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The Problem of Unbalanced Data

The cognitive events examined in many event-related potentials (ERPs) studies do not occur in a
neural vacuum, and separating the signals of interest from the brain’s background electrical activity
generally requires averaging multiple EEG segments of a condition of interest (Luck, 2005). In
addition to within-subject averaging, the vast majority of ERP studies are based on across-subject
grand average data, i.e., group waveforms representing the means of subjects’ averaged waveforms,
with statistical significance examined by comparing variance between conditions of interest with
variance between participants. Using this approach may not always portray a valid picture.
Consider, for example, the following experimental paradigm: in a study of episodic associative
memory, participants encoded 120 pairs of stimuli (unrelated object picture pairs in the unimodal
task, and unrelated environmental sound-object picture pairs in the crossmodal task). At test, cue
pictures were presented to probe recall of the associated picture (in the unimodal task) or sound
(in the crossmodal task). ERPs were time-locked to the onset of the cue, and sorted post-hoc
into recall-success and recall-failure trials (for details of the procedures, see Tibon and Levy,
2014a). This experimental design poses several challenges to the conventional grand-averaging
method. First, since the assignment of trials to experimental conditions is based on participants’
responses, it is quite likely that the data will be unbalanced (that is, an unequal number of trials
in each condition). Therefore, signal-to-noise ratio and variance can vary significantly between
experimental conditions. Second, since experimental conditions are mutually dependent (i.e.,
a participant who had 100 recall-success responses can only have 20 recall-failure responses),
participants who were very successful (having a low number of recall-failure trials) or very
unsuccessful (having a low number of recall-success trials) in performing the task are likely to
be excluded due to an insufficient number of trials for addressing signal-to-noise ratio (SNR)
challenges in one of the experimental conditions.

What Can Be Done Differently

To cope with these problems, instead of calculating averages of averages and examining the statistics
with repeated-measures ANOVA, we recommend direct examination of ERPs of all trials available
in each experimental condition from all subjects, using approaches such as Mixed-effects Models
analysis. This method can be considered a generalization of GLM, but uses maximum likelihood
estimation instead of sum of squares decomposition. Themodel is considered “mixed” as it includes
two types of statistical effects: (1) fixed effects for which data has been gathered from all levels of
the factor(s) of interest, and (2) random effects, assumed to be uncorrelated with the independent
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variables. Accordingly, the subject is included as a random factor,
and inter-individual differences in EEG amplitude dynamics are
modeled as a random intercept, which represents an individual
“baseline,” in addition to being affected by the fixed factors.

We are not the first to use Mixed-effects Models in analyzing
electrophysiological data. More than a decade ago, Bagiella
et al. (2000) suggested that this approach has advantages over
traditional techniques for EEG data analysis. Baayen et al. (2008)
expanded these models to include crossed-random effects for
subject and item, and demonstrated that this method deals with
common problems of the traditional GLM analysis (unbalanced
data, missing values, and non-sphericity). A growing number
of EEG studies have employed this method (e.g., Davidson
and Indefrey, 2007, 2011; Wierda et al., 2010; Saliasi et al.,
2013; Chow et al., 2014), infrequently, alongside the traditional
ANOVA (e.g., Janssen et al., 2011). Nonetheless, our design, in
which experimental conditions are mutually dependent, provides
a unique case-study for systematic comparison between these
analyses.

Mixed-effects Models Analysis of the

Example Data

In this section, we describe the mixed-effects analysis that
was performed on nine electrode clusters, in a time window
ranging from 200 to 350ms post-cue presentation (additional
analyses can be found in Tibon and Levy, 2014a). The random
factor in our model was subject identity. The fixed part of
the model included the task factor (unimodal, crossmodal), the
recall-success factor (success, failure), and two spatial location
factors: anteriority (anterior, central, posterior) and laterality
(left, midline, right). The fixed part of the model further included
all possible interactions between the fixed factors. In this mode
of analysis, each observation serves as an element to be modeled;
degrees of freedom represent the number of observations, and
not the number of participants as in grand-average ANOVA.
Inevitably, this increases significantly the degrees of freedom,
which at a first glance may suggest an overly liberal criterion.
However, as we shall show below, the reliability of the statistical
findings is not compromised. Model parameters were estimated
with the nlme package of the software R (Pinheiro et al., 2007),
freely available at http://www.R-project.org). The key finding
of this analysis was a significant task X success X anteriority
interaction, F(2,63,405) = 4.76, p < 0.01. Decomposition of this
interaction revealed that in anterior locations, unsuccessful trials
exhibited more negative deflections compared to successful trials
in the unimodal task, t(4974) = 9.01, p < 0.001, but not in the
crossmodal task, t(3884) = 1.46, p = 0.15.

Repeated Measures ANOVA of the

Example Data

To compare our results with those obtained in conventional
statistical analysis, we performed repeated measures ANOVA
with the same fixed factors as in our mixed-effects analyses. We
ran this analysis on several sub-samples: First, we considered all

subjects with at least one trial in each condition, i.e., a sample
of 36 participants, which we refer to as our n = all sample.
This analysis is very liberal in terms of ERP SNR, as it includes
participants with extremely low numbers of trials. Therefore, we
next ran an analysis including only participants with more than
10 trials in each bin (reducing sample size to n = 24), and an
additional analysis including only participants who had more
than 15 trials in each bin (reducing sample size to n = 18).
Importantly, in this specific experimental design, eliminating
participants with low numbers of trials not only increases SNR
for each condition, but since the bins are mutually dependent,
also improves the balance between the experimental conditions.

For the n = all sample, the results did not differ greatly from
the mixed-effects results. However, the key task X success X
anteriority interaction was marginal, F(1.58,55.4) = 3.04, p =

0.067, partial η
2

= 0.08. When we ran the analysis for the
n = 24 and the n = 18 samples, the more subjects we removed,
the more the results converged with the mixed-effects results.
Specifically, the task X success X anteriority interaction, which
was only marginal in our n = all sample, became significant when
we used the n = 24 sample, F(1.49,34.29) = 6.49, p = 0.008, partial
η
2
= 0.22, and was even more reliable in our n = 18 sample,

F(1.47,25.02) = 7.23, p = 0.006, partial η2
= 0.3.

To further analyze the recall-success effect that emerged
in frontal locations, we used Bonferroni-corrected pairwise
comparisons (in this case, with p <∼ 0.008). For our n =

all sample, this revealed a significant effect of success in the
unimodal task (p < 0.008), but not in the crossmodal
task (p = 0.028, which does not survive the correction).
Notably, while in the mixed-effects analysis, we did not obtain
a recall-success effect in the cross-modal task even when the
results were not corrected to control type I error, in the
standard ANOVA analysis, when no correction was employed
the putative recall-success effect was significant, i.e., the ANOVA
was potentially more vulnerable to Type I error. A significant
difference between recall success and failure trials in the
unimodal task was also found in our smaller samples (ps <

0.008). However, in these cases, the difference in the crossmodal
task was not even marginally significant (p = 0.13 in the n = 24
sample and p = 0.34 in the n = 18 sample, prior to Bonferroni
correction), paralleling the mixed-effects analysis. We further
compared the mean amplitudes of these effects, to make sure
that lack of effect in the crossmodal task was not simply the
result of reduced statistical power, due to the smaller sample
size. We found that this was not the case—the difference in
amplitudes for the n = all sample was 2.33µV (SEM = 1.02),
but was only 1.11µV (SEM = 0.71) and 0.84µV (SEM = 0.85)
in the n = 24 and n = 18 samples, respectively. Thus, the
differences were indeed reduced in the more balanced sample,
in which participants with small numbers of trials in some
bins do not make a disproportional contribution to the grand
averages. Again, the convergence with the results obtained by
the mixed-effects analysis was greater when we used the more
balanced sub-samples.

The dissociation between the presence of a recall-success
effect in the unimodal task and its absence in the crossmodal
task was more pronounced in the n = 24 and n = 18
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samples than in the n = all sample due to two factors: first,
the significance of the effect in the unimodal task was stronger
(e.g., p = 0.005 for n=all sample vs. p < 0.001 for n = 18
sample), and the significance of the effect in the crossmodal
task was weaker (p = 0.028 for n = all sample vs. p = 0.34
for n = 18 sample). Seemingly, the more balanced sample
produces different results that are not due to increased type I
or II errors, but are simply more accurate. Notably, the more
balanced the sample, the more the results resemble mixed-effects
analyses—actual differences become more pronounced, while
incidental or marginal differences disappear. Importantly, this
similarity between the n = 18 sample and the mixed-effects
analyses emerged even though in terms of participants included,
the mixed-effects is more similar to the n = all sample.

Concluding Remarks

We have presented an alternative to the common use of
grand averaging and repeated-measures ANOVA in analyzing
electrophysiological data. Using several data subsets, we have
shown that the more balanced the dataset, the more the results
of the two methods converged. Importantly, though, by applying
the mixed-effects analysis, we did not have to exclude 12–18
(about half!) participants. Since the division of trials into
conditions in our paradigm is done post-hoc, many participants
will not have enough trials in all conditions to be included
in a traditional ANOVA. Those participants can, however, be
included in the mixed-effects analysis, which balances the data
across the whole sample. The fact that the mixed-effects analysis
allows us to include virtually all subjects yields better ecological
validity—we can include participants whose performance was
very good or very bad, and not just those who were more or less
average.

Full analysis of data from all trials can be performed
not only with mixed-effects models, but also with regression-
based methods offering optimization of the ERP waveforms
(e.g., Hauk et al., 2006; Groen et al., 2013; Smith and Kutas,

2015a,b; for a brief review, see Rousselet and Pernet, 2011),
as well as hierarchical modeling of single-trials and subjects’
data (e.g., Kahn et al., 2010; Gaspar et al., 2011; Bieniek
et al., 2012). Whether employed for testing hypotheses in pre-
defined locations and time windows (as was done in our
case) or to test experimental effects at all electrodes and
all time points (as implemented in LIMO EEG by Pernet
et al., 2011), data analyses can greatly benefit from the use
of these approaches. This is particularly relevant when the
number of available trials is limited due to practical concerns,
as is the case in most paradigms that assess mnemonic
processes.

In our particular design, the questions of unbalanced data
and of low number of trials are linked. In other cases, these
factors might not entirely overlap. However, the case that
is presented here is not an “extreme” case, for which the
traditional grand-averaging methodology is inadequate. In fact,
many experimental designs carry some inherent potential to be
based on unbalanced data. Specifically, whenever experimental
conditions are populated on the basis of accuracy, or when

the task requires some conditions to be more frequent
than others (e.g., mismatch negativity) the data is bound to
be unbalanced. Therefore, we have employed this method,
alongside traditional GLMmethods, in additional studies (Tibon
et al., 2014a,b; Tibon and Levy, 2014b). We believe that
analyses of unbalanced EEG data can greatly benefit from this
approach.

Acknowledgments

RT is funded by a Newton International Fellowship from the

Royal Society and the British Academy. This work was supported
by the German-Israeli Foundation for Scientific Research and

Development Grant 1083-5.4/2010 and by the Israel Science
Foundation Grant 611/09 to DAL. The authors wish to thank
Leon Deouell for helpful comments and suggestions.

References

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling

with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412.

doi: 10.1016/j.jml.2007.12.005

Bagiella, E., Sloan, R. P., and Heitjan, D. F. (2000). Mixed-effects

models in psychophysiology. Psychophysiology 37, 13–20. doi:

10.1111/1469-8986.3710013

Bieniek, M. M., Pernet, C. R., and Rousselet, G. A. (2012). Early ERPs to faces

and objects are driven by phase, not amplitude spectrum information: evidence

from parametric, test-retest, single-subject analyses. J. Vis. 12, 1–24. doi:

10.1167/12.13.12

Chow, W. Y., Lago, S., Barrios, S., Parker, D., Morini, G., and Lau, E. (2014).

Additive effects of repetition and predictability during comprehension:

evidence from event-related potentials. PLoS ONE 9:e99199. doi:

10.1371/journal.pone.0099199

Davidson, D. J., and Indefrey, P. (2007). An inverse relation between

event-related and time–frequency violation responses in sentence

processing. Brain Res. 1158, 81–92. doi: 10.1016/j.brainres.2007.

04.082

Davidson, D. J., and Indefrey, P. (2011). Error-related activity and correlates of

grammatical plasticity. Front. Psychol. 2:219. doi: 10.3389/fpsyg.2011.00219

Gaspar, C. M., Rousselet, G. A., and Pernet, C. R. (2011). Reliability

of ERP and single-trial analyses. Neuroimage 58, 620–629. doi:

10.1016/j.neuroimage.2011.06.052

Groen, I. I. A., Ghebreab, S., Prins, H., Lamme, V. A. F., and Scholte, H. S. (2013).

From image statistics to scene gist: evoked neural activity reveals transition

from low-level natural image structure to scene category. J. Neurosci. 33,

18814–18824. doi: 10.1523/JNEUROSCI.3128-13.2013

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., and Marslen-Wilson, W.

D. (2006). The time course of visual word recognition as revealed by

linear regression analysis of ERP data. Neuroimage 30, 1383–1400. doi:

10.1016/j.neuroimage.2005.11.048

Janssen, N., Carreiras, M., and Barber, H. A. (2011). Electrophysiological effects of

semantic context in picture and word naming. Neuroimage 57, 1243–1250. doi:

10.1016/j.neuroimage.2011.05.015

Kahn, D. A., Harris, A. M., Wolk, D. A, and Aguirre, G. K. (2010). Temporally

distinct neural coding of perceptual similarity and prototype bias. J. Vis. 10,

1–12. doi: 10.1167/10.10.12

Luck, S. J. (2005). An Introduction to the Event-related Potential Technique.

Cambridge, MA: MIT Press.

Pernet, C. R., Chauveau, N., Gaspar, C., and Rousselet, G. A. (2011). LIMO EEG:

a toolbox for hierarchical linear modeling of electroencephalographic data.

Comput. Intell. Neurosci. 2011:831409. doi: 10.1155/2011/831409

Frontiers in Psychology | www.frontiersin.org 3 May 2015 | Volume 6 | Article 555

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Tibon and Levy Analyzing unbalanced data

Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D, and The R, Core team (2007). nlme:

Linear and Nonlinear Mixed Effects Models. R package, version 3.1–86.

Rousselet, G. A., and Pernet, C. R. (2011). Quantifying the time course of visual

object processing using ERPs: it’s time to up the game. Front. Psychol. 2:107.

doi: 10.3389/fpsyg.2011.00107

Saliasi, E., Geerligs, L., Lorist, M. M., and Maurits, N. M. (2013). The relationship

between P3 amplitude and working memory performance differs in young and

older adults. PLoS ONE 8:e63701. doi: 10.1371/journal.pone.0063701

Smith, N. J., and Kutas, M. (2015a). Regression-based estimation of ERP

waveforms: I. The rERP framework. Psychophysiology 52, 157–168. doi:

10.1111/psyp.12317

Smith, N. J., and Kutas, M. (2015b). Regression-based estimation of ERP

waveforms: II. Non-linear effects, overlap correction, and practical

considerations. Psychophysiology 52, 169–181. doi: 10.1111/psyp.12320

Tibon, R., Ben-Zvi, S., and Levy, D. A. (2014a). Associative recognition processes

are modulated by modality relations. J. Cogn. Neurosci. 26, 1785–1796. doi:

10.1162/jocn_a_00586

Tibon, R., Gronau, N., Scheuplein, A. L., Mecklinger, A., and Levy, D. A.

(2014b). Associative recognition processes are modulated by the semantic

unitizability of memoranda. Brain Cogn. 92, 19–31. doi: 10.1016/j.bandc.2014.

09.009

Tibon, R., and Levy, D. A. (2014a). The time course of episodic associative

retrieval: electrophysiological correlates of cued recall of unimodal and

crossmodal pair-associate learning. Cogn. Affect. Behav. Neurosci. 14, 220–235.

doi: 10.3758/s13415-013-0199-x

Tibon, R., and Levy, D. A. (2014b). Temporal texture of associative

encoding modulates recall processes. Brain Cogn. 84, 1–13. doi:

10.1016/j.bandc.2013.10.003

Wierda, S. M., Van Rijn, H., Taatgen, N. A., and Martens, S. (2010). Distracting

the mind improves performance: an ERP study. PLoS ONE 5:e15024. doi:

10.1371/journal.pone.0015024

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Tibon and Levy. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 4 May 2015 | Volume 6 | Article 555

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Striking a balance: analyzing unbalanced event-related potential data
	The Problem of Unbalanced Data
	What Can Be Done Differently
	Mixed-effects Models Analysis of the Example Data
	Repeated Measures ANOVA of the Example Data
	Concluding Remarks
	Acknowledgments
	References


