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In the last decade, a number of neuroimaging studies have investigated the
neurophysiological effects associated with contemplative practices. Meditation-related
changes in resting state functional connectivity (rsFC) have been previously reported,
particularly in the default mode network, frontoparietal attentional circuits, saliency-
related regions, and primary sensory cortices. We collected functional magnetic
resonance imaging data from a sample of 12 experienced Zen meditators and 12
meditation-naïve matched controls during a basic attention-to-breathing protocol,
together with behavioral performance outside the scanner on a set of computerized
neuropsychological tests. We adopted a network system of 209 nodes, classified into
nine functional modules, and a multi-stage approach to identify rsFC differences in
meditators and controls. Between-group comparisons of modulewise FC, summarized
by the first principal component of the relevant set of edges, revealed important
connections of frontoparietal circuits with early visual and executive control areas. We
also identified several group differences in positive and negative edgewise FC, often
involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise
FC, using support vector machine (SVM), classified meditators, and controls with
79% accuracy and selected 10 modulewise connections that were jointly prominent in
distinguishing meditators and controls; a similar SVM procedure based on the subjects’
scores on the neuropsychological battery yielded a slightly weaker accuracy (75%).
Finally, we observed a good correlation between the across-subject variation in strength
of modulewise connections among frontoparietal, executive, and visual circuits, on the
one hand, and in the performance on a rapid visual information processing test of
sustained attention, on the other. Taken together, these findings highlight the usefulness
of employing network analysis techniques in investigating the neural correlates of
contemplative practices.
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Introduction

In recent years, brain-wise functional connectivity analyses have become an increasingly impor-
tant tool for understanding normal brain function as well as its alterations across specific
subpopulations (Lowe, 2012). In particular, the investigation of intrinsic connectivity networks
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by resting state functional magnetic resonance imaging (fMRI)
has proven capable of revealing fundamental elements of human
brain architecture and organization. Resting state functional
connectivity (rsFC) analyzes the temporal correlations of the
spontaneous BOLD signal fluctuations across the brain in the
absence of any experimental task, a reflection of the neural activ-
ity intrinsically generated by the brain (Fransson, 2005; Fox
and Raichle, 2007). Since Biswal et al. (1995) first noted the
preservation of the functional connectivity structure of the senso-
rimotor cortical network during rest, several other resting state
networks (RSNs) have been consistently identified in the human
brain (Smith et al., 2009; Zuo et al., 2010; Allen et al., 2011;
Laird et al., 2011), with a particular emphasis on the so-called
default mode network (DMN; Raichle et al., 2001; Greicius et al.,
2004). Furthermore, significant differences in intrinsic connec-
tivity networks across clinical and demographic subpopulations
have also been reported (Bassett et al., 2008; Dosenbach et al.,
2010; Satterthwaite et al., 2014).

Brain imaging has been employed quite extensively in the
last decade to explore the potential neural changes associated
with contemplative practices. In particular, functional connectiv-
ity alterations in DMN areas, frontoparietal attentional circuits,
saliency-related regions, as well as in primary sensory cortices,
have been observed in experienced meditators compared to
meditation-naïve controls (Farb et al., 2007, 2013; Brewer et al.,
2011; Jang et al., 2011; Josipovic et al., 2011; Kilpatrick et al.,
2011; Froeliger et al., 2012; Hasenkamp and Barsalou, 2012;
Taylor et al., 2013; Garrison et al., 2014). We have also previ-
ously investigated the neural correlates of conceptual process-
ing associated with the practice of Zen meditation using fMRI
and a lexical decision task (Guo and Pagnoni, 2008; Pagnoni
et al., 2008; Guo, 2011; Guo and Tang, 2013); in the same
sample of volunteers (12 practitioners of Zen meditation and
12 matched control subjects), we have additionally reported on
the functional connectivity and temporal properties of the BOLD
signal from the posterior cingulate cortex, the main node of
the DMN, during a meditative attention-to-breathing condition
(Pagnoni, 2012).

In the present work, we further examined the fMRI data
collected during the attention-to-breathing condition in the
cohort of subjects described in Pagnoni (2012), aiming to detect
differences in rsFC between meditators and controls across the
whole brain using a network approach. In order to obtain a fine-
grained parcellation of the whole cerebral cortex, we adopted
the 264-node system proposed by Power et al. (2011). We also
assigned the nodes to a set of nine functional modules that were
consistently identified as RSNs in larger populations (Smith et al.,
2009). Network connectivity differences between meditators and
controls were assessed using modulewise and edgewise compar-
isons of network connections and multivariate pattern analyses
via a support vector machine (SVM) classifier. The multivari-
ate pattern analyses aimed to find a hyperplane based on the
high-dimensional pattern of brain connectivity measures able to
separate meditators from control subjects. Finally, we examined
the association between selected brain connectivity measures and
individual scores on a rapid visual information processing (RVIP)
test of sustained attention and working memory.

Materials and Methods

Subjects
Twelve Zen meditators with more than 3 years of daily prac-
tice (MEDT) were recruited from the local community and
meditation centers, along with 12 control subjects (CTRL)
who never practiced meditation. All the volunteers in the
meditators group had more than 3 years of daily practice of
zazen (Zen objectless meditation) under the guidance of a
certified teacher (mean = 8.7 years, SD = 6.5 years, mini-
mum = 3 years, maximum = 20 years). Almost all of them
(11/12) were practicing within the Zen Soto tradition, but a
few of them also had some experience with different contem-
plative practice styles (Zen Rinzai 3/12, Tibetan 2/12, Vipassana
2/12); three meditators were ordained Soto monks. The medi-
tator and control groups were matched for gender (MEDT: 10
M, CTRL: 9 M), age (mean ± SD: MEDT, 37.3 ± 7.2 years;
CTRL, 35.3 ± 5.9 years; 2-tailed, 2-sample t-test: p = 0.45),
and education level (mean ± SD: MEDT, 17.8 ± 2.5 years;
CTRL, 17.6 ± 1.6 years; p = 0.85). All participants were native
speakers of English and right-handed, except one meditator who
was ambidextrous. Subjects gave written informed consent for a
protocol approved by the Emory University Institutional Review
Board.

Neuropsychological Computerized Testing
Approximately 1 week before the MRI scanning session, every
volunteer completed a selected subset of the CANTAB computer-
ized neuropsychological battery (Sahakian and Owen, 1992). The
CANTAB tests included: (1) a task assessing sustained attention
(RVIP) in terms of sensitivity to the target (A’, a non-parametric
analog of d’ from signal detection theory) and response time;
(2) a test of simple reaction time (RTI simple) to a visual stim-
ulus appearing in a fixed location on the computer screen, in
terms of reaction time proper (time to raise the finger from the
resting pad) and movement time (time to reach the target on
the touch screen with the finger); (3) a complex reaction time
task (RTI five choice), similar to the previous one, but where the
visual target appeared randomly in one of five screen locations;
(4) a test of visuospatial working memory capacity (Spatial Span,
SSP), assessed in terms of span length (number of remembered
items); (5) a test of rule learning and rule-switching [Intra–Extra
Dimensional Set Shift (IED)] with two sets of rules (“intradimen-
sional” and “extradimensional”) that assess cognitive flexibility in
terms of the number of completed stages of progressive difficulty
and number of errors for intradimensional and extradimen-
sional rule learning. The reader can find a demo and a longer
description of the tasks at http://www.cambridgecognition.com/
academic/cantabsuite.

MRI Acquisition and Preprocessing
A T1-weighted high-resolution anatomical image (MPRAGE,
176 sagittal slices, voxel size: 1 mm isotropic) and a single series
of resting state functional images (echo-planar, 200 volumes,
35 axial slices, voxel size: 3 mm isotropic, TR = 2.35 s,
TE = 30 ms) were acquired with a 3.0 Tesla Siemens
Magnetom Trio scanner. Participants were instructed to keep
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their eyes open and pay attention to their breathing through-
out the full length of the run (∼8 min), and to calmly
return their attention to breathing every time they found
themselves distracted by thoughts, memories, or physical
sensations. A fixation cross was kept on the MRI display
screen to help concentration and minimize eye movement.
The functional volumes were corrected for slice acquisi-
tion timing differences and head motion. The anatomical
image was first registered to the mean of the corrected
functional images and then spatially warped to the MNI
standard brain space by using the segmentation routine
of SPM5 (http://fil.ion.ucl.ac.uk/spm/software/spm5). The esti-
mated warping parameters were subsequently applied to the
functional images, which were finally smoothed with an 8 mm
isotropic Gaussian kernel. Low-frequency signal drifts were
removed from the time series by regressing out a Legendre
polynomial of order two.

Network Construction and Functional
Module Parcellation
We adopted the 264-node cortical parcellation system defined
by Power et al. (2011), where each node is a 10 mm diam-
eter sphere in MNI space representing a putative functional
area. Such a parcellation was determined using a combination
of meta-analysis of task-based fMRI studies and rsFC mapping
techniques; it constitutes a finer grid compared to the Automated
Anatomical Labeling (AAL) set (Tzourio-Mazoyer et al., 2002),
but is not as granular as a collection of single voxels. It thus
represents an appealing choice, in that it provides a good balance
between spatial localization and dimension reduction (Fornito
et al., 2010; Power et al., 2011).

Our network analysis considered 238 of the 264 nodes that
were within the boundary of the data gray matter mask. We
assigned these nodes to nine functional networks or “modules”
that correspond to the major RSNs described by Smith et al.
(2009). The RSN maps, determined by ICA decomposition of
a large database of activation studies (BrainMap) and resting
state fMRI data, are circuits whose BOLD activity is temporally

coherent during both task activity and at rest. The functional
modules include a medial visual network (“Med Vis,” 14 nodes),
an occipital pole visual network (“OP Vis,” six nodes), a lateral
visual network (“Lat Vis,” 16 nodes), the “DMN,” 21 nodes,
the cerebellum (one node), a sensorimotor network (“SM,”
29 nodes), an auditory network (“Aud,” 29 nodes), an exec-
utive control network (“EC,” 38 nodes), and a right and left
frontoparietal network (“FPR” and “FPL,” 30 and 26 nodes,
respectively). To determine the module membership at each
node, we identified the RSN z-statistic map with the largest
value in the location of the node, above a chosen threshold
(z > 3). Twenty nine of the 238 nodes in gray matter were
not strongly associated with any RSN map, and were there-
fore not included. Also, since only one node was contained
in the cerebellum, the latter module and corresponding node
were discarded as well. A visualization of the remaining 209
nodes that are used in the subsequent network analysis, clas-
sified by functional module, is shown in Figure 1. A map
of the functional modules is also displayed in Figure 2. The
parcellation of nodes into functional modules allows exami-
nation of within- and between-module connectivity. All brain
visualizations were created using BrainNet Viewer (Xia et al.,
2013).

Graph Construction
To construct the network connectivity matrix, we extracted
the time series from each node with the following steps.
First, the time series at each voxel was detrended by regress-
ing out a Legendre polynomial of second order, demeaned,
and whitened. We then performed singular value decompo-
sition (SVD) on the time series for all the voxels in each
node to extract the representative time series within that node.
A 209 × 209 symmetric connectivity matrix was defined for
each subject by calculating Pearson correlations between the
summary time series extracted from each node. To avoid the
issue of arbitrary thresholding, our network analyses were
conducted on fully connected graphs with both positive and
negative weights. All graphical network visualizations were

FIGURE 1 | Parcellation scheme and network assignment. The 209 nodes
used in our network analysis are adapted from the 264-node parcellation
system defined by Power et al. (2011). Each node is a 10 mm diameter sphere

in MNI space representing a putative functional area, and is color-coded to
indicate its module membership. Functional modules are defined by the 10
primary resting state networks (RSNs) described in Smith et al. (2009).
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FIGURE 2 | Functional module maps. The functional module z-score maps
(thresholded at z > 3) defined by the 10 primary RSNs described in Smith et al.
(2009). To categorize nodes by module membership, we find the RSN map with

the largest z-score in the location of the node, above a certain threshold (z > 3).
The module corresponding to the cerebellum is not shown or used in our
analysis, as it contained only one node in gray matter.

created using the igraph package in R (Csardi and Nepusz,
2006).

Group Differences in Modulewise Functional
Connectivity
In order to summarize the 21,736 unique edges in the 209-node
network by the nine functional modules reported in Smith et al.
(2009), we first performed a dimension reduction on the original

subject-specific connectivity matrices. More in detail, we divided
the upper-triangle of the 209 × 209 edgewise connectivity matrix
into 45 modulewise blocks representing the nine within- plus the
36 between-module connectivity strengths. For each modulewise
block i (i = 1,. . .,45; each containing mi edges), we concate-
nated the block’s mi edgewise connection strengths into a vector,
then formed a (mi × 24) block-specific connectivity matrix by
stacking these vectors side by side across all 24 subjects. After
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removing the mean from each row, we performed a SVD on
this matrix and extracted the first left singular vector (mi × 1)
and the first right singular vector (1 × 24). The first left singu-
lar vector represents the first principal component direction of
block i’s connectivity pattern (i.e., one value for each edge in
block, representative of all subjects), and the first right singu-
lar vector corresponds to the subject-specific coordinates when
projecting each subject’s connectivity pattern on to the first prin-
cipal component (i.e., one value per subject for each block i,
representative of all the edges in the block). The set of right singu-
lar vectors, or principal component coordinates, can be seen as a
compact representation of subjects’ module-to-module connec-
tivity patterns, reducing the original 24 subject-specific edgewise
connectivity matrices (209 × 209) to 24 subject-specific module-
wise principal component coordinate matrices (9 × 9). For each
of the 45 unique modulewise blocks, we calculated the standard-
ized mean difference (Cohen’s d) in the modulewise principal
component coordinates, and used an effect size threshold of 0.5
to identify group differences with at least a medium effect size
(Cohen, 1988); for completeness, and as an exploratory inferen-
tial assessment, we also performed a non-parametric Wilcoxon
rank sum test comparing meditators and controls on the prin-
cipal component coordinates from each module-module block,
reporting the associated uncorrected p-values. Finally, as we will
describe in Section “Group Differences Based on Multivariate
Pattern Analysis,” the modulewise principal component coordi-
nates were also used as input to a multivariate pattern analysis
aimed at identifying an overall pattern of module-to-module
connectivity discriminating between meditators and controls.

Of note, one consequence of summarizing the original
209 × 209 edgewise connectivity matrices into the SVD-based
compact 9 × 9 modulewise connectivity matrices is that these
compact matrices no longer directly provide information on the
predominant sign of the connectivity strength in each of the
module-to-module block. In order to recover such information
(i.e., whether the BOLD signals from two modules were on aver-
age positively or negatively correlated), we also computed the
mean connectivity strength within eachmodule-to-module block
by averaging across all the edgewise correlations in the block
(see Figure 4). This allowed us to interpret and display between-
group differences in the SVD-based compact connectivity
results.

Inspection of Edgewise Connectivity and
Consistency of Group Effects within each
Module–Module Block
The group differences in functional connectivity observed in the
modulewise (SVD-based) analysis were further inspected at the
edgewise level and checked for within module-module block
consistency with the following approach. For each of the 21,736
unique edges in the 209 × 209 symmetric connectivity matrix,
we calculated the standardized group difference at each edge
using Cohen’s d, and selected those edges with an effect size
magnitude of at least 0.5, representing a medium or larger differ-
ence (Cohen, 1988) between meditators and controls. We then
grouped the selected edges into the nine within- and 36 between-
module connection blocks described above and, for each module

block, we assessed the dominant direction of the group differ-
ence at the edge-level (i.e., MEDT>CTRL or CTRL>MEDT) by
calculating a consistency metric. This metric, based on the well-
knownMcNemar test for consistency between two outcomes, was
defined as (Nm > c – Nc > m)/(Nm > c + Nc > m), where Nm > c
and Nc > m are the number of supra-threshold edges in the
module-module block for the MEDT>CTRL or CTRL>MEDT
effects, respectively. Thus, a value of 0 for the above metric
indicates a complete lack of edgewise consistency in the direc-
tion of the MEDT–CTRL effect within a module-module block,
while a value of 1 (or −1) represents a full edgewise consis-
tency. In order to screen out module-module blocks with low
block-consistency for the group effect, we set a threshold for
the consistency metric of 0.33, corresponding to an effect where
there are at least twice as many edges in a block showing a
group effect in one direction compared to the other. This proce-
dure allowed us to identify module-module blocks with consis-
tently stronger connections either in meditators or controls.
In order to avoid drawing conclusions based on just a few
edges, we only calculated the consistency metric on module-
module blocks where at least 5% of the total edges met the
| d| > 0.5 threshold. We separately examined the thresholded
edges with positive and negative average connectivity in both
groups.

Group Differences Based on Multivariate
Pattern Analysis
In addition to the modulewise and edgewise univariate analyses,
we also performed a multivariate analysis aimed at identifying an
overall pattern of module-to-module connectivity discriminat-
ing between meditators and controls. The information from all
45 module-to-module SVD-derived summary measures was thus
used jointly as input to a SVMclassifier to predict groupmember-
ship for each volunteer, using the LIBSVM package (Chang and
Lin, 2011).

The SVM model produced three important outcomes. First,
we evaluated the accuracy of the SVM classifier using a four-
fold cross-validation procedure, in which the multivariate model
was trained on 75% of the data, and then tested on the remain-
ing 25% of the data. The results based on the cross-validation
procedure reflect how accurately we can identify meditators on
the basis of their brain connectivity features. Second, we obtained
a vector of weights of the 45 modulewise connectivity features
on the multivariate classifier, which represent the relative impor-
tance of these features in discriminating meditators and controls.
Third, for each subject, the SVM yielded a dimensional clas-
sification score, a continuous predictor that reflects the confi-
dence with which a volunteer was classified as a meditator or
control.

We also performed an additional SVM analysis to clas-
sify meditators and controls, based this time on the outcome
measures of the five CANTAB tests described in Section
“Neuropsychological Computerized Testing.” The accuracy rate
of the CANTAB-based multivariate classifier was evaluated using
the fourfold cross-validation procedure described previously, and
compared to the accuracy rate from themodulewise connectivity-
based SVM. From the SVM, we derived the CANTAB-based
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dimensional classification score, which reflects the degree to
which a subject classified as a meditator or control, based on
the subject’s neuropsychological performance. Finally, we tested
whether the brain-connectivity-based dimensional scores and the
CANTAB-based dimensional scores were significantly correlated;
this analysis tested whether the brain connectivity patterns that
differentiated meditators from controls were significantly associ-
ated with the neuropsychological profile that best discriminated
meditators and controls.

Lastly, we conducted a third SVM analysis using as input the
joint set of the SVD-based modulewise connectivity measures
plus the CANTAB scores, and compared its classification accu-
racy to that of the SVM analyses based on modulewise connectiv-
ity or CANTAB scores alone.

Association between Brain Connectivity
Measures and Attentional Performance
As the sustained attention scores from the RVIP test have been
previously shown to be sensitive to differential effects in medi-
tators and controls (Pagnoni and Cekic, 2007; Pagnoni, 2012),
we examined the correlation between each of the 45 modulewise
first principal component coordinate values and the RVIP test
scores, across all subjects (CTRL + MEDT). The purpose of this
analysis was to identify a subset of the brain functional connec-
tivity structure that was specifically associated with the capacity
for sustained attention, a cognitive aspect generally assumed to
be affected by meditative practice.

Results

Group Differences in Modulewise Functional
Connectivity
Meditators and controls were compared on the subject-specific
modulewise principal component coordinates extracted from the
SVD analysis, using Cohen’s d as a measure of effect size for
each of the 45 module-module blocks. Among them, we identi-
fied 14 module-module connections with at least a medium-sized
mean difference (i.e., Cohen’s dmagnitude of at least 0.5) between
meditators and controls. Module pairs with positive and nega-
tive average connectivity (as assessed by the original full edge-
wise correlation matrices, see Group Differences in Modulewise
Functional Connectivity) for both groups are reported separately
(Tables 1A,B), along with uncorrected p-values from the rank
sum test. The modulewise results shown in this table are also
displayed visually in Figure 3.

Inspection of Edgewise Connectivity and
Consistency of Group Effects within each
Module–Module Block
The complete average correlation matrices, for meditators and
controls, are shown in Figure 4 as heat-maps, with edges grouped
by their module membership. For the sake of interpretability,
we separately examined the edges that were positive or negative
in both groups average correlation maps, which represented the
majority (82%) of the total edges.

TABLE 1A | Group differences in positive modulewise functional
connectivity.

Module-module
connection

Standardized
mean difference, d

Direction of
difference

p-value
(uncorrected)

Med Vis – OP Vis 0.77 MEDT>CTRL 0.126

Lat Vis – SM −0.57 CTRL>MEDT 0.312

DMN – EC −0.67 CTRL>MEDT 0.069

Aud – Aud −0.53 CTRL>MEDT 0.403

EC – FPR 0.89 MEDT>CTRL 0.026

EC – FPL 0.57 MEDT>CTRL 0.046

FPR – FPR 0.71 MEDT>CTRL 0.157

FPR – FPL 0.56 MEDT>CTRL 0.141

Meditators had, on average, higher positive connections compared to controls for
the Med Vis–OP Vis, EC–FPR, EC–FPL, FPR–FPR, and FPR–FPL module pairs. On
the other hand, controls had, on average, higher positive connections for the Lat
Vis–SM, DMN–EC, and Aud–Aud module pairs (Figure 3A).

TABLE 1B | Group differences in negative modulewise functional
connectivity.

Module-module
connection

Standardized
mean
difference, d

Direction of
difference

p-value
(uncorrected)

Med Vis – DMN −0.54 MEDT−>CTRL− 0.175

Med Vis – FPR −0.80 MEDT−>CTRL− 0.046

Med Vis – FPL −0.78 MEDT−>CTRL− 0.046

OP Vis – DMN 0.79 MEDT−>CTRL− 0.069

OP Vis – FPL −0.77 MEDT−>CTRL− 0.069

SM – FPL 0.79 CTRL−>MEDT− 0.100

Meditators had, on average, larger negative connection values for the Med Vis–
DMN, Med Vis—FPR, Med Vis–FPL, OP Vis–DMN, and OP Vis–FPL module pairs,
compared to controls; controls had higher negative connections compared to
meditators for the SM–FPL module only (Figure 3B).

Of the 21,736 unique edgewise connections, 37% were posi-
tive in both groups, on average. Figure 5A displays posi-
tive edges with between-group difference of medium or larger
effect size (i.e., | d| > 0.5; Cohen, 1988). In the figure,
orange or green edges indicate that edgewise positive connec-
tivity was higher in meditators or controls, respectively. For
module-module blocks with at least 5% of edges exceeding
the chosen effect size threshold, we computed the within-
block consistency of the effect with the metric described in
Section “Group Differences Based On Multivariate Pattern
Analysis.” The value of the consistency metric, as well as
the percent of the block’s edges retained post-thresholding,
are displayed for each module-to-module block in Figure 5B.
In this figure, shaded cells identify blocks with a highly
consistent edgewise effect (i.e., consistency metric magnitude
of at least 0.33); orange or green cells indicate that posi-
tive connections were higher among meditators or controls,
respectively. Meditators had consistently higher positive connec-
tions than controls within the Med Vis and FPR modules,
and for the Med Vis–OP Vis, Med Vis–Aud, EC–FPR, and
FPR–FPL module pairs. Controls had higher positive connec-
tions than meditators within the Lat Vis, DMN, Aud, and

Frontiers in Psychology | www.frontiersin.org 6 May 2015 | Volume 6 | Article 603

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Kemmer et al. Network analysis of Zen practitioners

FIGURE 3 | (A) Positive and (B) negative connections with at least a medium standardized mean difference (Cohen’s | d| > 0.5) between meditators and controls,
as per the SVD-based modulewise analysis.

EC modules, and for the following module pairs: Lat Vis–
SM, DMN–EC, SM–Aud, and Aud–FPR. Module pairs that
were also identified in the modulewise FC analysis (i.e.,
Med Vis–OP Vis, Lat Vis–SM, DMN–EC, Aud–Aud, EC–
FPR, FPR–FPR, and FPR–FPL), are marked with bold font in
Figure 5B.

Of the 21,736 unique edgewise connections, 45% were nega-
tive in both groups, on average. Figure 6A displays nega-
tive edges with between-group difference of medium or larger
effect size (i.e., | d| > 0.5; Cohen, 1988). In the figure,
orange or green edges indicate that edgewise negative connec-
tivity was higher in meditators or controls, respectively. With
a similar approach to that used for positive connections,
we identified module-module blocks with a highly consistent
edgewise group difference in the negative connections and
selected the blocks with at least 5% suprathreshold edges for
further analysis. Figure 6B shows the value of the consis-
tency metric and the percent of edges retained post-thresholding
for each block. Shaded cells identify blocks with a highly
consistent edgewise effect within the block, with orange, and
green color corresponding to a modulewise negative connec-
tion stronger in meditators or controls, respectively. Meditators
had consistently stronger negative connections than controls
for the following module pairs: Med Vis–DMN, Med Vis–
SM, Med Vis–FPR, Med Vis–FPL, OP Vis–SM, OP Vis–EC,
OP Vis–FPR, OP Vis–FPL. Controls had consistently stronger
negative connections than meditators for the Lat Vis–DMN,
Lat Vis–EC, Lat Vis–FPL, DMN–SM, DMN–Aud, DMN–FPL,
SM–FPL, Aud–EC, EC–FPR, and FPR–FPL module pairs.
Module pairs that were also identified in the modulewise FC
analysis (i.e., Med Vis–DMN, Med Vis–FPR, Med Vis–FPL,
OP Vis–FPL, and SM–FPL), are marked with bold font in
Figure 6B.

Modulewise connections with consistent group effects for
positive and negative connections are displayed in circular graphs
in Figure 7, for easier comparison to the SVD-based results
portrayed in Figure 4.

Group Differences Based on Multivariate
Pattern Analysis
The fourfold cross validation procedure for the
connectivity-based SVM classifier using the 45 modulewise
principal components yielded an overall accuracy rate of 79.2%
(19/24 subjects correctly classified). The most heavily weighted
modulewise connections in the SVM model, along with their
weights, are displayed in Figure 8. They included the within OP
Vis and SM module connections, and the following module–
module connections: Med Vis–SM, Med Vis–OP Vis, Med
Vis–FPL, OP Vis–FPL, OP Vis–FPR, OP Vis–SM, FPR–SM, and
OP Vis–DMN. These connections, taken together, were the most
critical for distinguishing meditators, and controls.

The fourfold cross-validation procedure for the second SVM
analysis, aimed at classifying meditators and controls based on
subjects’ CANTAB test scores yielded an overall accuracy rate
of 75% (18/24 subjects correctly classified). The brain connec-
tivity features demonstrated thus slightly better classification
accuracy than the CANTAB scores. As an additional check,
we also performed an SVM analysis using as input both the
modulewise FC values (measured by first principal compo-
nent coordinates) and the CANTAB scores: the model attained
a classification rate of 79.2%, that is, the same rate achieved
using the modulewise FC alone, showing that the amount of
information embedded in the brain FC measures, for what
concerns subjects’ classification, was not significantly augmented
by further inclusion of the employed neuropsychological tests’
scores.
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FIGURE 4 | Edgewise connectivity matrices, averaged by subject group. The symmetric 209 × 209 connectivity matrices (as measured by Pearson
correlations), averaged over the (A) meditators and (B) control groups. Edges are shown grouped by their module membership. Red edges indicate positive
connectivity, while blue edges indicate negative connectivity.

Finally, the dimensional classification scores from the
connectivity- and CANTAB-based SVM were strongly corre-
lated (r = 0.69, p = 0.002; see Figure 9); demonstrating that
subjects with more “meditator-like” patterns of connectivity
also exhibited more “meditator-like” patterns of CANTAB test
performance.

Association between Brain Connectivity and
Neuropsychological Tests
The correlation analysis across all subjects (MEDT + CTRL) of
the 45 modulewise functional connectivity strengths (summa-
rized by the first principal component coordinates extracted
from SVD) and attentional performance, as indexed by RVIP
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FIGURE 5 | Group differences in positive connectivity. (A) For the edges
that were positive on average, in both meditators and controls, we calculated
the MEDT–CTRL standardized effect size to assess group differences; only
edges with at least a moderate effect size (| d| > 0.5) are displayed and used in
further analyses. (B) The results of the within-block consistency analysis are
summarized as a table; for each module-to-module block containing at least

5% of edges meeting the required effect size threshold in (A), the value of the
consistency metric and the percent of edges retained post-thresholding (in
parentheses) are reported. Shaded cells indicate blocks with a highly consistent
edgewise effect, and are color-coded according to the direction of the group
effect. Bolded values indicate blocks also highlighted in the modulewise
analysis.

test scores, identified several associations with a large or greater
effect size (i.e., |r| > 0.5; Cohen, 1988), reported in Table 2.
The OP Vis–EC, OP Vis–FPR, DMN–FPR, EC–FPR, and FPR–
FPL connections were associated with RVIP target sensitivity,
while the OP Vis–EC, OP Vis–FPR, OP Vis–FPL, SM–EC,
and Aud–FPR connections were associated with RVIP reaction
time.

Discussion

Network analyses of fMRI data are increasingly being used to
characterize patterns of brain dynamics associated with a specific
mental state, trait, or clinical condition (Filippi et al., 2013; Smith
et al., 2013). It has also been recently shown thatMRI-based func-
tional connectivity strength is spatially well-matched to the local
distribution of regional cerebral blood flow (rCBF), and thus is
likely to reflect the degree of neural activation (Liang et al., 2013).
While previous studies have employed functional connectivity for
the investigation of the neural correlates of contemplative prac-
tices (Farb et al., 2007; Josipovic et al., 2011; Kilpatrick et al., 2011;
Hasenkamp and Barsalou, 2012; Lehmann et al., 2012; Pagnoni,
2012; Taylor et al., 2013; Garrison et al., 2014; Marzetti et al.,

2014), the application of specific techniques from graph theory
to this field of research is still scarce (see Gard et al., 2014, for
an exception). In the present study, we examined how a group
of habitual Zen practitioners and a group of matched control
subjects differed on selected MRI-based functional connectivity
network measures during a simplified (attention-to-breathing)
meditative task without any external experimental stimulation.
We also explored the relationship of these measures with the
performance of the same subjects on a computerized test of
sustained attention (RVIP).

A first, summary outlook on the group differences in
functional connectivity is provided by the modulewise (SVD-
based) analysis. This analysis revealed a differential group
pattern where meditators were characterized by frontopari-
etal attentional circuits (FPR, FPL) having stronger positive
connections to an anterior cingulate-insula-caudate network
(EC) involved in executive processing and saliency detection,
and stronger negative connections to early visual areas (OP
Vis, Med Vis), compared to controls; also, meditators exhib-
ited on average weaker positive connections between DMN
and the saliency network (EC), and stronger negative connec-
tion between DMN and early visual areas (OP Vis, Med
Vis).
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FIGURE 6 | Group differences in negative connectivity. (A) For the edges
that were negative on average, in both meditators and controls, we calculated
the MEDT–CTRL standardized effect size to assess group differences; only
edges with at least a moderate effect size (| d| > 0.5) are displayed and used in
further analyses. (B) The results of the within-block consistency analysis are
summarized as a table; for each module-to-module block containing at least

5% of edges meeting the required effect size threshold in (A), the value of the
consistency metric and the percent of edges retained post-thresholding (in
parentheses) are reported. Shaded cells indicate blocks with a highly consistent
edgewise effect, and are color-coded according to the direction of the group
effect. Bolded values indicate blocks also highlighted in the modulewise
analysis.

A complementary analysis, examining the consistency of
the edgewise connection strengths within each module-module
block, largely confirmed the above findings but also revealed a
more nuanced picture, with additional group connectivity differ-
ences involving, among others, a weaker negative connectivity,
for meditators compared to controls, between the DMN and
both the auditory (Aud) and the sensorimotor (SM) networks.
Finally, a direct assessment of the subspace of modulewise
connectivity that could best separate meditators from control
subjects, via an SVM classifier, underscored again the impor-
tance of connections between frontoparietal circuits (FPR, FPL)
and early visual areas (Med Vis, OP Vis), but also between
these occipital regions and both sensorimotor cortex (SM) and
DMN.

These results are meaningful, as frontoparietal circuits and the
DMN have long been assumed to be affected by contemplative
practice. Meditation generally involves a regulation of atten-
tional processes and spontaneous mentation or mind-wandering,
along with an increase in meta-awareness (awareness of one’s
own mental processes). Attentional deployment and regula-
tion are known to impinge crucially on frontoparietal circuits
(Corbetta and Shulman, 2002), while DMN has been consis-
tently implicated in mind-wandering, both in and outside the

context of meditation (Binder et al., 1999; Mason et al., 2007;
Christoff et al., 2009; Brewer et al., 2011). The stronger posi-
tive connection between frontoparietal circuits and the saliency
network exhibited by meditators in the present study, may be
linked the vigilant attitude that meditators aim to keep in order
to detect and become aware of the fluctuations in one’s own
mental state, so that salient events in the mental landscape are
accompanied by an activation of regulatory attentional mech-
anisms. Interestingly, the saliency network has been shown to
activate during awareness of episodes of mind-wandering in
meditation, an effect putatively ascribed to the fact that mind-
wandering episodes represent a violation of the target of remain-
ing concentrated on breathing and thus may trigger neural
activity in conflict-processing and arousal-related areas such as
anterior cingulate and insular cortices (Hasenkamp et al., 2012).
In this perspective, the observed weaker positive connection
between the EC and the DMNmodules, for meditators compared
to controls, could reflect the less-judgmental and more accept-
ing attitude of meditators vis-à-vis the spontaneous occurrence
of mind-wandering episodes, compared to control subjects who,
because of their lack of experience, may in fact react more
emotionally to such violations of the concentrative goal of the
task.
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FIGURE 7 | Within-block consistency analysis results. (A) Positive and (B) negative connections with a highly consistent group effect across the edges of a
module-to-module block. Edge color indicates whether connections are stronger in meditators (orange) or controls (green), while the edge width reflects the value of
the consistency metric.

FIGURE 8 | Multivariate pattern analysis results. The most heavily
weighted modulewise-connectivities identified by the support vector machine
(SVM) model, along with their connection weights. Considered jointly, these
modulewise connections are the most critical for distinguishing the meditator
and control groups.

Meditators also exhibited weaker negative connections
between the DMN and a number of modules that process sensory
and motor information (Aud, Lat Vis, SM; see Figure 7B), one
possible interpretation is that, in controls, the spontaneous acti-
vation of DMN during episodes of mind-wandering corresponds

to a more active dampening, compared to meditators, of the
information from channels linked to the external environment,
leading to sensorimotor decoupling (Kam and Handy, 2013),
and thus to increased mental absorption in internally generated,
distracting thoughts. (The stronger negative connection in
meditators between the DMN and medial visual cortex would
represent, however, an exception to this general pattern).

Of particular interest is the DMN within-module positive
connectivity, which was weaker in meditators compared to

FIGURE 9 | Correlation of brain-based and neuropsychology-based
SVM classification scores across all subjects. Scatterplot and linear
fitting of dimensional classification scores from the SVM using the CANTAB
test scores and from the SVM using the first PC of modulewise brain
connectivity. The two sets of scores were strongly correlated across subjects
(r = 0.69, p = 0.0002), indicating that subjects classified as meditators based
on their pattern of brain connectivity, also tended to be classified as
meditators based on their performance on the neuropsychological tests.
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TABLE 2 | The correlation of rapid visual information processing (RVIP)
test performance with the 45 modulewise first principal component
coordinates revealed these large associations.

Modulewise
connections

Correlation with
RVIP task

p-value
(uncorrected)

RVIP sensitivity
to target

OP Vis – EC
OP Vis – FPR
DMN – FPR
EC – FPR
FPR – FPL

0.54
−0.53

0.51
0.56
0.60

0.006
0.008
0.010
0.004
0.002

RVIP response
time

OP Vis – EC
OP Vis – FPR
OP Vis – FPL
SM – EC
Aud – FPR

−0.61
0.51
0.51
0.51

−0.59

0.002
0.011
0.010
0.010
0.003

controls (Figure 7A). If this can be taken to reflect a less active
DMN in meditators during attention-to-breathing, it would be in
good agreement with the finding of a similar effect based on an
independent measure of the frequency of activation (the skew-
ness of the BOLD distribution) of the main node of the DMN,
the retrosplenial cortex, that we had previously observed in the
same data (Pagnoni, 2012). The possibility that meditation could
provide intervals of momentary respite for an overactive DMN
and perhaps, through regular practice, even induce a lasting regu-
larization of the activity in the same circuit outside of formal
practice, is especially intriguing. Recent evidence has linked the
process of deposition of beta-amyloid peptide and brain atro-
phy in Alzheimer’s disease (AD) – a process whose spatial pattern
strikingly resembles the DMN’s layout (Buckner et al., 2005) – to
the sustained metabolic activity of the DMN (Walker and Jucker,
2011). Although more research is obviously needed, the prospect
that the regular practice of certain kind of contemplative tech-
niques could prove even mildly protective against the onset of
AD, should not be neglected.

Meditators also exhibited stronger within-module positive
connectivity in the FPR (Figures 3 and 7A) – a network known
for its relevance in sustained attention (Coull et al., 1996; Sarter
et al., 2001; Lim et al., 2010) – suggesting an increased engage-
ment of the latter during attention-to-breathing in meditators
by virtue of their practice. Enhanced activation of the FPR
network has been previously associated with better performance
in the RVIP task (Lawrence et al., 2003); such a finding, together
with the better performance of this sample of meditators in the
RVIP task when controlling for age (Pagnoni and Cekic, 2007)
and the prominent featuring of the FPR module in the pool
of important correlations of brain connectivity strengths with
RVIP performance (Table 2), lends further support to the notion
of an increased engagement of attentional processes in medi-
tators, compared to controls, during the attention-to-breathing
meditative task. Of note, frontoparietal circuits (FPR, FPL) were
also more negatively connected to early visual areas (Med Vis,
OP Vis) in meditators compared to controls (Figures 3 and 7B),
a possible correlate of a more effective redeployment of attention
toward internally generated stimuli in meditators (e.g., respira-
tory sensations, monitoring of the appearance of spontaneous

thoughts) during the attention-to-breathing task (Cooper et al.,
2003). The hypothesis that the strength of the negative connec-
tions between frontoparietal and early visual areas during a task
that prescribes inward attention is related to the individual ability
to voluntarily regulate attention may be supported by the find-
ing that subjects who exhibited a stronger negative correlation
between FPR/FPL andOPVis also displayed a better performance
in the RVIP sustained attention task (Table 2).

An important result is that the module-module connection
strengths were able to predict the subjects’ group member-
ship via the SVM classifier with quite a high accuracy (79%).
A similar SVM analysis based on CANTAB cognitive test scores
also produced a reasonable (but inferior) classification rate (75%).
The SVM also provided a further characterization of the distinc-
tion betweenmeditators and control subjects, via the dimensional
classification scores. Correlation analyses showed that the dimen-
sional classification scores from the connectivity-based SVM
were significantly associated with the dimensional classification
scores from the CANTAB-based SVM, indicating that subjects
with more “meditator-like” patterns of connectivity also demon-
strated more “meditator-like” patterns of performance in the
employed set of neuropsychological tests.

Limitations and Future Directions
We examined the effects of meditation on rsFC across the
whole brain using a multi-stage network approach. Our study
included a well-controlled matched sample of habitual medita-
tors and meditation-naïve controls during a basic attention-to-
breathing fMRI protocol. The limited sample size (nMEDT = 12,
nCTRL = 12), along with the large number of examined nodes, and
connections, made straightforward multiple comparisons correc-
tion of the p-values impractical (and overly conservative, given
the non-independence of the nodes). Since the effect size, on the
other hand, is not confounded by the sample size (Lang et al.,
1998), we chose to report only the findings with a medium or
larger effect size (along with uncorrected p-values), acknowl-
edging the fact that such findings should be regarded as having
principally an exploratory, hypothesis-generating role.

Also, in our analysis, we calculated the Pearson’s correlation
coefficients between the time series of two nodes to represent
their functional connectivity strength. Correlation is one of the
simplest and most commonly used association measures, but it
does not imply direct connections between two nodes (i.e., a
third node may be mediating their relationship). Partial correla-
tion, which regresses out confounding nodes to distinguish direct
from indirect connections, can better estimate the true connec-
tivity network. In fact, some differences between the univariate
and multivariate results portrayed in Figures 3 and 8, respec-
tively, could probably be reduced, were partial correlations to be
employed. Partial correlations can be estimated via the inverse of
the covariance matrix, but the algorithm presents computational
difficulties when the number of columns of the correlation matrix
exceeds the number of rows that we were not able to resolve at
the time of writing. Smith et al. (2011) showed that partial corre-
lation performs better than regular correlation in a variety of
simulations of fMRI data, and we plan to adopt this approach in
future analyses.
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Finally, the reported findings indicate that the long-term
practice of meditation may be associated with FC changes in
several RSNs. However, as this is not a randomized study, the
causal direction of the observed association cannot be deter-
mined. A longitudinal study, despite a number of issues that
make it practically very problematic when aimed at studying the
effects of long term training (e.g., subjects’ compliance, study
dropout, intervening confounding variables), would be necessary
to establish causality in a decisive way.
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