entropy of a gray scale image is a statistical
measure of randomness that can be used to characterize part of
the texture of an image using the intensity histogram. We used a
simple definition of Entropy:

Entropy = −
256∑

n=1
(pn ∗ log2 pn) (1)

Where pn is the probability value of the nth bin of the his-
togram. Entropy shows the average “information” content of an
image. The more the intensity histogram resembles a uniform
distribution (all intensity values occur with the same probabil-
ity in the image), the greater the entropy value becomes in the
image. We calculated the entropy of the images as a measure
of uncertainty or “information” content (versus redundancy) in
the image’s intensity values. More comprehensive and sophisti-
cated definitions or variants of image entropy have previously
been applied for natural images (for example, see Kersten, 1987;

FIGURE 1 | (A) A sample image (B) Image’s hue map (C) Image’s saturation map (D) Image’s brightness map. Pixels with hot colors have higher hue, saturation,
and brightness in figures B, C, and D, respectively.
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FIGURE 2 | Comparison of two images in their color diversity properties. (A) Example of an image with high variation in saturation and medium variations in
hue and brightness. SDHue = 0.19, SDSat = 0.38, SDBright = 0.28. (B) Example of an image with low variation in saturation and hue and medium variation in
brightness. SDHue = 0.05, SDSat = 0.16, SDBright = 0.15.

Field, 1999; Chandler and Field, 2007) that are not in the scope
of this study, as we focused on more simple features that are
less computationally demanding and have straight-forward inter-
pretations. In addition, our chosen features could be readily
manipulated in visual stimuli and built environments by design-
ers, architects, urban planners, etc. Figure 3 shows a comparison
of high versus low entropy in two images.

Another image feature concerned the spatial or structural
properties of images provided by image gradients. An image gra-
dient is a map of the image’s brightness intensity or color changes
in a given direction. The points of discontinuity in brightness
(rapid brightness or color changes) mainly consisted of object,
surface, or scene boundaries, and fine details of texture in an
image and are called edges. Images in this study (especially the
more natural scenery) contain more complex detailed texture and
fragmentations, which could lead to some complexities in edge
detection.

The most commonly used method for edge detection is
the Canny (1986) edge detection algorithm (see Klette and
Zamperoni, 1996). This algorithm consists of five stages: first,
blurring (or smoothing) an image with a Gaussian filter to reduce
noise; second, finding the image gradients using derivatives of

Gaussian operators; third, suppressing non-maximum gradient
values; fourth, double thresholding weak and strong edges; and
finally, edge tracking of weak or disconnected edges by hystere-
sis. This method is therefore less likely than the others to be
influenced by noise, and more likely to detect true weak edges
(see Canny, 1986). We used MATLAB’s built in function “edge”
and set the method to “canny” to calculate the pair of thresh-
olds to be used by the canny edge-detection algorithm for each
image. MATLAB uses a heuristic method to calculate a “reason-
able” pair of lower and upper thresholds for the Canny algorithm
when the thresholds are not specified. Then, the same func-
tion was used for each image with thresholds specified as 20%
below (high sensitivity threshold) or 60% higher (low sensitiv-
ity threshold) than those determined by MATLAB2. This was
done so that we could weight faint and salient edges differ-
ently, with each pixel potentially having a value of 0, 0.5, or 1

2For example if MATLAB suggested a [0.1, 0.2] threshold pair for an image, we
fed 0.8∗[0.1, 0.2] and 1.6∗[0.1, 0.2] to the Canny edge detection for finding faint
edges and salient edges of that image, respectively (see Gonzalez et al., 2004).
Importantly, the modifiers 0.8 and 1.6 were determined heuristically by OK and
MB by screening the calculated edge maps of images for a range of different
modifiers. This procedure is the same as was used in Berman et al. (2014).

FIGURE 3 | Comparison of two images in their Entropy. (A) Example on an image with low entropy, Entropy = 6.92 (B) Example on an image with high entropy,
Entropy = 7.76.
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FIGURE 4 | (A) Sample image, (B) the edge density (ED) map of the sample image created from salient and faint edges of the image detected using Canny edge
detection, and (C) the detected straight edges of the sample image used to calculate SED.

FIGURE 5 | Comparison of two images with different values of disorganized edge ratios: (A) Example of an image containing high ratio of non-straight
edges relative to total ED, DER = 0.84 (B) Example of an image containing low ratio of non-straight edges relative to total ED, DER = 0.41.

depending on how sharp of an edge it belonged to. This was
done in the following manner: pixels with a value of 0 were not
identified as edges by the Canny edge detection algorithm at
the high sensitivity threshold (i.e., pixels with a value of 1 were
only detected as edges when using the high sensitivity threshold
and not when using the less sensitive threshold (and therefore
less salient edges); and pixels with a value of 2 were detected
as edges with the lower sensitivity threshold and therefore were
more salient. Finally, (8) ED was calculated for the image as the
sum of total edge pixel values (i.e., 0 for non-edge pixels, 0.5 for
faint edges, 1 for salient edges) over total number of pixels in the
image.

Pixels belonging to straight edges (horizontal, vertical, and
oblique lines) were also quantified so that SED and non-straight
edge (curved or fragmented edges) density of images could be
measured separately. Because of the complexity of the images, a
typical Hough transform-based method could not detect straight
lines accurately. Instead, we used a simple gradient-based con-
nected component algorithm to detect straight lines in the
images.

First, the images were convolved with the derivative of a
Gaussian filter in the X and the Y directions to compute the gradi-
ent directions for Canny edges. Second, each edge was assigned to
one of eight directions based on its value of tan−1(Gy/Gx), where
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Gy and Gx are the y and x gradients. Third, the connected com-
ponents for the edge pixels in each direction were determined
and labeled using MATLAB’s ‘bwconncomp’ function. Finally,
the Eigenvalues of the covariance matrix of the X and the Y coor-
dinates of points for each connected component (edge) were used
to compute the direction (the direction of the first principal com-
ponent vector) and the straightness of the components. The first
Principal component (PC) of the edge’ coordinates should be par-
allel to edge’s direction and the second PC captures the variability
of edge’s coordinates perpendicular to its direction. Pixels of a
connected component above a threshold of straightness (the sin-
gular value for the first principle component more than 104 times
larger than the singular value for second component) met the
criterion of a “straight edge.” The number of pixels on detected
straight edges over total number of image pixels was calculated as
(9) SED for each image. Figure 4 shows a sample image with its
edge and straight edge maps.

Lastly, in order to capture how many edges in an image con-
sisted of curved or fragmented edges, the ratio of curved or
fragmented edges (non-straight edges) density to total ED was
calculated as a measure of (10) Disorganized edge ratio (DER) in
each image. This measure captures part of the relatively more
organized structure (greater in more man-made scenes) versus
more chaotic or fragmented and non-straight edges (greater in
more natural scenes) in the images, i.e., high DER indicates high
disorganization. For example, Figure 5 shows two images with
high- and low-levels of DER, with their respective DER values
included for comparison.

Results

Overview
In the results section, we first report the relationship of the quan-
tified low-level image features with esthetic preference ratings
using multiple regression. We then used our features to con-
struct a model to predict naturalness based on the optimal linear
combination of features. This was done by regressing natural-
ness ratings on the features and we did this to directly examine
how modeled naturalness that is captured by bottom–up percep-
tions of naturalness relates to preference. Next, we confirmed
the hypothesis that modeled naturalness is capturing bottom–
up driven naturalness ratings. We did so by examining reaction
times (RTs) whenmaking preference judgments and found a pos-
itive relationship between RT and bottom–up naturalness (i.e.,
faster preference responses were more related to bottom–up nat-
uralness), but the reverse relationship existed for non-modeled
naturalness (i.e., slower preference responses were more related
to non-modeled naturalness). Lastly, we assessed how naturalness
modeled by structural visual features, naturalness modeled by
color-related features, their interaction, and other aspects of nat-
uralness that cannot be modeled with our features each uniquely
contribute to esthetic judgment of scenes. In all of our analy-
ses, we validated the generalizability of our models by utilizing
a machine learning based classification analysis where we train
a quadratic discriminant classifier to predict if an image was
preferred by the participants.

Low-Level Image Features Predicting
Preference
The correlation matrix of preference and image features shows
significant zero-order correlations between preference and Hue,
SDhue, SDsat, Entropy, ED, SED, and DER (see Supplementary
Appendix). However, some of these features were correlated
with each other, which complicates the interpretation of the
zero-order correlations as a feature’s correlation with preference
may be confounded by another collinear feature. For example,
SED is highly anti-correlated with DER as one would expect.
Therefore, to assess the significance of each feature in pre-
dicting AP, we ran a regression of these features as variables
in predicting preference. As can be seen in Table 1, low-level
image features account for a significant proportion of vari-
ance in preference [adjusted R2 = 0.31, F(10,296) = 14.41,
P < 0.05]. This result is comparable to others in this area
(e.g., about 25% of variance of image preference judgments
captured by statistics like sparseness for art images: Graham
et al., 2010). Standardized regression coefficients and their
confidence intervals show that lower hue and more satura-
tion diversity in the image predict more preference while a
greater number of straight edges predicts lower preference.
The confidence interval of DER suggests a marginal posi-
tive effect for DER as a predictor of preference when other
features are adjusted for. In fact, if we remove SED from
the analysis, higher DER becomes strong predictor of pref-
erence, which is due to its high degree of shared variance
with SED as mentioned before. In summary, some objective
low-level features significantly predicted subjective preference
judgments.

Naturalness Ratings Predicting Preference
We also examined how perceptions of naturalness could
predict preference. As one might expect, the naturalness
of the image strongly predicted its preference, R2 = 0.52,
F(1,305) = 340, P < 0.05, confidence interval = [0.66, 0.82].
This result indicates that images of natural scenes are more pre-
ferred than scenes with more man-made content. This is an
expected result and replicates previous work by Kaplan et al.
(1972).

TABLE 1 | Results of regressing esthetic preference on image features.

Predictor Estimate SE t value CI

Edge density 0.008 0.066 0.128 [−0.120 0.137]

Straight edge density∗ −0.382 0.064 −5.924 [−0.509 −0.255]

Hue∗ −0.177 0.061 −2.888 [−0.297 −0.056]

Saturation −0.089 0.079 −1.125 [−0.244 0.066]

Brightness 0.085 0.051 1.66 [−0.015 0.185]

SDhue −0.009 0.066 −0.139 [−0.140 0.121]

SDsat∗ 0.214 0.069 3.096 [0.078 0.350]

SDbright −0.031 0.054 −0.565 [−0.137 0.076]

Entropy 0.066 0.062 1.064 [−0.056 0.188]

Disorganized edge ratio 0.123 0.065 1.884 [−0.005 0.251]

Adjusted R2 = 0.31, F(10,296) = 14.41, ∗P < 0.05.
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Low-Level Image Features and ‘Bottom–Up’
Perceptions of Naturalness
Next, in order to examine how preference is related to the vari-
ance of naturalness that is predicted by the low-level visual
features versus the aspects of naturalness that is not captured by
these features, we regressed naturalness on the visual features.
The results of this regression are shown in Table 2. Replicating
findings of Berman et al. (2014), these features explain a sub-
stantial amount of variance in naturalness ratings [R2 = 0.54,
F(10,296) = 36.73].

We used the regression equation of naturalness = 3.573
–0.249∗Hue –0.220∗SDhue –0.756∗Sat +0.244∗SDsat
+0.069∗Brightness –0.059∗SDBright –0.021∗Entropy +0.717∗ED
–0.299∗SED +0.582∗DER +e as our linear model to calculate
the predicted naturalness score (modeled naturalness) and its
deviation from the naturalness rating (non-modeled naturalness)
for each image. This way we could assess the degree to which
preference of images is related to bottom–up naturalness that is
captured by the visual features, assuming that naturalness that is
predicted by this model is actually related to bottom–up percep-
tion of naturalness. This requires that the visual features capture
most (almost exhaustively) of low-level visual information.

The Effect of Bottom–Up Perception on
Judgments of Naturalness
After separating naturalness ratings into modeled and non-
modeled naturalness based on the low-level visual features, we
hypothesized that if modeled naturalness is truly related to
bottom–up processing (i.e., processing that is driven more by the
stimulus features) of naturalness of an image, its effect on prefer-
ence should emerge for faster preference ratings (i.e., faster RTs)
since bottom–up processing tends to be a faster and more auto-
matic process (Kinchla and Wolfe, 1979; Theeuwes et al., 2000;
Delorme et al., 2004). This was tested by analyzing the interac-
tion of modeled and non-modeled naturalness with the time to
make a preference judgment (i.e., the RT for making a prefer-
ence judgment) in predicting preference ratings for the images.
RT for each image was the calculated average RT from each
participant’s rating of preference from each image. RTs were z-
scored within subjects to account for individual differences in

TABLE 2 | Results of regressing perceived naturalness on image features.

Predictor Estimate SE t value CI

(Intercept)∗ 3.573 0.07071 50.53 [3.434 3.712]

Edge density∗ 0.717 0.130 5.479 [0.459 0.974]

Straight edge density −0.299 0.174 −1.713 [−0.643 0.044]

Hue∗ −0.249 0.091 −2.735 [−0.429 −0.069]

Saturation∗ −0.756 0.125 −6.028 [−1.004 −0.509]

Brightness 0.069 0.074 0.929 [−0.077 0.215]

SDhue∗ −0.220 0.094 −2.332 [−0.406 −0.034]

SDsat∗ 0.244 0.099 2.462 [0.049 0.440]

SDbright 0.059 0.082 0.720 [−0.102 0.220]

Entropy −0.021 0.085 −0.256 [−0.190 0.146]

Disorganized edge ratio∗ 0.582 0.164 3.534 [0.257 0.906]

Adjusted R2 = 0.54, F(10,296) = 36.73, ∗P < 0.05.

TABLE 3 | Results of the regression of esthetic preference on modeled
perceived naturalness, RT, and their interaction.

Predictor Estimate SE t value CI

Modeled naturalness∗ 0.453 0.051 8.896 [0.353 0.554]

Reaction time (RT) −0.036 0.048 −0.752 [−0.131 0.058]

RT X modeled-naturalness∗ −0.247 0.048 −5.141 [−0.341 −0.152]

RT is Reaction Time, RT X modeled naturalness is the interaction term. Adjusted
R2 = 0.34, F(3,303) = 54.23, ∗P < 0.05.

the speed of preference judgments before being averaged over
participants.

Table 3 shows the results of the regression of preference
on the interaction of preference RT with modeled naturalness
(i.e., bottom–up perceptions of naturalness). As can be seen in
the table, more naturalness captured by features strongly pre-
dicts more preference, i.e., images with more modeled natural-
ness are preferred over images of high modeled urbanness (the
main effect). Importantly, the relationship of modeled natural-
ness with preference decreases as the RT of preference judg-
ment increases in the images (the interaction). This suggests
that when preference judgments are made quickly, those judg-
ments are more reliant on the visual features of the images that
drive naturalness ratings. Therefore, images that are more nat-
ural in a way that is predictable by this model are also rated
more quickly by the participants. On the other hand, images
that are more natural in a way that our model fails to pre-
dict (higher non-modeled naturalness) are the ones that are
also rated slower and more deliberately by the participants. This
is suggested by Table 4 that shows the results of the regres-
sion of preference on the interaction of RTs with non-modeled
naturalness.

To illustrate this double dissociation better, we plotted the
relationship between preference and modeled and non-modeled
naturalness from Tables 3 and 4 in Figure 6. Blue lines show
regression lines relating preference to modeled naturalness (left)
and non-modeled naturalness (right) when the RT of preference
judgments are at the average RT. Red and black lines show regres-
sion lines relating preference to modeled naturalness (left) and
non-modeled naturalness (right) when the RT of preference judg-
ments are slow (mean + 1.5 SD), and fast (mean − 1.5 SD),
respectively. As can be seen in the figures, modeled natural-
ness becomes a better predictor of preference in faster judgments
(black line is steeper then red line in the left figure), whereas non-
modeled naturalness becomes a better predictor of preference in
slower judgments (red line is steeper then black line in the right

TABLE 4 | Results of the regression of esthetic preference on non-
modeled perceived naturalness, RT, and their interaction.

Predictor Estimate SE t value CI

Non-modeled naturalness∗ 0.482 0.051 9.505 [0.382 0.582]

Reaction time 0.069 0.052 1.338 [−0.033 0.171]

RT X non-modeled naturalness∗ 0.108 0.048 2.248 [0.014 0.202]

RT is reaction time, RT X non-modeled naturalness is the interaction term. Adjusted
R2 = 0.25, F (3,303) = 35.01, ∗P < 0.05.
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FIGURE 6 | Plots of the interaction of modeled naturalness and the
reaction time (RT) to make the preference judgment (left) in predicting
preference ratings, and the interaction of non-modeled naturalness and
the RT to make the preference judgment (right) in predicting preference.

Lines show fitted regression lines of preference regressed on modeled
naturalness (left) and non-modeled naturalness (right) at three different levels
of RT. Med RT is at the mean RT and Fast and Slow RT are at mean
RT ± 1.5∗SD of RT.

figure). Therefore, we can claim that our features are modeling
the more bottom–up aspects of naturalness important for esthetic
judgment and the part of naturalness in the images that is not pre-
dictable by them is probably less related to bottom–up perception
of nature. Whether the non-modeled aspects are associated with
top–down perception of naturalness is beyond the scope of our
data.

Edge- and Color-Related Aspects of
Naturalness in Predicting Preference
To isolate specific effects of color and structure, modeled nat-
uralness was further decomposed to Naturalness-color (pre-
dicted naturalness based on only our six color features), and
Naturalness-structure (predicted naturalness based on only our
four spatial features), and also the interaction of these two com-
ponents. Table 5 shows the results of regression of preference
on these two components and their interaction, as well as the
non-modeled naturalness predictor.

Our results suggest that people like both color-related regu-
larities (less average hue and more diversity in saturation) and
structure-related regularities (less straight edges and more dis-
organized edges), which tend to be more common in more
natural scenes. Importantly, these features are more impor-
tant in faster preference judgments. Additionally, the prefer-
ence for these color-related and structure-related properties in
an image increases preference not additively, but in an inter-
active way. Almost as important, people prefer the seman-
tic idea of nature versus more man-made semantics, which
may be captured by non-modeled naturalness (i.e., natural-
ness various that was not predicted by the low-level visual
features).

TABLE 5 | Results of regressing esthetic preference on color-related and
structure-related bottom–up naturalness and non-modeled naturalness.

Predictor Estimate SE t value CI

Modeled-naturalness-color∗ 0.362 0.081 4.454 [0.202 0.521]

Modeled-naturalness-structure∗ 0.533 0.055 9.629 [0.424 0.642]

Non-modeled naturalness∗ 0.480 0.043 11.164 [0.396 0.565]

Color X structure∗ 0.207 0.092 2.237 [0.025 0.389]

Color X structure is the interaction between modeled-naturalness-color and
modeled-naturalness-structure. Adjusted R2 = 0.47, F (4,302) = 69.36, ∗P < 0.05.

Quadratic Discriminant Classification of
Esthetic Preference
To further assess the reliability/reproducibility of features and
naturalness in predicting preference we performed a multi-
variate machine-learning classification analysis to predict pref-
erence. The classifier we chose was a quadratic discriminant
(QD) algorithm, which has been implemented with great success
to classify brain states and participants’ brain activity patterns
(Yourganov et al., 2010, 2014; Berman et al., 2013). This clas-
sification analysis provides complementary information to the
regression results as this classification analysis speaks directly to
the reproducibility of the results and not just the effect-sizes. Also,
because the classifier is non-linear and distinguishes classes with
a non-linear surface, it provides additional information that is
absent in a linear regression model.

We trained a multivariate machine-learning algorithm, the
quadratic discriminant classifier, utilizing the low-level visual
features to predict the preference of the images. Utilizing a
leave-one-out cross-validation framework we could test how well
the quadratic discriminant classifier could accurately predict the
preference of the image.
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TABLE 6 | Results of quadratic discriminant classification of esthetic
preference for images using different variables.

Variable(s) in classification Prediction accuracy

Image features 69.2%

Modeled naturalness 61.9%

Non-modeled naturalness 66.9%

Modeled + non-modeled naturalness 70.9%

Image features + non-modeled naturalness 78.8%

Implementation of QD classification was performed using the
classify function in the Statistics toolbox in Matlab (the classifier
type was set to ‘quadratic’). The QD classifier uses a multivariate
Gaussian distribution to model the classes and classify a vector
by assigning it to the most probable class. The QD model con-
tains no assumption of homoscedasticity, and instead estimates
the covariance matrices separately for each class (that is, the vari-
ances of and the correlations between features are allowed to
differ across high versus low-preferred images). This indicates
that when implementing QD the two classes are separated by a
non-linear curved surface.

We evaluated the success of the classifier using a cross-
validation approach. A subset of images was used to train the
classifier, and the image type based on a median split on AP
(high preference versus low preference) was predicted for the
images that were not included in the training set. At each iter-
ation, two images (one high-preferred and one low-preferred)
were held out for testing, and the remaining 305 were used to
train the classifier; this process was repeated so that all combi-
nations of high and low preferred images were determined by
classification.

Results of QD Classification of Preferred
versus Not Preferred Images
For each combination of left-out high- and low-preferred images
we computed whether the image type was predicted accurately.
The proportion of images that were accurately predicted was
our metric of prediction accuracy, our main measure of the
efficacy of the classifier. We first introduced all 10 features
for classification, and then excluded feature that dropped the
classification accuracy. Our logic in the classification was to
get maximum accuracy by omitting features that are redun-
dant3. Table 6 shows the prediction accuracy of the QD
classifier using features only (Hue, Saturation, SDhue, SDsat,
Entropy, SED, and DER (69.2%), using the modeled natural-
ness values only (61.9%), using the non-modeled naturalness
only (66.9%), using modeled and non-modeled naturalness
together (70.9%), and using features (Hue, Saturation, SDhue,
SDsat, Entropy, SED, and DER) and non-modeled natural-
ness together (78.8%). In all cases chance is at 50% and
also classification was above chance. This classification analy-
sis demonstrates that features and semantics are each uniquely

3The Classifier worked best with these features. Adding Brightness, SDbright and
ED decreased classification accuracy. The fact that ED becomes redundant in
classification analysis is probably because DER and SED and their quadratic and
multiplicative terms capture all the information of ED.

important and are reliable predictors of preference. The fact
that features predict preference better than modeled naturalness
shows some features are predictors of preference indepen-
dent of their relationship to the perceived naturalness of the
scenes.

Discussion

We quantified the spatial structure and the color properties of
a corpus of images with a spectrum of man-made and nature
content by decomposing images that were rated on subjec-
tive preference and naturalness. Results from multiple regres-
sions of preference on these low-level features showed that
some of these features could significantly predict esthetic pref-
erence of the images and accounted for a large portion of
the variance in preference. Specifically, lower SED (more non-
straight surfaces, borders, and shades), lower hue level (lower
hue means more yellow-green content rather than blue-purple
content), as well as higher diversity in saturation (scene con-
taining both low and highly saturated colors) predicted more
preference, adjusting for the other visual features. In addition,
and our linear model explained 31% of variance in preference
ratings.

We also showed that individuals prefer scenes that are labeled
as more natural. However, some of the image features predict
preference above and beyond the semantic category of the images.
In a relatively similar but more limited study, Kaplan et al. (1972)
inspected how perceived complexity (rated by the subjects) and
the content of images (natural versus urban) influenced esthetic
preference of slides of nature and urban scenes. They found
that nature scenes were greatly preferred to urban scenes and
that complexity rated by participants (perhaps related to DER
in this study) predicted preference within the natural and urban
domains, but did not account for the preference for nature over
urban slides.

Next, we used a linear regression and modeled natural-
ness by predicting it using visual regularities we found in the
scenes rated as natural versus urban. These included higher
ED and higher proportion of curved and fragmented edges,
lower hue and saturation, less variation in hue levels, as well
as more variations in saturation of colors. Using the esti-
mates from our model of naturalness, we extracted the aspect
of subjective naturalness that can be modeled by these visual
characteristics. By introducing RTs of participants’ esthetic rat-
ings on images into our analysis, this modeled naturalness was
then shown to be a better predictor of esthetic judgments that
are made faster and less predictive of preference in slow rat-
ings.

After removing the low-level visual regularities of natural
scenes, the remaining aspect of perceived naturalness is less likely
to be correlated with bottom–up processing of preference as
our analysis of RTs’ interaction with non-modeled naturalness
showed that non-modeled naturalness becomes more predictive
in more delayed preference judgments. This suggests that the
other factors that affect naturalness judgments and are not mod-
eled by our features, such as experience and semantic knowledge,
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may affect one’s judgmentmore deliberately and slowly. However,
making firm conclusions about this is beyond the scope of our
data.

One important question is why some of the visual features
relate to perceived naturalness or esthetic preference and oth-
ers do not? While we do not have empirical evidence to directly
answer this question, we believe that some of the statistical
regularities in natural and urban environments, which were
uncovered here, make intuitive sense in terms of predicting nat-
uralness. For example, shrubbery, trees, waterfalls, rocks and
bodies of water have more yellow/green colors and also more
defragmented or curvy surfaces compared to brick walls, streets,
cars, fences, etc. Additionally, the variations in color saturation
levels in a brown hillside are greater than that of a brown painted
wall. These properties are in line with lower hue, higher ED,
higher DER, less straight edges, and more SD in saturation; all
of which were related to preference. In relation to previous work,
fewer straight edges (or more non-straight edges) in a scene can
lead to more complexity or more chaotic patterns that Kaplan
et al. (1972) and Aks and Sprott (1996) previously associated with
preference in scenes and visual patterns, respectively. In sum-
mary, we believe the features that were related to preference make
sense from an intuitive perspective and also match with previ-
ous literature results. However, more empirical testing will be
needed to understand the mechanisms behind preferences for
these features.

The fact that predictable bottom–up perceptions of natural-
ness were related to preference suggests a few testable hypotheses
in terms of which environments may be most restorative accord-
ing to ART. ART claims that natural environments are restorative
because they tend to place few demands on top–down directed
attention, while simultaneously capturing bottom–up involun-
tary attention processes via soft fascination (i.e., modest atten-
tional capture; Kaplan, 1995; Berman et al., 2008; Kaplan and
Berman, 2010). By this rationale, it is possible that environments
whose preference was determined more so by modeled natural-
ness (from the low-level visual features) may be more restorative
than environments whose preference was determined more so by
aspects of naturalness that could not be modeled with the low-
level visual features. It could be theorized that images containing
higher values of predictable (bottom–up) naturalness may be
less taxing of top–down attentional mechanisms and thus more
“softly fascinating.” For instance does interacting withman-made
environments that resemble nature in these visual characteristics
(for example fractal curves in architecture, using yellow–green
colors with high saturation diversity in building facades, etc.)
bring about some restorative effects of nature? Is naturalness that
is more predictable also more effective in restoration than natu-
ral content that is not liked as fast and less predictable? These are
all testable hypotheses that could help to inform ART and other
theories of why interacting with nature is beneficial.

Fifty of the nature scenes that we used in this study have previ-
ously been shown to improve attentional resources and memory
performance (Berman et al., 2008). The results we found here
pave the way for our future work, which will focus on how the
features we analyzed here might correlate with the attentional
and memory benefits of viewing natural scenes, and how we

might further inspect the driving low-level features that make
interacting with nature restorative. Here too it will be important
to separate the effects of the low-level features from that of the
semantics (i.e., is it the low-level features that may improve cog-
nitive performance or simply the very idea of nature that would
improve performance).

It is important to emphasize again that restoration does not
happen as a result of improvement in the mood by interacting
with nature. In our previous work, we have found no relation-
ship between improvements in mood and changes in memory
and attention performance (Berman et al., 2008, 2012), indicat-
ing that participants do not need to enjoy the nature interaction
to obtain the cognitive benefits. While mood and preference may
not drive the cognitive benefits that are gleaned from interacting
with nature, preference and mood may be driving motivational
variables that would inspire one to interact with a natural envi-
ronment. Here we have identified low-level image features that
may increase this preference as well as the perceived naturalness
of the environment. Our features are relatively easy to quan-
tify and manipulate and have straight-forward interpretations
for urban environment designers, architects, and planners. These
features may motivate one to interact with an environment that
could benefit them cognitively, and future work is aimed to deter-
mine whether these same features also act to improve cognitive
performance directly, evenwhen semantics are removed from the
scenes.

Conclusion

In this study, we aimed to explore whether the preference of
natural versus man-made scenes is driven by the bottom-up pro-
cessing of the low-level visual features of nature. We used 10
low-level visual features to predict esthetic preference in images
containing a spectrum of urban to natural content. Our model
successfully explained 31% of the variance in preference ratings.
We also used these features to decompose the perceived natural-
ness of each image to its predictable (54% of variance modelled by
the features) and non-modelled aspects and showed that bottom-
up perceptions of naturalness (modelled by the image features)
related more to preference when the preference judgment was
faster (i.e., a shorter reaction time to make the preference rating).
We also found that color-related and edge-related characteristics
of nature interactively contribute to preferring one scene over
another. Finally, to validate the generalizability of our models, we
utilized a machine-learning classification analysis and were able
to successfully train a classifier to distinguish liked (above median
preference) and disliked (below median preference) images with
almost 70% accuracy based solely on their visual features. Our
results lend to the possibility that there may be low-level visual
regularities of natural environments that we are “programmed”
to gain benefits from (esthetic pleasure among others). Our find-
ings have theoretical importance in determining why nature may
be cognitively beneficial and may also have practical importance
as these results could be used in the design of built environments
to improve psychological functioning. Future studiesmay involve
assessing the direct bottom-up effect of these features on the
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restorativeness of environments by manipulating these features
in semantic-free visual stimuli.
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