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Long-term music training can positively impact speech processing. A recent framework
developed to explain such cross-domain plasticity posits that music training-related
advantages in speech processing are due to shared cognitive and perceptual processes
between music and speech. Although perceptual and cognitive processing advantages
due to music training have been independently demonstrated, to date no study has
examined perceptual and cognitive processing within the context of a single task. The
present study examines the impact of long-term music training on speech learning
from a rigorous, computational perspective derived from signal detection theory. Our
computational models provide independent estimates of cognitive and perceptual
processing in native English-speaking musicians (n = 15, mean age = 25 years) and
non-musicians (n = 15, mean age = 23 years) learning to categorize non-native lexical
pitch patterns (Mandarin tones). Musicians outperformed non-musicians in this task.
Model-based analyses suggested that musicians shifted from simple unidimensional
decision strategies to more optimal multidimensional (MD) decision strategies sooner
than non-musicians. In addition, musicians used optimal decisional strategies more
often than non-musicians. However, musicians and non-musicians who used MD
strategies showed no difference in performance. We estimated parameters that quantify
the magnitude of perceptual variability along two dimensions that are critical for tone
categorization: pitch height and pitch direction. Both musicians and non-musicians
showed a decrease in perceptual variability along the pitch height dimension, but
only musicians showed a significant reduction in perceptual variability along the pitch
direction dimension. Notably, these advantages persisted during a generalization phase,
when no feedback was provided. These results provide an insight into the mechanisms
underlying the musician advantage observed in non-native speech learning.

Keywords: plasticity, music, category learning, speech, OPERA

Introduction

Music training is a rich, multimodal experience that has been found to modify the brain in many
positive ways. For instance, long-term music training is associated with enhanced processing of

Frontiers in Psychology | www.frontiersin.org 1 May 2015 | Volume 6 | Article 682

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.00682
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2015.00682
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00682/abstract
http://community.frontiersin.org/people/u/125326
http://community.frontiersin.org/people/u/29744
http://community.frontiersin.org/people/u/42681
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Smayda et al. Modeling speech learning in musicians

musical information such as pitch discrimination and perception
(Schön et al., 2004; Tervaniemi et al., 2004; Magne et al., 2006;
Bidelman et al., 2011; Zarate et al., 2012) rhythm production
(Chen et al., 2008; Bailey et al., 2014), beat perception (Grahn and
Rowe, 2012), and timbre discrimination (Crummer et al., 1994).
Processing of musical information has also been studied in non-
human primates. For instance, extensive pitch discrimination
training has been used to characterize the plastic nature of
the non-human auditory cortex (Brosch et al., 2004, 2005).
In addition to musical information processing advantages,
recent studies have also found that long-term music training
is associated with advantages that extend beyond the musical
domain, such as speech processing. For example, musicians show
more robust neural encoding of speech sounds relative to non-
musicians (Wong et al., 2007; Chandrasekaran et al., 2009; Kraus
and Chandrasekaran, 2010) and outperform non-musicians in
recognizing speech embedded in noise (Parbery-Clark et al.,
2009; Strait and Kraus, 2011). Musicians also show superior
non-native speech discrimination (Gottfried et al., 2004; Marie
et al., 2011) and learning (Gottfried and Riester, 2000; Alexander
et al., 2005; Wong and Perrachione, 2007; Lee and Hung, 2008)
compared to non-musicians. While the musician advantage for
learning non-native speech sounds is robust, the underlying
mechanisms giving rise to this advantage are poorly understood.

Recently, a framework was developed to explore the
mechanisms underlying the cross-domain auditory plasticity
induced by long-term music training. The OPERA hypothesis
posits that music training will affect the neural encoding of
speech because: there is Overlap between the networks used to
process both music and language; there is a greater Precision
of processing of music relative to language; music elicits strong
Emotional experiences; Repetition is integral to music learning;
and musical engagement requires sustained Attention (Patel,
2011). The OPERA hypothesis was later updated to clarify
the “precision” aspect of the hypothesis (Patel, 2012). More
recently it was expanded to include the cognitive benefits of non-
vocal music training on speech processing, motivation for using
animal models, and preliminary data from a study investigating
music training’s impact on speech perception in cochlear-implant
users (Patel, 2014). Per this framework, music and speech
share similarities in acoustics, such as pitch, timbre, and timing
(Kempe et al., 2014), as well as higher-level cognitive processes
such as working memory and attention (Besson et al., 2011;
Kraus et al., 2012), suggesting that the musician advantage in
learning non-native speech could arise from enhanced perceptual
processing, cognitive processing, or both. To date, the evidence
in support of these hypotheses comes from studies that target
domain-general cognitive or perceptual processes with unique
tasks. For instance, musicians show enhanced cognitive abilities
compared to non-musicians in areas such as executive function
(Bialystok and DePape, 2009), working memory (Parbery-Clark
et al., 2009; Pallesen et al., 2010; George and Coch, 2011;
Kraus et al., 2012; Strait et al., 2013), and switching (Hanna-
Pladdy and MacKay, 2011), while a separate literature shows
perceptual enhancements in speech processing (Parbery-Clark
et al., 2011a,b, 2012; Zendel and Alain, 2012; White-Schwoch
et al., 2013). To date, the cognitive and perceptual processes

mediating the musician advantage in non-native speech learning
has never been investigatedwithin a single task. The current study
addresses this shortcoming by examining non-native speech
learning in musicians and non-musicians using traditional
measures of performance (e.g., accuracy), and computational
models that allow us to independently estimate the perceptual
and cognitive processing.

We examine perceptual and cognitive processing within the
specific theoretical framework of multidimensional (MD) signal
detection theory (Ashby and Townsend, 1986; Maddox and
Ashby, 1993). Within this framework, repeated presentations of
the same physical stimulus yield unique perceptual effects that
result in a multivariate normal distribution of perceptual effects
(Green and Swets, 1967; Ashby and Townsend, 1986). Changes
in the perceptual variances are associated with perceptual
selectivity. To explore changes in perceptual processing as a
function of musical training, we separately estimate a measure
of perceptual selectivity (also referred to as perceptual variance
or noise) along the pitch height and pitch direction dimensions.
In addition, we can look at decision processes that involve
constructing decision bounds (defined in detail later) that
divide the perceptual space into separate response regions.
Critically, perceptual and decisional processes are theoretically
independent, and have unique, identifiable parameters (Green
and Swets, 1967; Ashby andTownsend, 1986;Maddox andAshby,
1993).

In the current study, we examine the extent to which long-
term music training impacts learning to categorize Mandarin
lexical pitch patterns. Mandarin Chinese is a tone language,
wherein changes in pitch patterns within a syllable result in
changes to word meaning. Learning to categorize the four pitch
patterns in Mandarin is a challenging task for monolingual
American adults (Wang et al., 1999), and therefore provides an
excellent paradigm for studying the perceptual and cognitive
mechanisms underlying learning. The four Mandarin Chinese
tone categories and their descriptions are: T1, “high-level,” T2,
“mid-rising,” T3, “low-dipping,” and T4, “high-falling” (Howie,
1976). Pitch height (how high or low a tone is) and pitch
direction (average movement of a pitch) have been found to be
the most prominent dimensions used in categorizing lexical tones
such as in Mandarin (Gandour and Harshman, 1978; Gandour,
1983).

Native English speakers exhibit differential sensitivity to
the dimensions underlying tone perception relative to native
Mandarin Chinese speakers. MD scaling analyses of native
English speakers andMandarin speakers found that while English
speakers weight the pitch height dimension equally to that of tone
language speakers, they weight the pitch direction dimension
less than tone language speakers (Gandour and Harshman, 1978;
Chandrasekaran et al., 2007). This is likely due to the fact that
pitch direction is not as salient a cue in English as it is in
Mandarin, where it is required to distinguish pitch patterns that
vary dynamically within the syllable. Although native English
speakers and Mandarin speakers attend to the pitch height
dimension to a similar degree, this dimension is highly influenced
by variability in talkers (different talkers have different average
pitches). In previous studies using the same computational
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modeling methods utilized in the current report, we have shown
that the optimal decision strategy is one in which the participant
attends to and utilizes both pitch height and pitch direction in
making categorization judgments (Chandrasekaran et al., 2013;
Maddox et al., 2013, 2014; Maddox and Chandrasekaran, 2014;
Yi et al., 2014). This is referred to as a MD decision strategy and
is contrasted with a unidimensional (UD) strategy in which the
participant bases their decision solely on one stimulus dimension
(usually pitch height). In the present study, we applied rigorous
computational models to each participant’s response pattern on
a block-by-block basis. We included one model that instantiates
a MD strategy, two that instantiate UD strategies, and one that
instantiates a random responder (RR) strategy. Computational
models are necessary to make this distinction because the
same accuracy rate can be obtained using qualitatively different
strategies.

In addition to providing critical insights into the decisional
strategies used by musicians and non-musicians, the
computational models also allow us to explore perceptual
processes independent of decisional processes. To explore
changes in perceptual processing as a function of musical
training, we separately estimate a measure of perceptual
selectivity (also referred to as perceptual variance or noise) along
the pitch height and pitch direction dimensions. Since pitch
height is highly salient in English we make no strong predictions
regarding the effects of musical training on perceptual selectivity
along the pitch height dimension. However, although pitch
direction is not as salient a feature in English as it is in Mandarin,
musicians train for many hours a week to become sensitive
to pitch direction (i.e., melodies), thus capitalizing on the
narrow frequency tuning capabilities of the human primary
auditory cortex (Bitterman et al., 2008). Therefore it is likely that
musicians will show enhanced perceptual selectivity (i.e., reduced
perceptual noise) along the pitch direction dimension compared
to non-musicians. Detailed descriptions of the computational
models can be found below in Section “Computational Modeling
Descriptions.”

To summarize, we predict a musician advantage in non-native
speech learning. Our goal is to go beyond accuracy measures and
to provide mechanistic explanations for the musician advantage.
We predict that this advantage is due to an increased use of
optimal MD decision strategies, as well as enhanced perceptual
selectivity along the pitch direction dimension.

Materials and Methods

Stimulus Characteristics
Training stimuli consisted of the four Mandarin tones, tone
1 (T1), tone 2 (T2), tone 3 (T3), and tone 4 (T4) in the
context of five syllables found in both Mandarin Chinese and
English (“bu,” “di,” “lu,” “ma,” “mi”) by one male talker and
one female talker (40 stimuli total). Both speakers are originally
from Beijing, and stimuli were RMS amplitude and duration
normalized (70 dB, 0.4 s) using the software Praat (Francis and
Nusbaum, 2002; Wong et al., 2009; Perrachione et al., 2011).
Five native speakers of Mandarin were asked to identify the tone

categories (they were given four choices) and rate their quality
and naturalness. High identification (>95%) was achieved across
all five native speakers and speakers rated these stimuli as highly
natural. We can represent these stimuli in a two-dimensional
space with pitch height (how high or low a tone is) on the
x-axis and pitch direction (average movement of the tone) on the
y-axis (Figure 1). These two dimensions have been found to be
especially relevant dimensions when categorizing the Mandarin
tones (Francis et al., 2008).

Participants
Fifteen musicians (7 female; mean age = 25 years, SD = 5.29)
and fifteen non-musicians (12 female; mean age = 23 years,
SD = 3.96) from The University of Texas at Austin and greater
Austin, Texas community were paid $10 per hour for their
participation. The University of Texas at Austin Institutional
Review Board approved the study protocol, and informed
consent was obtained from all participants. Exact thresholds
were recorded for over half of the participants (8 of the
15 non-musicians; 9 of the 15 musicians). We conducted a
mixed model ANOVA on the effect of ear (within subjects:
left/right), frequency (within subjects: 500, 100, 2000 Hz), and
group (between subjects: musician/non-musician) on pure tone
audiometry thresholds. “Participant” was treated as a random
variable. We found no difference between groups with respect
to left and right ear thresholds [F(1,14) = 0.72, p = 0.41,
partial η2 = 0.05] or pure tone averages (500, 1000, 2000 Hz)
[F(2,29) = 2.10, p = 0.14, partial η2 = 0.13]. In addition
participants reported no significant issues related to hearing.
Musicians had at least 10 years of group or private instrumental
lessons, and currently play or sing at least 3 h a week (instruments
included organ, piano, flute, guitar, viola, and voice). Non-
musicians had 3 years or less of group or private music lessons,
and do not currently play an instrument. Participants’ musical
history can be found in Table 1. Stimuli were presented at
comfortable supra-threshold listening levels through Sennheiser
HD 280 Pro headphones.

Procedure
On each trial, participants were presented with a single exemplar
from one of four Mandarin tone categories (T1, T2, T3, or T4)
and instructed to categorize the stimulus into one of four equally
likely categories. During the training blocks, participants were
given feedback after each trial and exposed to multiple talkers
that were randomized within a block. Participants listened to 40
stimuli per block (4 tone categories × 5 syllables × 2 talkers).
Each participant completed five 40-trial blocks of training
and was instructed that high accuracy levels were possible.
Participants generated a response by pressing one of four number
button keys on the left side of the computer keyboard, labeled
“1,” “2,” “3,” or “4.” Corrective feedback was provided for 1 s on
the screen immediately following the button press and consisted
of the word “Correct” or “No” followed by the label of the tone
that was actually presented. For example, on a correct T1 trial the
feedback display was as follows: “Correct, that was a category 1.”
On an incorrect response trial where T4 was the correct response
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FIGURE 1 | Scatterplot of all stimuli (A). Scatterplot of male-talker stimuli (B). Scatterplot of female-talker stimuli (C). Stimuli dimensions (Pitch Height and Pitch
Direction) were normalized between 0 and 1. Pitch height refers to how high or low the pitch is, and pitch direction refers to (end pitch – start pitch)/duration.

the feedback display was as follows: “No, that was a category 4.”
A 1-s ITI followed the feedback.

After participants completed five 40-trial blocks, they
completed one 20-trial generalization block. For the
generalization block, all four tones and five syllables were
presented, but were spoken by a different male speaker from
the five training blocks. This resulted in 20 tokens (4 tones × 5
syllables × 1 new talker), and therefore 20 trials. In addition,
feedback was not given. The generalization block was modeled
separately from the five training blocks. The entire task lasted
about 35 min.

Surveys and Neuropsychological Test
All participants completed a demographics survey, and a music
and language experience survey. In addition, all participants
completed WAIS-III Digit Span task to assess working memory
capacity (Wechsler, 1997), and no difference was found between
the two groups’ composite working memory sore (backward
score + forward score) [t(28) = 1.51, p= 0.14]. Participants were
matched on age and education (musicians: mean = 16.77 years,
SD = 1.76; non-musicians: mean = 16.07, SD = 2.15).

Computational Modeling Descriptions
Decisional Processing Assumptions
Accuracy rates provide an excellent source of information
regarding how well an individual is performing in a task.
Although a good starting point, one weakness of accuracy-based
measures is that the same accuracy rate can often be achieved
with qualitatively different strategies (e.g., UD or MD strategies).
Within the domain of category learning, computational models
can be utilized to address this shortcoming and can provide

important insights into the nature of the strategy an individual
is applying in a given task. In this study we apply a series
of decision-bound models originally developed for application
in the visual domain (Ashby and Maddox, 1993; Maddox and
Ashby, 1993) and recently extended to the auditory domain by
Maddox and Chandrasekaran (2014; Chandrasekaran et al., 2013;
Maddox et al., 2013, 2014; Yi et al., 2014) on a block-by-block
basis at the individual participant level because of problems with
interpreting fits to aggregate data (Estes, 1956; Ashby et al.,
1994; Maddox, 1999). We assume that the two-dimensional
space (pitch height vs. pitch direction) displayed in Figure 1A
accurately describes the perceptual representation of the stimuli,
and based on the results from our earlier work (Maddox and
Chandrasekaran, 2014), we also assume that participants applied
category learning strategies separately to the male- and female-
talker perceptual spaces (Figures 1B,C, respectively). Eachmodel
assumes that decision bounds (or category boundaries created by
the participant as they learn the categories) were used to classify
stimuli into each of the four Mandarin tone categories (T1, T2,
T3, or T4).

To explore the types of strategies that participants used, we
applied three types of models: UD, MD, and RR. Figure 2
displays stimuli and response regions for the four tone categories
generated from a hypothetical participant using strategies
implicated by one version of the UD_Height model (Figure 2A),
one version of the UD_Direction model (Figure 2B), and the
MD model (Figure 2C). Each UD model assumed that the
participant set three criteria along a given dimension, which
effectively partitioned the perceptual space into four response
regions. For example, the UD_Height model assumes that the
participant sets three criteria along the pitch height dimension,
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TABLE 1 | Participants’ music history.

Years of
training

Age of onset,
year

Hours play
per week

Instrument

Musician

1 15 7 20 Flute

2 15 8 28 Flute

3 11 5 6 Guitar

4 15 7 36 Organ

5 15 6 3 Piano

6 16 4 11 Piano

7 11 12 8.5 Piano

8 11 9 12 Piano

9 17 5 11 Piano

10 21 5 4 Piano

11 20 6 33 Piano

12 30 7 10 Viola

13 16 6 27 Viola

14 14 10 26 Voice

15 12 9 7 Voice

Mean 15.93 7.07 16.17

Non-musician

16 2 7 0 Flute

17 1 12 0 Flute

18 1 13 0 Guitar

19 1 9 0 Piano

20 2 8 0 Piano

21 3 8 0 Piano

22 0.5 10 0 Recorder

23 3 12 0 Saxophone

24 2 11 0 Trumpet

25 1 11 0 Violin

26 2 NA∗ 0 Violin

27 0 NA 0 NA

28 0 NA 0 NA

29 0 NA 0 NA

30 0 NA 0 NA

Mean 1.23 10.10 0

∗Subject 26 did not report age of onset.

which are used to separate the stimuli into those that are low,
medium–low, medium–high, or high pitch height. Importantly,
this model ignores the pitch direction dimension. The eight most
reasonable variants of the model were examined and differ only
in the assignment of the category labels (T1, T2, T3, T4) to
response regions (low, medium-low, medium–high and high,
respectively). Therefore, the eight most reasonable variants were:
3214, 3412, 3241 (shown in Figure 2A), 3421, 2314, 4312, 2341,
and 4321. For example, a participant who carved up the space
using the 3241 variant of the model would categorize a low tone
as category 3, a medium–low tone as category 2, a medium–
high tone as category 4, and a high tone as category 1. The
UD_Direction model assumes that the participant sets three
criteria along the pitch direction dimension. The model assumes
that the three criteria along the pitch direction dimension
are used to separate the stimuli into those that have a low
slope, medium–low slope, medium–high slope, or high slope.

Importantly, this model ignores the pitch height dimension. The
two most reasonable variants of the model were examined and
differ only in the assignment of category labels (T1, T2, T3, T4)
to response regions (low, medium–low, medium–high, and high
slopes). These were: 4312 and 4132 (shown in Figure 2B). Each
UDmodel contains three free decision parameters—three criteria
along the relevant dimension.

The MD model that we used also partitioned the space into
four separate response regions, but unlike the UD models, the
MD model focused on both the pitch height and pitch direction
dimensions. In addition, whereas the UD model decision bounds
were vertically oriented (in the UD_Height model) or were
horizontally oriented (in the UD_Direction model), in the MD
model the decision bound orientations were not constrained.
A model of this sort can be instantiated in a number of ways.
In line with some of our previous work (Maddox et al., 2013,
2014;Maddox and Chandrasekaran, 2014; Yi et al., 2014), we used
a simple-prototype model framework in which each category is
represented by a single prototype and each exemplar is classified
into the category with the most similar prototype. Because the
location of one of the prototypes can be fixed, and since a
uniform expansion or contraction of the space will not affect
the location of the resulting response region partitions, the MD
model contains five free decision parameters that determine
the location of the prototypes, and a single free parameter
that represents noise in their placement. Figure 2C displays a
scatterplot of the stimuli and response regions for the four tone
categories generated from a hypothetical participant using one
version of the MD model. A key feature of this model is that
it assumes the participant is integrating information from both
pitch height and pitch direction dimensions in their classification
of Mandarin tones, making this a model that implicates a
MD strategy. Importantly, we introduce the decisional models
we present here, and the perceptual models we present in
Section “Perceptual Processing Assumptions” as “cognitive” and
“perceptual” models within a specific theoretical framework –
multiple signal detection theory (Ashby and Townsend, 1986;
Maddox and Ashby, 1993). These models are referred to as
“cognitive” models because working memory, attention, and
executive functioning are relevant to the distinction between UD
andMD strategies.We explore working memory capacities of UD
andMD strategy users in sectionWorking memory and cognitive
strategies.

The third model is a RR model that assumes that the
participant guesses on each trial.

Perceptual Processing Assumptions
Whereas Figures 1A–C denotes the mean perceptual effects
of the stimuli, variability in the trial-by-trial perceptual effects
is estimated from the data. We assume that the perceptual
variance along the pitch height dimension is identical across
all 40 stimuli and that the perceptual variance along the
pitch direction dimension is identical across all 40 stimuli
(referred to as a stimulus invariant perceptual representation;
Ashby and Maddox, 1992; Maddox, 2001, 2002; Maddox and
Dodd, 2003), but that the perceptual variance along the
pitch height and pitch direction dimensions are uncorrelated
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FIGURE 2 | Scatterplots of the responses along with the decision boundaries that separate response regions from a hypothetical participant using a
version of the Unidimensional (UD)_Height (A), UD_Direction (B) and Multidimensional (MD; C) models as applied to the female talker stimuli shown
in Figure 1C.

(referred to as perceptual independence; Ashby and Townsend,
1986; Ashby, 1988). In other words, while we estimate the
perceptual variability along the pitch height dimension separately
from that along the pitch direction dimension, we assume
those variability estimates are constant across stimuli (stimulus
invariance), and that the perceptual covariance between pitch
height and pitch direction is zero (perceptual independence).
A smaller perceptual variance is associated with a more veridical
percept. The decisional processes introduced above, and the
perceptual processes introduced in this section are independent
of one another (Green and Swets, 1967; Maddox and Ashby,
1993).

Model Fitting Procedure
In this section, we elaborate on the procedures used to fit models
to behavioral data. On each trial, the participant is presented
with a single stimulus and emits one categorization response.
Thus for each stimulus the observed probability of responding
T1–T4 is either 1 or 0 with three of these responses having
an observed probability of 0 and one of 1. For example, if the
participant generated a T1 response on trial 1, then the observed
probability of responding T1, T2, T3, and T4 would be 1, 0,
0, and 0, respectively. The same holds for each of the 40 trials
in a block. For a given model and a fixed set of parameters,
the model generates a set of predicted response probabilities
for each of the 40 trials. The observed and predicted values are
combined using maximum likelihood, and are used to produce

an Akaike information criterion (AIC; Akaike, 1974) value:

AICi = −2lnLi + 2Vi (1)

where Li is the maximum likelihood for model i, and Vi is the
number of free parameters in the model. The model parameters
are adjusted until the smallest AIC value is identified, and
this is defined as the best fitting version of that model for
a given set of data. This process is repeated for all of the
models and the model with the smallest AIC value is defined
as the best fitting model for that data set. Notice that AIC
penalizes models with more free parameters. Thus, if two models
provide equivalent maximum likelihood fits to a set of data,
but one has more free parameters, the model with more free
parameters will be rejected in favor of the model with fewer free
parameters.

Data Analysis
Several of our results derive from an examination of the
effects of music training on performance across blocks of trials,
such as accuracy, and perceptual selectivity measures from
the computational models. In these cases, we conducted a 2
between group (musician vs. non-musician) × 5 within group
(block: 1–5, repeated measure) mixed design ANOVA with
“participant” as a random variable. Other results derive from
simple comparisons betweenmusician and non-musicians. These
include the first block of trials best fit by a MD strategy model,
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total number of blocks fit by a MD strategy model, working
memory comparisons between MD and UD users, and measures
of accuracy and perceptual variance in the generalization block.
For these analyses, we used t-tests to compare measures between
groups. All analyses were carried out using R version 3.0.3 (R
Core Team, 2014).

Results

We first present accuracy analyses comparing block-by-block
training and generalization performance between musicians and
non-musicians. Then we present model-based analyses to explore
the types of decision strategies that participants use to learn
during the task, working memory comparisons of different
strategy users, and the magnitude of perceptual noise along the
pitch height and pitch direction dimensions.

Accuracy Results
Learning curves for the musicians and non-musicians are
presented in Figure 3. We begin with a 2 group (between
subjects: musician vs. non-musician) × 5 training block (within
subjects: blocks 1–5) mixed design ANOVA on the accuracy
data with “participant” as a random variable. The main
effect of participant group was significant [F(1,28) = 11.07,
p = 0.0018, partial η2 = 0.3] and suggests a performance
advantage for musicians (average accuracy = 0.74) over non-
musicians (average accuracy = 0.50). The main effect of block
was also significant [F(4,112) = 47.60, p < 0.001, partial
η2 = 0.063]. Finally, the interaction between participant group
and block was significant [F(4,112) = 5.911, p < 0.001,
partial η2 = 0.174]. Post hoc pairwise comparisons of the
groups at each block suggest that the musician advantage held
in all blocks except block 1 (all p’s < 0.01). In addition,
we tested the difference in learning trajectories between
the two groups by conducting polynomial contrast tests on
accuracy between the musician and non-musician groups across
blocks. Results revealed a significant linear relationship of the
group × block interaction [F(1,112) = 14.01, p < 0.001, partial
η2 = 0.111], a significant quadratic trend of the interaction
[F(1,112) = 4.25, p < 0.05, partial η2 = 0.037], and a
significant cubic trend of the interaction [F(1,112) = 4.59,
p < 0.05, partial η2 = 0.039]. Contrast analyses using
the linear, quadratic, and cubic scores for each participant
indicated that the linear trend was significantly different for
the musician and non-musician groups. The average linear
increase in accuracy for the musician group (M = 0.49,
SD = 0.41) is significantly larger than the average linear
increase in accuracy for the non-musician group [M = 0.89,
SD = 0.42; t(148) = 5.93, p < 0.001]. The quadratic trend
also differed significantly for the musician and non-musician
groups across blocks and was significantly greater for the
non-musician group (M = −0.17, SD = 0.27) than for the
musician group (M = −0.43, SD = 0.29) [t(148) = 5.93,
p < 0.001]. Lastly, the cubic trend was significantly different
for musicians and non-musicians across blocks. The cubic
trend from the musicians was significantly larger for musicians

(M = 0.20, SD = 0.24), than non-musicians [M = −0.04,
SD = 0.21) [t(148) = 6.34, p < 0.001]. These results suggest
different learning trajectories for musicians and non-musicians,
where across blocks, musicians show a significantly stronger
linear and cubic trend relative to non-musicians, who show
a significantly stronger quadratic trend. As suggested by
an examination of Figure 3, generalization performance for
musicians was superior to that for non-musicians [t(28) = 3.48,
p < 0.005].

To determine whether more training trials might result in
a different pattern of accuracy rates for musicians and non-
musicians, we compared accuracies in block 4 and 5 for musicians
and non-musicians separately. Using two one-way repeated
measures ANOVA’s, results reveal that accuracy rates for both
musicians and non-musicians did not significantly change from
block 4 to 5 [musicians: F(1,14) = 2.88, p = 0.11; non-musicians:
F(1,14) = 0.01, p = 0.91].

Taken together, these data suggest that musicians show better
Mandarin tone category learning and generalization than non-
musicians. These findings replicate a large body of work in
showing an accuracy advantage in learning non-native speech
categories for musicians relative to non-musicians (Gottfried and
Riester, 2000; Alexander et al., 2005; Wong and Perrachione,
2007; Lee and Hung, 2008). Next we explore computational
modeling of participants’ responses to better understand the locus
of the musician performance advantage.

Computational Modeling Results
The accuracy-based analyses suggest that musicians showed a
learning and generalization advantage over non-musicians when
asked to categorize Mandarin tones. Accuracy measures are
informative, but they do not provide a mechanistic explanation
for this performance advantage – for instance, whether this
advantage is due to cognitive and/or perceptual processing
advantages in musicians. It is possible that non-musicians are
using the same strategies as musicians, just sub-optimally,
or they could be using different strategies altogether. In
addition, musicians and non-musicians may show similarities
or differences in perceptual selectivity along each dimension.
Model-based analyses allow us to address these important
questions.

FIGURE 3 | Average proportion correct for the five training blocks and
generalization block for musicians and non-musicians. Bars represent
SEM.
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Cognitive Strategies and Accuracy Rates across
Blocks
In this section, we compare the cognitive strategies used by
musicians and non-musicians during Mandarin tone category
learning. Specifically, we compare the use of a MD, UD, and RR
strategies across musicians and non-musicians. A breakdown of
strategies per block and group can be found in Figure 4.

To investigate the use of strategies over the course of the five
training blocks, we examined three aspects of the data between
musicians and non-musicians. First we determined the first block
of trials for which the MD model provided the best account
of the data and compared these values for musicians and non-
musicians. Second, we determined the total number of blocks of
trials for each participant for which the MD model provided the
best account of the data and compared these values for musicians
and non-musicians. Finally, we examined the learning curves for
musicians and non-musicians whose final block of data was best
fit by either a MD or a UD strategy. To determine the first block
of trials for which musicians (as a group) and non-musicians
(as a group) used a MD strategy, we identified the first block of
trials for each participant for which the MD model provided the
best account of the data. We then computed the average of these
blocks for musicians and non-musicians separately. For instance,
if the first block of trials for which a MD strategy best fit the data
frommusicians 1–3 were blocks 3, 4, and 4, then the average block
when they first used aMD strategy would be block 3.67.We found
that the first use of aMD strategy occurred significantly earlier for
musicians (average 1.87 blocks) than for non-musicians (average
3.20 blocks) [t(28) = 2.24, p < 0.05]. Next, we examined the
number of blocks of trials for which a MD strategy provided the
best fit to the data for musicians and non-musicians. We found

FIGURE 4 | Strategy use counts per block for musicians (A) and
non-musicians (B).

that the number of blocks of trials best fit by a MD model was
larger for musicians (average 4.07 blocks) than non-musicians
(average 2.13 blocks) [t(28) = 3.24, p < 0.01].

Finally, we examined the learning curves associated the best
fitting model during the final training block. We classified
participants as UD-Musician, UD-Non-Musician (UD groups
also included those best fit by RRs), MD-Musician, and MD-
Non-Musician based upon the best fitting model from block
five. As suggested by an examination of Figure 4, none of
the 15 musicians’ data was best fit by a UD model in block
5. Thus, we cannot generate a learning curve for this group.
The goal of this analysis was to determine how the strategy
used in the final block of trials might affect the course of
learning. Figure 5 shows the learning curves for each group based
on this classification. A 3 group (between subjects: musicians
using MD, non-musicians using MD, non-musicians using UD,
or RR strategies) × 5 training block (within subjects) mixed
design ANOVA conducted on proportion correct (accuracy)
revealed a significant main effect of group [F(2,27) = 23.69,
p < 0.0001, partial η2 = 0.64], a significant main effect of
block [F(4,108) = 52.99, p < 0.0001, partial η2 = 0.66], and a
significant interaction between block and group [F(8,108)= 5.38,
p < 0.0001, partial η2 = 0.28]. Post hoc pair-wise comparisons
with Bonferroni correction of the group main effect revealed
that both musicians and non-musicians using MD strategies
were significantly more accurate than non-musicians using UD
strategies in all blocks (all p’s < 0.01). The comparison of
musicians and non-musicians who used MD strategies did not
reach significance (p > 0.38). Thus, although musicians are
more likely to utilize MD strategies than non-musicians, those
musicians and non-musicians who use MD strategies do so with
nearly the same accuracy. This is an important finding as it
suggests a critical mechanism (MD strategy use) associated with
enhanced speech learning (Chandrasekaran et al., 2013; Maddox
et al., 2013, 2014; Maddox and Chandrasekaran, 2014; Yi et al.,
2014).

Working Memory and Cognitive Strategies
We also investigated any working memory differences between
participants who arrived at a UD strategy versus participants who

FIGURE 5 | Average proportion correct across all training blocks for
MD musicians, MD and UD non-musicians based on final block
strategy. Bars represent SEM.
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arrived at a MD strategy in block 5. Importantly, we did not find
any working memory difference between our musician group and
non-musician group [t(28) = 1.51, p = 0.14]. While this does
not replicate previous work (Parbery-Clark et al., 2009; Pallesen
et al., 2010; George and Coch, 2011; Kraus et al., 2012; Strait et al.,
2013), our computational modeling can give us insight into why
this may be.

Executive function is critical for MD strategy use as it is
a complex decisional process requiring the maintenance of
multiple pieces of auditory information in order to make a
categorical judgment. Thus, we predict that participants who use
MD strategies will have a higher working memory capacity. To
test this, we conducted a one-way ANOVA of group (between
subjects: musician, non-musician) and block 5 strategy [between
subjects: MD, non-MD (UD and RR)] on composite working
memory scores (forward score + backward score). The ANOVA
revealed a significant main effect of strategy [F(1,27) = 7.28,
p < 0.01], but no significant main effect of group [F(1,27) = 2.80,
p = 0.11] on composite working memory score. Post hoc t-tests
between groups suggest that block 5MDusers have a significantly
higher working memory composite score than block 5 non-MD
users [t(28) = 3.21, p < 0.005]. Within just non-musicians,
block 5 MD users have a significantly higher working memory
composite score relative to block 5 non-MD users [t(13) = 2.55,
p < 0.05]. In addition, there is no difference in working memory
composite scores between non-musician block 5 MD users and
musician block 5 MD users [t(20) = 0.27, p = 0.79]. Because
there were no UD or RR musicians, we could not compare their
working memory scores to those of MD musicians. These results
suggest that working memory abilities may partially explain who
uses a MD strategy by the end of training, regardless of music
training.

Strategies and Accuracy Rates in Generalization
Block
Turning to the generalization block, a Fisher exact test reveals
that there were significantly more musicians using a MD strategy
relative to non-musicians using a MD strategy (p < 0.001). Next,
we explored the accuracy rates associated with musicians and
non-musicians who were either MD strategy users or UD strategy
users in the generalization block (strategy counts in Figure 4)
and found that non-musicians using MD strategies obtained
marginally higher accuracy rates than non-musicians using UD
strategies [t(10) = 2.03, p = 0.07]. Likewise, musicians using
MD strategies obtained significantly higher accuracy rates than
musicians using UD strategies [t(13) = 2.43, p < 0.05] whereas
musicians using MD strategies were no more accurate than non-
musicians using MD strategies [t(14) = 0.59, p = 0.56]. Just
as in the training blocks, these results suggest that employing a
MD strategy, regardless of music experience, enhances accuracy.
However, these results should be interpreted with caution due to
the small sample sizes.

Computational Modeling Results of Perceptual
Representation Across blocks
In this section, we examine the effects of musical training
on perceptual selectivity along the pitch height and pitch

direction dimensions. A number of studies in the literature
(Goldstone, 1994; Maddox and Bogdanov, 2000; Maddox, 2001,
2002; Maddox and Dodd, 2003) suggest that perceptual forms
of selectivity often follow when decisional forms of selectivity
are operative, but not always (Filoteo and Maddox, 1999). Given
that English speakers naturally weight pitch height, due to its
relevance in English, it is reasonable to suppose that musicians
and non-musicians will not show any differences in perceptual
selectivity along the pitch height dimension before training
(however, see Perrachione et al., 2013 regarding the influence of
music experience on perceptual selectivity at the sentence-level).
It is likely, however, that musical training leads to enhanced
perceptual selectivity along the pitch direction dimension and
thus musicians will show smaller estimates of perceptual noise.
Because we focus on the perceptual variability estimates, we
wanted to use the model that best accounted for the data. This,
by definition, is the most general MDmodel.

First, we examined the effects of musical training on
perceptual selectivity along the pitch height dimension. We
conducted a 2 group (between subjects) × 5 block (within
subjects) mixed design ANOVA, with “participant” as a random
variable. We found a main effect of group [F(1,28) = 4.16,
p = 0.051, partial η2 = 0.129], and a main effect of block
[F(4,112) = 23.59, p < 0.001, partial η2 = 0.457], but no
interaction [F(4,112) = 1.55, p = 0.194, partial η2 = 0.052].
Musicians showed better perceptual selectivity in the form of
smaller perceptual variance (mean = 0.17) compared to non-
musicians (mean = 0.29). In addition, perceptual variance across
groups decreased with learning (mean of block 1 = 0.43; mean of
block 5 = 0.12). These results are displayed in Figure 6.

Second, we examined the effects of musical training on
perceptual selectivity along the pitch direction dimension. We
conducted a 2 group (between subjects) × 5 block (within
subjects) mixed design ANOVA, with “participant” as a random
variable. We found a significant interaction [F(4,112) = 2.87,
p < 0.05, partial η2 = 0.093], along with a significant main
effect of group [F(1,28) = 11.38, p < 0.005, partial η2 = 0.289],
and a significant main effect of block [F(4,112) = 3.62,
p < 0.01, partial η2 = 0.115]. To identify the locus of
the significant interaction, we conducted two analyses. First,
we ran t-tests comparing musicians and non-musicians at
each block. We found significant smaller perceptual variance
estimates for musicians in all blocks except the first [block 1:
t(28) = 0.42, p = 0.68; block 2: t(28) = 4.33, p < 0.0005;
block 3: t(28) = 2.13, p < 0.05; block 4: t(28) = 2.92,
p < 0.01; block 5: t(28) = 3.01, p < 0.01]. Next, we conducted
separate one-way repeated measures ANOVA’s within each group
and found musicians’ perceptual variance estimates along the
pitch direction dimension declined significantly across blocks
[F(4,56) = 15.24, p < 0.0001, partial η2 = 0.521] whereas
non-musicians’ did not [F(4,56) = 0.57, p = 0.69, partial
η2 = 0.039].

Computational Modeling of Perceptual
Representation in Generalization Block
Here we examine the perceptual variance estimates in the
generalization block. These analyses allow us to determine
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FIGURE 6 | Average perceptual variance of groups across training blocks and generalization block in the pitch height and pitch direction
dimensions. Bars represent SEM.

how perceptual variability along the pitch height and pitch
direction dimensions changes in the context of a new talker
and no feedback. Perceptual variance estimates were smaller
for musicians relative to non-musicians along both the pitch
height [t(28) = 2.42, p < 0.05], and pitch direction dimensions
[t(28) = 3.39, p < 0.005]. These results are depicted in Figure 6.
We also compared the perceptual variance estimates in the final
training block to those in the generalization block. Interestingly,
the pitch height and pitch direction perceptual variance estimates
were numerically smaller in the generalization block than in the
final training block for musicians, but were numerically larger
for non-musicians. Even so, the only one of these comparisons
to reach statistical significance was for musicians along the pitch
height dimension [t(14) = 2.21, p < 0.05].

Discussion

We examined the effects of long-term musical training on
non-native speech learning in native English speakers, none of
whom had prior experience with Mandarin tones. Our results
show a musician advantage (average accuracy = 0.74) relative
to non-musicians (average accuracy = 0.50) in learning to
categorize naturally produced Mandarin tones. Our results are
consistent with previous studies that have identified a musician
advantage in learning speech categories (Gottfried and Riester,
2000; Alexander et al., 2005; Wong and Perrachione, 2007; Lee
and Hung, 2008). While accuracy differences help identify a
cross-domain (between music and speech learning) advantage
for musicians, they do not provide information on the specific
mechanistic underpinnings of the advantage. To this end, we
employed computational modeling analyses to examine the locus
of the musician advantage. Specifically, our models specified
decisional strategies used by musicians and non-musicians, as
well as perceptual processes that are independent of the decisional
processes. The computational modeling results revealed that
musicians used the optimal, MD strategy faster, and more
frequently than non-musicians. This suggests musicians have

enhanced cognitive processing supporting categorical decisional
judgements relative to non-musicians as a group. Importantly,
the model-based analyses allow us to examine decision processes
in each individual. Although musicians used MD strategies faster
and more frequently than non-musicians, when compared to
non-musicians who used MD strategies by block 5, there were
no differences in accuracy rates. In addition, across participant
groups, participants who used MD strategies in the final training
block had a significantly higher working memory composite
score than those who used UD strategies. Specifically, musicians
and non-musicians who used MD strategies in block 5 were
no different in their composite working memory scores. In
addition, non-musicians who used MD strategies in block 5 had
a significantly higher working memory score than non-musicians
who had did not use a MD strategy in block 5. These are critical
findings as they suggest a mechanism for the musician advantage;
namely, an increased use of MD strategies, since musicians and
non-musicians who usedMD strategies by the end of the training
were very similar with respect to accuracy and working memory
capacity.

Increased use of MD strategies leads to enhanced speech
learning, but changes in perceptual processing may also
explain better performance. Importantly, these parameters are
theoretically independent from the decision parameters (Green
and Swets, 1967; Maddox and Ashby, 1993) and in some cases
are empirically independent (Filoteo and Maddox, 1999). The
current results suggest that both musicians and non-musicians
show increased perceptual selectivity (i.e., reduced perceptual
variance or noise) along the pitch height dimension with
learning. However, only musicians show increased perceptual
selectivity (or more veridical perception) along the under-
weighted pitch direction dimension. Together, this suggests
that the performance advantage in learning non-native speech
sounds for musicians relative to non-musicians is due not only
to cognitive processes, but also perceptual processes and is
consistent with enhanced perceptual representation of dynamic
pitch changes in musicians, relative to non-musicians (Wong
et al., 2007).
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Why would long-term music training promote cross-domain
auditory plasticity? Studies examining plasticity related to music
training have examined basic perceptual encoding of auditory
signals as well as higher-level linguistic and cognitive processes.
For example, musicians show enhanced encoding of linguitic
pitch patterns at the level of the midbrain/brainstem relative to
non-musicians (Wong et al., 2007). Such perceptual encoding
advantages could lead to faster speech learning in musicians by
relaying a more faithful representation of the speech signal to
the cortex than non-musicians. A general cognitive/decisional
advantage could drive enhanced speech learning as well. In
fact, a previous proposal posits a reciprocal process where
cognitive advantages drive perceptual advantages in a top–
down manner (Strait et al., 2010). The OPERA hypothesis
suggests that music training places a significantly greater
demand on the perceptual and/or cognitive circuitry that is
shared between music and speech (Patel, 2014). In addition,
recent findings suggest common mechanisms underlying music
aptitude and speech-sound processing (Kempe et al., 2014).
Thus, long-term training could alter cognitive and perceptual
processes that are common to music and speech, resulting
in enhanced learning of components shared between the two
domains.

In the current study we examined the extent to which
music training enhanced learning of non-native, linguistic
pitch patterns. Pitch is a basic element in music and speech,
and both domains use pitch patterns to convey information
extensively. In English speech, pitch patterns can convey
information related to prosody and emotion. Pitch patterns are
also used in some languages (e.g., Mandarin Chinese) within
a syllable to change word meaning. Native English-speaking
adults struggle in learning Mandarin pitch patterns and often
confuse one tone category with another (Wang et al., 1999;
Chandrasekaran et al., 2010). Our results show that music
training can enhance the ability to categorize non-native liguistic
pitch patterns. Computational modeling helps pinpoint the locus
of this advantage by showing that musicians use the optimal
MD strategy sooner and more often than non-musicians. In
addition, musicians shower greater perceptual selectivity of
the stimuli along the pitch direction dimension relative to
non-musicians.

Lexical tones are well characterized by a MD space with two
dimensions related to pitch (pitch height and direction) that
can help disambiguate tone categories. The relative weighting
between dimensions is language-dependent, where native English
speakers tend to weight pitch direction less than native Mandarin
speakers, reflecting the relative difference in the use of this
dimension in their language (Gandour and Harshman, 1978;
Chandrasekaran et al., 2007). Thus, native English speakers focus
predominantly on pitch height to disambiguate tone categories.
In previous studies using computational models we found that
relying on only one of the two dimensions during learning (a
UD decision strategy) is a sub-optimal strategy (Maddox et al.,
2013; Yi et al., 2014). For example, an over-reliance on pitch
height (is it high or low?) is not optimal because it leads to
confusions between the rising and the falling tones (which have
similar average heights but differ considerably in direction).

Pitch height is also highly talker-dependent; for example, it
is a critical cue in differentiating male and female talkers.
Thus, an over-reliance on this dimension may lead to category
confusions across talkers. The computational modeling results of
the current study show that relative to non-musicians, musicians
were faster and more frequent users of MD strategies, which
incorporate both pitch height and pitch direction information-
an advantageous strategy that promotes greater differentiation
between tone categories.

While learning is important, generalization of the learned
material is also important, especially in the case of speech
as it rarely occurs in the same context. Different talkers
with variable speaking characteristics such as rate of speech,
average pitch, etc., all create unique contexts in which speech
must be understood. Therefore, in addition to during the five
blocks of learning, we examined accuracies, strategies, and
perceptual selectivity during a generalization block in which
participants were required to categorize the four Mandarin
tones in the context of a single, new speaker and received
no feedback. Musicians showed an accuracy advantage that
was supported by enhancements in both decisional strategies
(larger number of MD users) and perceptual selectivity
(smaller perceptual variance along pitch height and pitch
direction dimensions). A large literature suggests that non-
native speech sound training which implements highly variable
training stimuli is more conducive than low variable training
stimuli to successfully generalizing learned speech sounds to
new contexts (see Bradlow, 2008; Perrachione et al., 2011).
Importantly, prior research has manipulated the training
paradigm in order to produce successful generalization. The
current results build off of this literature and suggest there
may also be individual differences (such as music training)
involved in how successful a participant is in generalizing
learned non-native speech sounds to novel contexts. Future
research should investigate how and which individual differences
lead to successful generalization of learned non-native speech
sounds.

The burgeouning literature on the cross-domain plasticity
induced by long-term music training has led several researchers
to propose music training as a clinical training tool. Our current
findings hold promise for using long-term music training as a
method to help clinical populations that demonstrate greater
auditory–perceptual variability (Hornickel and Kraus, 2013) and
learning-related difficulties. However, on a cautionary note,
several questions and criticisms should be addressed before
pursuing more clinical goals. For example, first, it is unclear
whether the cognitive and perceptual advantages reflect an effect
of long-term music training, or a general predisposition that
drives individuals toward music training. A recent longitudinal
study suggests the former (Kraus et al., 2014). Using a
longitudinal design, children from the Los Angeles area were
randomly assigned to either defer music involvement for a
year and receive only 1 year of music lessons, or begin music
instruction immediately and receive a total of 2 years of music
training. By the end of the 2-year training, the second group,
which had received 2 years of music training, showed stronger
neurophysiological distinctions of /ba/ versus /ga/ sounds, while
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the first group did not. In addition, within the second group,
number of hours spent practicing over the 2-year training period
positively correlated with improvement in neural differentiation
(Kraus et al., 2014). However, there were several limitations
that prevent strong inferences from being drawn. For instance,
an active control group against which they could compare the
gains in the 2-year music group was not included. In addition,
there were several issues regarding analyses of the data, and
no behavioral data were presented (Evans et al., 2014). Next,
we need to evaluate the specificity of the musician advantage.
Pitch and changes in pitch are clearly important attributes of
music. Whether cognitive and perceptual advantages percolate
to other attributes of sound such as loudness and duration
need to be addressed in future studies. Lastly, in the current
study we use a definition of ‘musician’ that is derived from the
larger existing literature; however, this definition is admittedly
narrow (see Levitin, 2012 for example), as is the definition of
a ‘non-musician.’ In addition, a larger sample size, allowing
the examination of music training to be a continuous variable,
and a well-established performance-based measure would prove
useful.

Future Directions
There are many available future directions. One is to more
broadly explore the extent of the observed musician cognitive
advantage in speech learning. For instance, cognitive tasks
that show musician advantages are frontally mediated cognitive
tasks that test executive function (Bialystok and DePape, 2009),
working memory (Parbery-Clark et al., 2009; Pallesen et al., 2010;
George and Coch, 2011; Kraus et al., 2012; Strait et al., 2013),
and switching (Hanna-Pladdy and MacKay, 2011). Musicians
also show increased gray matter volume in the dorsolateral
prefrontal cortex (Bermudez et al., 2009). Given that musicians
show frontally mediated advantages, it is possible these complexs
frontally mediated rule-based strategies drive cross-domain
auditory plasticity, especially given the task-dependent nature
of activation in the human auditory cortex (Ohl and Scheich,
2005). Notably, when construed within a dual-learning systems
perspective, a rule-based learning advantage may not transfer
to all learning conditions. Within the dual-learning systems
framework, a reflective system, which uses executive attention
and working memory, is competitive with the reflexive system,
which relies on dopamine-mediated reward signals in the
striatum (Ashby and Maddox, 2005, 2011; Maddox et al., 2013;
Maddox and Chandrasekaran, 2014). Since these two systems
are competitive, if the musician advantages in cross-domain
plasticity are driven purely by the frontally mediated cognitive
advantages, musicians should perform worse on auditory tasks
that require the reflexive, striatally mediated, system than
on auditory tasks that require the reflective system. Thus a
robust theoretical framework may help establish the limits of
neuroplasticity related to music training.

A second future direction is to investigate whether different
music-training environments provide different cognitive or
perceptual benefits related to non-native speech learning. In the
present study, we used musicians who have at least 10 years of
formal group or private training. It is possible that musicians

with less training, those who play instruments from different
instrument families, those who are self-taught, or those who
play instruments that use non-Western tonality will show
different learning patterns compared to the musicians in this
study. For instance, many non-Western styles of music use
tonalities that distinguish between smaller differences in pitch
than Western music. This may result in greater demands on
the perceptual system, and consequently lead to a non-Western
trained musician advantage over Western-trained musicians
in learning non-native speech sounds due to the increased
sensitivity to smaller pitch differences. Lastly, research suggests
that non-human species are capable of differentiating between
different types of pitch movements – a skill trained during music
learning and used in non-native speech learning (Ohl et al., 2001;
Brosch et al., 2004). As suggested by Patel (2014), animal models
may provide valuable insight into how specific aspects of music
training (i.e., pitch movements) may influence species-specific
language components such as vocalizations, and thus clarify how
music training may affect speech learning.

Conclusion

Using rigorous computational modeling, we extended prior
research by showing that the musician accuracy advantage
relative to non-musicians observed in prior studies can be
attributed to both cognitive advantages, as evidenced by earlier
and more frequent use of the optimal MD strategy; and
perceptual advantages, as evidenced by smaller perceptual noise
along both the pitch height and pitch direction dimensions. In
addition, musicians and non-musicians who used MD strategies
by the end of training showed no differences in accuracy
and working memory scores. Contrastingly, participants who
used MD strategies by the end of training showed higher
accuracy rates and working memory scores than those who
used UD or RR strategies. These results suggest a cognitive
mechanism for the musician accuracy advantage. Specifically,
the use of MD strategies faster and more often relative to
non-musicians. In the generalization block, where stimuli were
presented by a new talker, and no feedback was given, more
musicians used the optimal strategy and obtained a higher
accuracy relative to non-musicians. At the perceptual level, our
modeling revealed that musicians’ perception of the stimuli is
more veridical, especially along the normally underweighted
pitch direction dimension. This pattern extended to novel stimuli
during a generalization phase. These results provide further
evidence for cross-domain auditory plasticity due to music
training.
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