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We examined whether Asian individuals would show differential sensitivity to configural
vs. featural changes to own- and other-race faces and whether such sensitivity would
depend on whether the changes occurred in the upper vs. lower regions of the faces. We
systematically varied the size of key facial features (eyes and mouth) of own-race Asian
faces and other-race Caucasian faces, and the configuration (spacing) between the
eyes and between the nose and mouth of the two types of faces. Results revealed that
the other-race effect (ORE) is more pronounced when featural and configural spacing
changes are in the upper region than in the lower region of the face. These findings reveal
that information from the upper vs. lower region of the face contributes differentially to
the ORE in face processing, and that processing of face race is influenced more by
information location (i.e., upper vs. lower) than by information type (i.e., configural vs.
featural).

Keywords: face processing, face recognition, other-race effect, Face Dimensions Test, configural information,
featural information, upper vs. lower face

Introduction

Observers are generally better at recognizing and discriminating own-race faces relative to other-
race faces (see Meissner and Brigham, 2001; Anzures et al., 2013, for a review). This phenomenon
is called the other-race effect (ORE). In a standard recognition procedure, participants have to
discriminate target faces learned in a study phase from distractor faces shown in a test phase. The
ORE is reflected by a crossover interaction in discrimination accuracy or response time between the
race of participants and the race of stimulus faces (Chance and Goldstein, 1987; Valentine, 1991;
Michel et al., 2006b).

A holistic face processing view has been proposed to account for the ORE. This view begins with
the idea that a face “schema” forms a holistic representation that selectively integrates face infor-
mation into a perceived whole (Galton, 1879; Goldstein and Chance, 1980; Sergent, 1984; Tanaka
and Farah, 1993). It has been claimed that own-race faces are processed more holistically than
other-race faces (see Rossion and Michel, 2011, for a review). The holistic account of the ORE has
been assessed using the establishedmeasures of holistic processing (Tanaka and Gordon, 2011): the
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parts/wholes task, the face composite task, and face inver-
sion task. Using the part-whole paradigm (Tanaka and Farah,
1993), Tanaka et al. (2004) reported that Caucasian individu-
als from a mono-racial background showed a greater recogni-
tion benefit when Caucasian face parts were tested in a whole
face context than when tested in isolation relative to Asian
face parts. Michel et al. (2006a) found that both Belgian and
Asian participants showed an ORE in an old/new recognition
task and a greater interference for own-race than other-race
faces in the composite-face task. Finally, Hancock and Rhodes
(2008) found that both Caucasian and Asian participants showed
that inversion more severely disrupted the recognition of own-
race faces than other-race faces. These findings taken together
suggest that holistic information plays an important role in
the ORE.

Now, what additional facial information is crucial for the
ORE? Traditionally, configural information (the metric relations
that separate features) as opposed to featural information (the
shape and size of the eyes, nose, and mouth) has been thought
to play the predominant role in face processing in general and
the ORE of face processing in particular. For example, it has
been hypothesized that inversion (Yin, 1969) disproportionately
disrupts the process of configural information (Freire et al.,
2000; see Maurer et al., 2002, for a review). However, subse-
quent studies have shown that featural information does not
necessarily play a lesser role than configural information in face
processing in general (e.g., Taschereau-Dumouchel et al., 2010;
Tanaka et al., 2014a) and the ORE in particular. With regard
to the ORE, Rhodes et al. (2006) used a sequential matching
task and found that Caucasian and Asian participants showed
better recognition of both individual features and their spatial
relations for upright own-race faces than for upright other-
race faces. Likewise, Hayward et al. (2008) and Rhodes et al.
(2009) used blurred and scrambled faces in a recognition task
to dissociate and manipulate the structure and component infor-
mation in a face and found that participants performed better
for own-race than other-race faces for both the blurred wholes
and scrambled components. These findings suggest that the
ORE is sensitive to both configural and featural information
in a face, rather than selectively relying on only one type of
processing.

However, because faces are perceived on multiple featural
and spatial dimensions, it is unlikely that own-race faces are
processed in a superior way than other-race faces on every
dimension. One relevant dimension is face location, with multi-
ple lines of evidence suggesting that the upper vs. lower regions
of a face are processed differentially. For example, “top-heavy”
face-like patterns have been shown to direct preferential looking
in newborn infants (Turati et al., 2002). In addition, sensitivity
to information around the eyes begins and matures earlier
than sensitivity to information around the nose and mouth in
infants (Taylor et al., 2001; Liu et al., 2013). Similarly, eyes are
better recognized than the nose or mouth in children’s face
recognition and discrimination (Goldstein and Mackenberg,
1966; Hay and Cox, 2000; Pellicano and Rhodes, 2003; Pellicano
et al., 2006; Ge et al., 2008; Tanaka et al., 2014b). Moreover, eye
features are more heavily utilized than nose or mouth features

in face recognition by adults (Walker-Smith, 1978; Sergent,
1984; Tanaka and Farah, 1993), and the eye region has been
shown to be the most diagnostic region for face identification
in a gaze-tracking study (Peterson and Eckstein, 2012) and in
image-based computational analyses (Sekuler et al., 2004; Vinette
et al., 2004; Keil, 2008). Functional neuroimaging studies with
adults have further shown that the right FFA is tuned to process
curvilinear symmetrical patterns with high-contrast elements
in the upper region (Caldara et al., 2006; Caldara and Seghier,
2009). Clinically, in individuals with autism (Wolf et al., 2008) or
prosopagnosia (Caldara et al., 2005; Bukach et al., 2008; Rossion
et al., 2009) who show specific face recognition deficits, the
ability to detect change in the mouth region is preserved, but
in the eye region is impaired.

To measure sensitivity to configural and featural changes
in own- and other-race faces, we used the Face Dimensions
Test designed by Bukach et al. (2008) and Tanaka et al. (2009).
This test has been used previously to document face process-
ing performance with behavioral and eye tracking measures
in healthy children and adults (Xu and Tanaka, 2013; Tanaka
et al., 2014a,b), individuals with autism (Wolf et al., 2008),
prosopagnosic patients (Bukach et al., 2008; Rossion et al.,
2009), and infants (Quinn and Tanaka, 2009; Quinn et al.,
2013).

In the current study, participants were asked to detect changes
in own- and other-race faces that differed in: (1) eye spac-
ing (distance between the eyes), (2) mouth spacing (distance
between nose and mouth), (3) eye feature (size of the eyes),
or (4) mouth feature (size of the mouth), at easy, moderate,
and difficult discrimination levels (Tanaka and Gordon, 2011).
Half of the faces were own-race faces and half were other-
race. In this way, we aimed to determine how the configural
and featural aspects of the upper and lower regions contribute
to the ORE. In particular, we sought to answer the follow-
ing questions: (1) What types of information contribute to
the ORE: configural (spacing), featural (size), or both? and (2)
Which regions in the face give rise to an ORE: upper, lower, or
both?

Expectations for performance can be derived from three
different views of face processing. By the configural view
(i.e., configural information in a face plays the predominant
role in generating the ORE), participants should show an
ORE in conditions where the spacing information between
the two eyes or between the nose and mouth are manipu-
lated, but not in conditions where the size information of
the eyes or mouth is manipulated. Alternatively, by the con-
figural + featural view (i.e., configural and featural infor-
mation are equally important to the ORE), participants
should show an ORE in both the spacing and size condi-
tions, regardless of whether information is manipulated in
the upper or lower regions. Finally, if the upper and lower
regions of a face make different contributions to the ORE
(i.e., changes in the upper region are more important than
changes in the lower region in producing the ORE), partic-
ipants should show significantly more of an ORE, for both
spacing and size changes, in the upper face region than
in the lower face region.

Frontiers in Psychology | www.frontiersin.org 2 May 2015 | Volume 6 | Article 559

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Wang et al. An upper region ORE

Experiment 1: Detection of Spacing
Differences

Method
Participants
Nineteen Chinese college students (seven females) served as par-
ticipants (Mean age = 21.1 years, SD = 2.2, age range: 18–25),
with normal or corrected-to-normal vision. The students had
no direct contact with any foreign individuals. The Institutional
Review Board of Zhejiang Sci-Tech U approved the experiment.

Materials
Eight Asian and eight Caucasian male face photos were selected
by a typicality-rating task (with a 7-point Likert scale) out of
36 Asian and 36 Caucasian male faces. The mean (and SD)
typicality ratings of the selected eight Asian and Caucasian
faces were 5.29 (0.17) and 5.17 (0.19), respectively. There
was no jewelry, glasses, or makeup on these faces. Facial
markings, if any, were removed. We transformed these pho-
tographs into gray-scale faces (approximately 250 pixels in
width and 320 pixels in height). The visual angle of one
face on the PC screen to an observer was approximately
7.9◦× 9.5◦.

The mean distances (and SDs) between the eyes of the origi-
nal Caucasian and Asian faces were 85 (3.4) and 87 (2.1) pixels,
respectively, without significant difference between the two races,
t(14) = 1.59, p = 0.133. The mean distances (and SDs) between

the nose and mouth of the original Caucasian and Asian faces
were 47 (4.0) pixels and 49 (5.0) pixels, respectively, without sig-
nificant difference between the two races, t(14) = 0.88, p = 0.393.
Using the same manipulations as those in the Face Dimensions
Test, we created eight different versions of each face by changing
the amount of spacing between the eyes in the upper region (i.e.,
moving the two eyes 5 or 10 pixels closer or farther away from
each other) and between the nose and mouth in the lower region
(i.e., moving the mouth closer or farther away by 5 or 10 pixels
from the nose) of the face. Figure 1 shows example variants for
an Asian and Caucasian male face.

Procedure and Design
Participants were asked to judge whether the two faces were the
‘same’ or ‘different’ with the instruction that a ‘same’ response
indicates that the faces were judged to be physically identi-
cal. The same pairs presented two identical faces. The differ-
ent pairs included three levels of difficulty in detecting the
change: Easy, Medium, and Hard, with a 15-, 10-, or 5-pixel
spacing difference, respectively, in the upper region (between
the two eyes) or in the lower region (between the nose and
mouth) of the two faces. On each trial, following a 150 ms
fixation cross located in the screen center, a pair of photos
was presented, side-by-side, with a time limit of 3,000 ms
or until the participant pressed one of two keys responding
‘same’ or ‘different’, and this was followed by a 200 ms blank
screen.

FIGURE 1 | Examples of spacing change between the two eyes
(Rows 1 and 3) or between the nose and mouth (Rows 2 and 4)
in a Caucasian face (Rows 1 and 2) and an Asian face (Rows 3
and 4). The middle face of each row is the original face upon which the
manipulations were made. The leftmost face has the distance between
eyes or between nose and mouth 10 pixels smaller than the original (the

middle face), the face located second from the left has the distance
between eyes or between nose and mouth 5 pixels smaller than the
original, the rightmost face has the distance between eyes or between
nose and mouth 10 pixels larger than the original, and the face located
second from the right has the distance between eyes or between nose
and mouth 5 pixels larger than the original.
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A full 2 (Race: Own or Other) × 2 (Region: Upper or
Lower)× 3 (Level: Easy, Medium, or Hard) within-subject design
was used. For each of the three levels of “different” manipula-
tions in both the upper and lower regions, there were 40 trials
presented (the 10 Asian and 10 Caucasian faces were both used
twice). In total, 240 “different” pairs (as experimental trials) and
240 “same” pairs (as control trials) were mixed and presented
randomly.

Results and Discussion
By using correct “different” responses as Hits, incor-
rect “different” responses as False Alarms, the equation
H = P(“different”|Different) = �[(−k + d′)/

√
2] +

�[(−k − d′)/
√
2], and the equation FA = P(“different”|Same)=

2�(−k/
√
2), d′ scores were calculated as the dependent measure

(Macmillan and Creelman, 2005, p. 197). Results are shown in
Figure 2.

A 2 (Race: own, other) × 2 (Region: upper, lower) × 3
(Level: Easy, Medium, Hard) repeated measures analysis of vari-
ance was performed, with all three independent variables as
within-subjects factors. The main effect of Race was signifi-
cant, F(1,18) = 8.16, p = 0.010, η2

p = 0.312, demonstrating
that discrimination performance for own-race faces was supe-
rior to discrimination performance in other-race faces. The main
effect of Level was also significant, F(2,36) = 192.98, p < 0.001,
η2
p = 0.915, indicating that performance varied according to

the three levels of discrimination. The main effect of Region
was not significant, F(1,18) = 0.39, p = 0.541, showing that
discriminations in the upper face region did not differ from
discriminations in the lower face region. Crucially, we found a
significant interaction between Race and Region, F(1,18) = 9.33,
p = 0.007, η2

p = 0.341. No other two-way interactions were sig-
nificant. The three-way interaction of Race, Region, and Level
was not significant, F(2,36) = 0.20, p = 0.823.

To explore the significant two-way interaction between Race
and Region, we performed ANOVAs on the data for the upper

and lower regions separately. For the upper region, a 2 (Race:
Own vs. Other) × 3 (Level: Easy, Medium, Hard) repeated-
measures ANOVA was performed. The main effect of Race was
significant, F(1,18) = 32.24, p < 0.001, η2

p = 0.642, indicat-
ing that participant response accuracy was higher for own-race
faces than for other-race faces, thereby providing evidence of an
ORE in the upper region. The main effect of Level was signif-
icant, F(2,36) = 108.48, p < 0.001, η2

p = 0.858, indicating that
the more spacing difference between two faces, the better par-
ticipants differentiated them. The interaction of Race and Level
was not significant, F(2,36) = 1.25, p > 0.29, indicating that the
magnitude of the ORE in the upper region of the face does not
dramatically change with changes in the magnitude of the spacing
difference.

For the lower region, a 2 (Race: Own vs. Other) × 3
(Level: Easy, Medium, Hard) repeated-measures ANOVA was
performed. The main effect of Race was not significant,
F(1,18) = 0.053, p > 0.82, indicating that participant response
accuracy was not different for own- versus other-race faces,
thereby providing no evidence of an ORE. However, the main
effect of Level was significant, F(2,36) = 138.44, p < 0.001,
η2
p = 0.885, indicating that the more spacing difference between

two faces, the better participants differentiated them. The inter-
action of Race and Level was not significant, F(2,36) = 0.096,
p > 0.90.

Collectively, the findings indicate that the ORE in response
accuracy was manifested in sensitivity to spacing change in the
upper region; however, spacing difference in the lower region did
not produce an ORE.

Experiment 2: Detection of Feature
Size Differences

Experiment 1 showed that spacing change in the upper face,
but not in the lower face, influenced the ORE. However, it is

FIGURE 2 | Experiment 1: manipulating the spacing distance of facial features. The graph shows d′ scores for detecting spacing differences across three
levels of change (easy, medium, hard) in the eye and mouth regions, respectively. Error bars represent SEs in each condition.
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still unclear whether this location effect would also be observed
for featural (i.e., size) changes in the face. Experiment 2 exam-
ined this issue by manipulating eye and mouth size on multiple
levels and comparing participant performance for detecting the
difference between own-race faces and other-race faces.

Method
Participants
Nineteen Chinese college students (14 females) served as partici-
pants (Mean age= 20.32 years, SD= 1.87, age range: 18–24), with
normal or corrected-to-normal vision. The students had no direct
contact with any foreign individuals. The Institutional Review
Board of Zhejiang Sci-Tech U approved the experiment.

Materials
Stimuli were created in the same fashion as in Experiment 1.
However, the manipulation was of size instead of spacing (i.e.,
increasing or decreasing the size of the eyes or mouth by 10
or 20%). The means (and SDs) of eye size (width) of the origi-
nal Caucasian and Asian faces were 39 (3.2) and 38 (2.8) pixels,
respectively, without significant difference between the two races,
t(14) = 1.17, p = 0.262. The means (and SDs) of mouth size
(width) of the original Caucasian and Asian faces were 69 (6.9)
pixels and 70 (6.6) pixels, respectively, without significant differ-
ence between the two races, t(14) = –0.30, p = 0.771. Figure 3
shows example variants for an Asian and Caucasian male face.

Procedure and Design
The procedure and design were the same as in Experiment 1.

Results and Discussion
By using correct “different” responses as Hits, incorrect
“different” responses as False Alarms, the equation H =
P(“different”|Different) = � [(–k + d’)

√
2] + �[(−k − d′)/

√
2],

and the equation FA = P(“different”|Same) = 2� –k/
√
2),

d′scores were calculated as the dependent measure (Macmillan
and Creelman, 2005, p. 197). Results are shown in Figure 4.

A 2 (Race: own, other) × 2 (Region: Upper, Lower) × 3
(Level: Easy, Medium, Hard) repeated measures analysis of vari-
ance was performed, with all three independent variables as
within-subjects factors. The main effect of Race was significant,
F(1,18) = 44.60, p < 0.0001, η2

p = 0.712, demonstrating an
advantage for discriminating own-race size change over other-
race size change. The main effect of Region was also significant,
F(1,18) = 14.60, p = 0.001, η2

p = 0.448, showing that discrim-
inating size change in the upper region was easier than in the
lower region. The main effect of level was additionally significant,
F(2,36) = 144.60, p < 0.001, η2

p = 0.889, indicating that perfor-
mance varied according to the three levels of discrimination.

With respect to interactions, we found Region interacted with
Level, F(2,36) = 9.42, p = 0.001, η2

p = 0.344, but Race did not,
F(2,36)= 2.40, p= 0.105, showing that discrimination of size dif-
ferences in the face images was affected by region of the face. The
interaction between Race and Region is marginally significant,
F(1,18) = 4.24, p = 0.054, η2

p = 0.191. The three-way interac-
tion of Race, Region, and Level was significant, F(2,36) = 3.91,
p = 0.029, η2

p = 0.178.
To explore the two-way and three-way interactions fur-

ther, we also performed ANOVAs on the data for the two

FIGURE 3 | Examples of size change of the two eyes (Rows 1 and 3) or
the mouth (Rows 2 and 4) in a Caucasian face (Rows 1 and 2) and an
Asian face (Rows 3 and 4). The middle face of each row is the original face
upon which the manipulations were made. The leftmost face has eyes or mouth

20% smaller than the original (the middle face), the face located second from
the left has eyes or mouth 10% smaller than the original, the rightmost face has
eyes or mouth 20% larger than the original, and the face located second from
the right has eyes or mouth 10% larger than the original.
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FIGURE 4 | Experiment 2: manipulating the size of facial features. The graph shows d′ scores for detecting size differences across three levels of change
(easy, medium, hard) in the eye and mouth regions, respectively. Error bars represent SEs in each condition.

regions separately. For the upper region, a 2 (Race: Own vs.
Other) × 3 (Level: Easy, Medium, Hard) repeated-measures
ANOVA was performed. The main effect of Race was signif-
icant, F(1,18) = 25.06, p < 0.001, η2

p = 0.58, indicating that
participants performed better for own-race faces than for other-
race faces, thereby providing evidence that eye size differences
contribute to the ORE. The main effect of Level was also signifi-
cant, F(2,36) = 121.44, p < 0.001, η2

p = 0.87, indicating that the
more eye size difference between two faces, the better participants
differentiated them. The interaction of Race and Level was not
significant, F(2,36) = 0.29, p > 0.75.

For the lower region, a 2 (Race: Own vs. Other) × 3 (Level:
Easy, Medium, Hard) repeated-measures ANOVA was per-
formed. The main effect of Level was significant, F(2,36) = 59.46,
p < 0.001, η2

p = 0.768, indicating that the more mouth size dif-
ference between two photos, the better participants differentiated
them. The main effect of Race was significant, F(1,18) = 7.36,
p = 0.014. The interaction of Race and Level was also significant,
F(2,36) = 8.41, p< 0.001, η2

p = 0.32, showing that the main effect
of Race was due to an own-race advantage observed at the level
of small mouth size change.

Collectively, the findings indicate that the ORE was mani-
fested in sensitivity to size change, but was stronger and more
stable for changes in the upper region relative to changes in the
lower region. In the lower region of a face, participants showed
an inconsistent ORE at different levels of mouth size change.

General Discussion

In the current study, we examined whether participants are differ-
entially sensitive to configural vs. featural changes or differentially
sensitive to such changes in the upper vs. lower regions for own-
and other-race faces. First, we found that in the upper region,
both configural and featural changes in own-race faces were dif-
ferentiated significantly better than in other-race faces, across

multiple change levels. Second, in the lower region, we found that
the featural changes resulted in an inconsistent race difference
in participant performance, and the configural changes did not
result in any ORE. Taken together, these findings provide direct
evidence that individuals are selectively more sensitive to changes
around the eye region on own-race faces than on other-race faces.

Our findings show that the ORE has region-selectivity dur-
ing a face discrimination task. Both types of information (i.e.,
size and spacing) simultaneously contribute to the ORE. Their
effects are localized primarily in the upper region, but not in
the lower region of a face. These findings demonstrate that
the ORE in face information processing is more influenced by
the location of the featural and configural changes than by the
type of processing (i.e., featural vs. configural). Extending pre-
vious findings showing that participants performed better for
blurred or scrambled own-race faces than other-race faces (e.g.,
Schwaninger et al., 2002; Rhodes et al., 2006; Hayward et al.,
2008), the current study indicates that the own-race advantage
is due to superior processing of featural and configural infor-
mation in the upper region of the face. In this way, the region-
dependency of face processing noted for face perception (e.g.,
Turati et al., 2002; Peterson and Eckstein, 2012; Quinn et al.,
2013; Tanaka et al., 2014b) and face perception deficits (e.g.,
Caldara et al., 2005; Bukach et al., 2008; Wolf et al., 2008) has
been extended to explain the difference between own- and other-
race face processing, suggesting that the location of information
in a face should be considered as a key factor in investigat-
ing and theorizing about face perception and face processing
expertise.

Analogously, judgments of featural and configural variations
are similarly affected by the face inversion effect, once process-
ing difficulty or participant expectations for variation-change are
equated for the two types of information (Riesenhuber et al.,
2004; Sekuler et al., 2004; Yovel and Kanwisher, 2005; McKone
and Yovel, 2009). Particularly, Tanaka et al. (2014a) demonstrated
that both featural and configural information processing in the
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eye region were preserved, but both featural and configural infor-
mation processing were impaired in the mouth region when
participants observed an inverted face. To understand these find-
ings and our current results in an integrated way, we would
suggest that participants have an expertise area (i.e., the eye
region), where the processing resolution is higher for (1) infor-
mation inside relative to information outside, so that eye region
processing is preserved, but mouth region processing is impaired
during face inversion, and (2) own-race face processing relative to
other-race face processing, so that an own-race advantage across
information type (i.e., both configural and featural) is shown
consistently in the eye region, but not in the mouth region.

It is still an open question as to whether the ORE is sensitive to
changes around the nose, relative to changes around the mouth
and eyes. Future studies could manipulate not only the eyes
and mouth, but also the nose as an isolated feature. We would
speculate that the nose area plays a different role in Caucasian
versus Asian participants when they respond to Caucasian and
Asian faces. This speculation is based on recent eye-tracking data
showing that Asian participants spend a significantly greater pro-
portion of fixation time on the nose of Asian faces than on the
nose of Caucasian faces (e.g., Blais et al., 2008; Caldara et al.,
2010; Kelly et al., 2010; Fu et al., 2012). Also, since the current
study tested only Asian participants, it will become important
to test both Asian and Caucasian participants to firmly rule out
the influence of low-level visual properties of the stimuli (Vizioli
et al., 2010a,b) and determine whether the effect of location may

extend acrossmultiple races of perceivers. Given that the effects of
spacing and size on the key facial features were investigated sep-
arately in the current study, the question of whether these effects
might interact also remains open. Future studies might therefore
vary spacing and size at the same time to test the effect of the
interaction between these two factors.

In summary, we examined the sensitivity of observers to con-
figural and featural changes in the upper and lower regions of
own- and other-race faces. Our data reveal that the ORE is more
pronounced when featural and configural changes are in the
upper region than in the lower region. These findings indicate
that information from the upper vs. lower region of the face con-
tributes differentially to the ORE in face processing, and that
processing of face race is influencedmore by information location
(i.e., upper vs. lower) than by information type (i.e., configural vs.
featural).
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