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Polarity correspondence effect
between loudness and lateralized
response set

Seah Chang and Yang Seok Cho*

Laboratory of Human Performance, Department of Psychology, Korea University, Seoul, South Korea

Performance is better when a high pitch tone is associated with an up or right response
and a low pitch tone with a down or left response compared to the opposite pairs,
which is called the spatial-musical association of response codes effect. The current
study examined whether polarity codes are formed in terms of the variation in loudness.
In Experiments 1 and 2, in which participants performed a loudness-judgment task and
a timbre-judgment task respectively, the correspondence effect was obtained between
loudness and response side regardless of whether loudness was relevant to the task
or not. In Experiments 3 and 4, in which the identical loudness- and timbre-judgment
tasks were conducted while the auditory stimulus was presented only to the left or
right ear, the correspondence effect was modulated by the ear to which the stimulus
was presented, even though the effect was marginally significant in Experiment 4.
The results suggest that loudness produced polarity codes that influenced response
selection (Experiments 1 and 2), and additional spatial codes provided by stimulus
position modulated the effect, generating the stimulus eccentricity effect (Experiments 3
and 4), which is consistent with the polarity correspondence principle.

Keywords: polarity coding, auditory stimulus-response compatibility, response selection, SMARC effect, SPARC
effect

Introduction

Performance is better when stimulus and response alternatives spatially correspond with each other
than when they do not. Left-right responses are faster and more accurate when the locations
of stimulus and response are compatible than when they are not, regardless of whether stimulus
location is relevant to the task or not (Eimer et al., 1995; Lu and Proctor, 1995). As an example, the
spatial stimulus-response compatibility (SRC) effect obtained when the target location is irrelevant
to the task is called the Simon effect (Simon and Rudell, 1967). Furthermore, the SRC effects are also
found with orthogonal arrays of stimulus and response sets. When a vertically arrayed stimulus set
is coupled with a horizontally arrayed response set, an up-right/down-left advantage is obtained
(Weeks and Proctor, 1990; Lippa and Adam, 2001). These various kinds of spatial SRC effect have
been thought to be due to spatial coding of the stimulus and response alternatives (Umiltd and
Nicoletti, 1990; Hommel, 1997). The spatial coding accounts suggest that spatial codes are formed
with respect to multiple frames of reference, resulting in correspondence effects between stimulus
and response spatial codes (Lamberts et al., 1992; Hommel and Lippa, 1995; Roswarski and Proctor,
1996; Adam et al., 1998; Cho and Proctor, 2003).

The SRC effect has been obtained even with a set of stimuli with no obvious spatial feature. For
instance, when participants make an odd-even parity judgment of a digit stimulus from the set
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of 0-9, performance is better when the left response is made
to a small number and the right response to a large number,
which is the phenomenon called the spatial-numerical association
of response codes (SNARC) effect. The SNARC effect has been
attributed to a mental number line with space in which small
numbers are encoded to the left side and large numbers to the
right side (Dehaene et al., 1993). The mapping of up or right
response to a high pitch tone and down or left response to a low
pitch tone typically yields better performance than the opposite
mapping. This type of SRC effect is referred to as the spatial
musical association of response codes (SMARC) effect (Rusconi
et al., 2006), or alternatively, as the spatial pitch association of
response codes (SPARC) effect (Lidji et al., 2007). The SMARC
effect is manifested by faster reaction times (RTs) with the
mapping of high pitch tone to up or right response and low pitch
tone to down or left response than the opposite mapping. The
SMARC effect has been found even when the pitch height of
tones was task-irrelevant while the timbre of the tone (Rusconi
et al., 2006; Lidji et al., 2007; Cho et al., 2012) or the color of a
visual stimulus (Nishimura and Yokosawa, 2009; Cho et al., 2012)
was task-relevant.

The vertical SMARC effect has been consistently obtained
across studies, irrespective of task relevance of pitch height and
musical proficiency. For example, when Rusconi et al. (2006)
conducted a pitch comparison task in which the pitch height
of a target tone was judged in comparison to a referent tone,
both musician and non-musician participants showed better
performance when an up response was made to a high pitch
tone and a down response to a low pitch tone than the opposite
mapping. Moreover, in Rusconi et al’s (2006) Experiments 2
and 3, and Lidji et al’s (2007) Experiment 3, musician and
non-musician participants performed a timbre judgment task in
which the timbre of a target tone was judged. Even when pitch
height was irrelevant to the task, performance was better when
a high pitch tone was responded to with the up response and a
low pitch tone with the down response than the opposite pairs
for both non-musician and musician groups in their studies.
The results indicated that non-musicians as well as musicians
associated high pitch tones with the up response and low pitch
tones with the down response, resulting in the vertical SMARC
effect, regardless of the task relevance.

The SMARC effect was also found when a lateralized response
set was used. Lidji et al. (2007) found that the pairs of “high-
right/low-left” produced better performance than those of “high-
left/low-right” when non-musician participants were asked to
judge whether the pitch of the target tone is higher or lower
than the preceding referent tone using left or right response
keys in their Experiment 2. Rusconi et al. (2006) also reported a
marginally significant 16.5-ms high-right/low-left advantage for
non-musicians, in their Experiment 1. However, while consistent
results have been obtained on this horizontal SMARC effect when
the pitch height of tones was task-relevant, contradictory results
have been reported across experiments in which the pitch height
was irrelevant to the task. When Rusconi et al. had participants
perform a timbre-judgment task in their Experiments 2 and 3,
musically trained participants showed a significant horizontal
SMARC effect, but musically untrained participants did not.

Lidji et al. (2007) also obtained a similar result in their
Experiment 1, showing an evident horizontal SMARC effect only
for musicians.

To explain the SMARC effect, Lidji et al. (2007) proposed the
spatial mental representation account. According to this account,
high pitch tones are associated with the upper part of the mentally
represented vertical pitch line and low pitch tones with the
lower part of the line. The association of pitch height with the
vertical line seems plausible in the sense that pitch height is
verbally expressed with vertical spatial terms such as “high” and
“low” in multiple languages, including English, Korean, Chinese,
and Spanish. Rusconi et al. (2006) argued that the presence
of the vertical SMARC effect is consistent with the view that
the pitch height is represented as a multidimensional spatial
form, as Mudd (1963) demonstrated, suggesting that “human
cognitive system maps pitch onto a mental representation of
space” (Rusconi et al., 2006, p. 126). Moreover, Lidji et al. (2007)
suggested that the correspondence effect between pitch height
and vertical response is due to an automatic activation of the
association between them, irrespective of musical experience.
When people respond with vertically aligned response sets, high
pitch tones are automatically associated with the up response
and low pitch tones with the down response. Furthermore, Lidji
et al. (2007) attributed the significant horizontal SMARC effect
in musicians to the familiarity with piano keyboard which locates
lower tones on the left side and higher tones on the right side. The
participants’ knowledge of the keyboard structure or the usual
order of singing or playing the musical notes, which is activated
only when the pitch is explicitly processed in non-musicians,
is a crucial factor for the emergence of the horizontal SMARC
effect. Lidji et al. (2007) suggested that the lack of the SMARC
effect was due to non-musicians being not able to automatically
associate pitch to the horizontal spatial representation when pitch
was irrelevant to the task. Because Lidji et al. (2007) attributed the
absence of the SMARC effect to the inability to represent pitch
to spatial representation, the comparison between musicians and
non-musicians was necessary.

On the contrary, Nishimura and Yokosawa (2009) found
a significant 8-ms horizontal SMARC effect when participants
performed a visual task accompanied by accessory high or low
pitch tone to the left or right ear. They suggested that the
musical experience of a short period of time might have been
sufficient to form the spatial-musical association because the
participants experienced musical education only in elementary
and junior high schools as a regular course. Recently, Cho et al.
(2012) suggested that a referent tone is crucial for non-musicians
to categorically code pitch height automatically by indicating
that a referent tone was presented only when pitch height was
relevant to the task in both Rusconi et al’s (2006) and Lidji
etal’s (2007) experiments. To examine this possibility, Cho et al.
(2012) had participants perform a pitch-judgment task, a timbre-
judgment task, and a color discrimination task with or without a
referent tone. The results dissociated the influence of a referent
tone on the horizontal SMARC effect from the influence of the
task relevance variable. When pitch height was task-relevant in
Experiment 1, non-musicians showed a significant horizontal
SMARC effect regardless of the presence of the referent tone,
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which reveals that they were able to categorically code pitch
height even without a referent tone. In contrast, when pitch
height was irrelevant to the task, non-musician participants
produced a horizontal SMARC effect only when a referent tone
was provided (Experiments 2 and 3), while musicians produced
it regardless of the presence of a referent tone (Experiment 2).

In line with Cho et al’s (2012) recent findings, Rusconi
et al. (2006) and Nishimura and Yokosawa (2009) suggested
that the horizontal SMARC effect might be a variant of
the orthogonal SRC effect and that the SMARC effect is
due to polarity correspondence. According to the polarity
correspondence principle, initially proposed by Proctor and Cho
(2006), stimuli and responses are coded as either + or — polarity
relative to a reference point across multiple dimensions. The
summed polarity codes for the stimulus and response contribute
to the response selection efficiency in various binary choice tasks.
That is, binary choice performance is better when the polarity
code of the stimulus corresponds to the polarity code of the
response in comparison to when they do not. As demonstrated
in the orthogonal SRC effect, “up” and “right” are coded as +
polarity and “down” and “left” are coded as — polarity, resulting
in the up-right/down-left advantage. Similarly, the SMARC effect
arises because high pitch and up/right response are coded as +
polarity whereas low pitch and down/left response as — polarity.
Cho et al. (2012, p. 733) further argued that “the horizontal
SMARC effect occurs when the verticality is task-relevant or
when a referent tone is presented relative to which pitch height
is coded categorically”.

In general, recent studies on auditory SRC effects tend to
address the question of pitch representation. Even though a tone
is a multidimensional stimulus that consists of pitch, loudness,
and timbre dimensions, little is known about how loudness
is mentally represented and how these mental representations
are used in the response selection process. It is important to
note that loudness also has a categorical characteristic which
can be divided into low-level loudness (soft) and high-level
loudness (loud) relative to a reference, enabling categorical
representation, and relative judgments. Therefore, if loudness is
also coded categorically relative to a reference, a correspondence
effect with binary responses would be obtained (Proctor and
Cho, 2006). Furthermore, it has been found that pitch and
loudness dimensions are inseparable and integral, in that making
a variation on one dimension causes interference with the
categorizing process on the other dimension (Grau and Kemler-
Nelson, 1988; Marks, 1989; Melara and Marks, 1990a,b,c; Melara
et al., 1992). Therefore, investigating the underlying mechanism
of loudness coding and its influence on response selection process
would provide useful insights for previous study results on
auditory SRC effects using pitch.

The primary aim of this research was to examine whether
loudness produces a correspondence effect in a lateralized
response setting. As predicted by the polarity correspondence
principle, if loudness is also categorically coded as + or — polarity
relative to the referent tone, performance would be better when
the polarity code of loudness corresponds to that of a response
alternative than when it did not. To test this, a loudness-judgment
task and a timbre-judgment task were conducted respectively

in Experiments 1 and 2, with non-musician participants. The
secondary aim was to examine whether the correspondence effect
is modulated by the stimulus eccentricity. Previously, it has been
found that the up-right/down-left advantage increases in size
when the response set is positioned at the right hemispace and
reverses to an up-left/down-right advantage when it is positioned
at the left hemispace. This variation in the orthogonal SRC effects
as a function of the response-set location along the horizontal
dimension is called the response eccentricity effect (Michaels,
1989; Michaels and Schilder, 1991; Weeks et al., 1995; Cho and
Proctor, 2002, 2004, 2005; Proctor and Cho, 2003; Nishimura and
Yokosawa, 2006). This phenomenon occurs because response
location provides an additional spatial code which contributes
to the overall polarity of each response alternative (Proctor and
Cho, 2006). Similarly, it was assumed that if the additional spatial
code is provided by stimulation position, the correspondence
effect would be modulated by stimulation position, which
can be referred to as the stimulus eccentricity effect. To
examine this hypothesis based on the polarity correspondence
principle, Experiments 3 and 4 investigated the eccentricity
effect by conducting a loudness-judgment task and a timbre-
judgment task while the stimulation position to which the
sound was provided was manipulated. All tone stimuli were
manipulated in terms of loudness level while their frequencies
were kept at a constant 1,000 Hz which has been a commonly
used frequency for reference to which other frequency tones
are adjusted in previous studies (e.g., Howard and Angus,
2009).

Experiment 1: Loudness-Judgment Task

The purpose of Experiment 1 was to examine whether the
loudness of sound produces a correspondence effect with a
lateralized response set when participants perform a loudness-
judgment task in which the loudness of sound was task-relevant.
Participants were to discriminate whether the loudness of a
pure tone was louder or softer than a referent tone. Since the
loudness of tones was relevant to the task, the correspondence
effect between loudness and response side was expected if the
loudness was coded in terms of its polarity. If polarity codes
are formed in terms of loudness, a high-level loudness tone
following a reference would be coded as + polarity and a
low-level loudness tone following the referent would be coded
as — polarity. Therefore, the polarity correspondence with right
response (+) and left response (—) would generate a loud-
right/soft-left advantage.

Materials and Methods

Participants

As did the previous SMARC research (Lidji et al., 2007), 16
undergraduate students (mean age = 22.13, 10 females) at
Korea University participated for monetary reward of KRW
5,000 (about 4 US dollars). Four had no prior musical training
experience; the other 12 had an average of 4.58 years of musical
training and had stopped it since 12.91 years of age on average. All
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were right-handed and had normal hearing as determined by self-
report. The present and following experiments were approved by
the Institutional Review Board at Korea University (KU-IRB-13-
25-A-1).

Apparatus, Stimuli, and Procedure

All experiments were programmed and presented using E-prime
software (Version 2.0, Psychology Software Tools, Inc.). Stimuli
were presented on a 17-inch CRT monitor of a personal computer
and viewed at a distance of approximately 60 cm. Responses were
made by pressing the leftmost or rightmost key among five keys
on a Micro Experimental Laboratory 2.0 response box with the
left and right index fingers.

Three white crosses (0.4° x 0.4°, see Figure 1) were presented
against a black background as fixation. The imperative stimuli
were a low-level loudness pure tone (59-dB, SPL) and a
high-level loudness pure tone (77-dB, SPL) which were given
to the participants through PC convertible headphones. An
intermediate-level loudness pure tone (67-dB, SPL) was used
as the reference. Loudness for each tone was measured at the
same location on the same day in a soundproof booth. All
different loudness tones were generated for the same pitch
(1,000 Hz).

Participants were tested individually in a soundproof booth
with dim light. They were instructed to align their body midline
with the center of the screen and put each index finger on the left-
most and right-most keys of the response box, which was lined up
with the center of the screen. They were asked to press the left or
right key to the low- or high-level loudness of each target auditory
stimulus as quickly as possible while maintaining high accuracy.
The experiment consisted of two sessions of 16 practice trials
and 160 test trials each. Participants performed the loudness-
judgment task with one mapping of low- and high-level loudness
to left and right responses in the first session and the other

mapping in the second session, with the order counterbalanced
across participants.

At the beginning of each trial, the fixation crosses were
presented at the center of the screen for 500 ms. The referent
tone was presented simultaneously with the fixation crosses for all
trials. The imperative auditory stimulus was presented for 500 ms,
followed by a dark screen that remained until a response was
made. The word “Incorrect” in white during the practice trials
and in red during the test trials was displayed for 500 ms as
feedback at the center of the screen when an incorrect response
was made. The white fixation for the next trial appeared 500 ms
after the correct response or the error feedback. One minute rest
period was given between the sessions.

Results

Reaction times shorter than 125 ms and longer than 1,250 ms
were excluded as outliers (0.16%). Mean correct RT and
percentage of error (PE) for each participant were calculated as
a function of loudness (low- or high-level loudness) and response
side (left or right). Repeated measures analyses of variance
(ANOVAs) were conducted on the mean RT and PE data, with
those variables as within-subject factors. Mean RT and PE data
are shown in Table 1.

RT Analysis

The main effect of loudness was significant, F(1,15) = 7.95,
p =0.0130, MSE = 628, nf, = 0.23. The mean RT was shorter for
high-level loudness tones (M = 343 ms) than low-level loudness
tones (M = 361 ms). The main effect of response side was also
significant, F(1,15) = 6.15, p = 0.0255, MSE = 293, nf) = 0.10,
showing that responding with the right hand (M = 346 ms) was
faster than with the left hand (M = 357 ms). Of importance,
a significant interaction between loudness and response side
was obtained, F(1,15) = 4.76, p = 0.0454, MSE = 1,098,

Blank (1,000 ms)

) +++ (=

) +++ (=

FIGURE 1 | Example of a trial sequence in Experiments 1 and 2.

Referent tone (500 ms)

Target tone (500 ms)

Response (Until Response)

Feedback (1,500 ms)

Incorrect
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TABLE 1 | Mean reaction time (RT, in milliseconds), percentage of error
(PE), and stimulus and response polarities in parenthesis in Experiment 1
as a function of loudness and response side.

Response side Low-level loudness High-level loudness

RT (SD) PE (SD) RT (SD) PE (SD)
Left 357 (49.42)  0.47 (0.90) 357 (63.61) 2.50 (3.16)
(=) (+-)
Right 364 (51.46) 220 (2.61) 329(59.36) 2.66 (2.41)
(=+) (++)
Correspondence effect 7 1.73 28 —-0.16

1r112J = 0.24, indicating a correspondence effect between loudness
and response side. The mean RT was shorter with loud-right/soft-
left mapping (M = 343 ms) than loud-left/soft-right mapping
(M = 361 ms; see Figure 2).

PE Analysis

The overall PE was 1.96%. The main effect of loudness was
significant, F(1,15) = 6.75, p = 0.0202, MSE = 4, n%) = 0.44,
indicating that PE was higher for the high-level loudness
(2.58%) than the low-level loudness (1.33%). The main effect
of response side did not reach significance. Of importance,
the interaction between loudness and response side reached
significance, F(1,15) = 4.64, p = 0.0480, MSE = 2, nf, = 0.24.
The PE was lower with loud-right/soft-left mapping (1.56%) than
loud-left/soft-right mapping (2.35%).

Discussion
As in pitch-judgment experiments (Rusconi et al., 2006; Lidji
et al., 2007; Cho et al., 2012), the correspondence effect between

loudness and response side was obtained in the loudness-
judgment task: the performance of the loudness-judgment task
was better when participants performed the task with the
loud-right/soft-left mapping than with the loud-left/soft-right
mapping, resulting in an 18-ms loud-right/soft-left advantage.

As shown in Figure 2, the loud-right mapping elicited a
larger effect than the soft-left mapping. This is probably due to
additional processing benefits of the + polarity codes themselves,
as Lakens (2012) suggested. The presence of both main effects in
the stimulus (loudness) and response dimensions (response side)
indicates processing advantages of 4 polarity in both dimensions,
while the polarity correspondence effect occurs when two polarity
codes correspond. Overall, the obtained results are in line with
the polarity correspondence principle (Proctor and Cho, 2006).
Like the pitch of tones (see Cho et al., 2012), relative loudness
was also categorically coded based on the referent tone when
participants were required to process the loudness explicitly to
perform the task, resulting in a polarity correspondence effect
with the response polarity codes. One could argue that this
correspondence effect was due to the sound intensity effect in
which choice response time decreases as the sound intensity
increases up to the intensity level of 85 dB (van der Molen and
Keuss, 1979, 1981; Keuss and van der Molen, 1982; Jaskowski
et al., 2009). However, the lack of the sound intensity effect for
the left response indicates that the obtained mapping effect was
due to polarity correspondence between loudness and location of
responses.

Experiment 2: Timbre-Judgment Task

In Experiment 1, the correspondence effect between loudness
and response side was found when loudness was relevant to the

400
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—&— Low Level Loudness

w
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FIGURE 2 | Mean reaction times (RTs) as a function of loudness and response side in Experiment 1 are shown along with their SE.
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task. This result is in agreement with the findings of the previous
SMARC experiments in which pitch height was relevant to the
task. Loudness, as well as, pitch height is categorically coded when
participants responded explicitly. The aim of Experiment 2 was to
investigate whether the correspondence effect is obtained when
loudness is irrelevant to the task. In Experiment 2, participants
performed a timbre-judgment task in which they responded to
whether a target tone was a piano tone or a violin tone. For non-
musicians to be able to create categorical codes for irrelevant
loudness automatically, a pure tone with intermediate-level
loudness was provided as a reference. In this task, the loudness
was perceived by participants implicitly. If the categorical codes
for the loudness are formed relative to the referent tone even
when the loudness is irrelevant to the task, the correspondence
effect would be present.

Materials and Methods

Participants

Sixteen new undergraduate students (mean age = 22.06, 11
females) at Korea University participated for payment of KRW
5,000 (about 4 US dollars). Two had no prior musical training
experience; the other 14 had an average of 6.35 years of musical
training and had stopped it since 12.86 years of age on average.
All were right-handed and had normal hearing as determined by
self-report.

Apparatus, Stimuli, and Procedure

The apparatus, stimuli, and procedure were identical to
Experiment 1, except as noted. The stimuli consisted of a low-
level loudness tone (58-dB, SPL) and a high-level loudness tone
(77-dB, SPL). Each tone was synthesized with piano and violin
timbre for a total of four different stimuli. The target tones were
given to the participants through PC convertible headphones.
The referent tone was an intermediate-level loudness pure
tone (66-dB, SPL). Before the experiment began, participants
heard the stimuli and determined that they can distinguish
the piano and violin tones. The experiment consisted of 16
practice trials and 320 test trials total. Participants performed
the timbre-judgment task and timbre-to-response mapping was
counterbalanced across participants. Participants were instructed
to press one key when a piano tone was presented and the other
key when a violin tone was presented, as quickly as possible while
maintaining high accuracy.

Results

0.20% of trials were removed from analyses using the same RT
cutoff criteria as in Experiment 1. Mean correct RT and PE were
calculated for each participant as a function of loudness (low- or
high-level loudness) and response side. ANOVAs were conducted
on the mean RT and PE data, with those variables as within
variables and timbre-to-response mapping as a between-subject
variable. Mean RT and PE data are shown in Table 2.

RT Analysis
The main effect of loudness was significant, F(1,14) = 51.14,
p < 0.0001, MSE = 102, n%) = 0.67, reflecting that the mean RT

TABLE 2 | Mean RT (in milliseconds), PE, and stimulus and response
polarities in parenthesis in Experiment 2 as a function of loudness and
response side.

Response side Low-level loudness High-level loudness

RT (SD) PE (SD) RT (SD) PE (SD)
Left 390 (65.65) 2.04 (2.05) 380 (57.78)  3.44 (2.80)
(=) +-)
Right 387 (65.14) 3.75(2.19) 360 (47.81) 2.19(1.80)
(=+) ++
Correspondence effect -3 1.71 20 1.25

was shorter for high-level loudness tones (M = 370 ms) than low-
level loudness tones (M = 388 ms). The main effect of response
side was not significant. Importantly, the interaction between
loudness and response side was significant, F(1,14) = 5.74,
p = 00311, MSE = 184, nj = 0.29. The mean RT was
shorter with loud-right/soft-left relation (M = 375 ms) than
loud-left/soft-right relation (M = 383 ms; See Figure 3). Any
effects regarding timbre-to-response mapping did not reach
significance, indicating that it is not a critical factor for the
correspondence effect between loudness and response side.

PE Analysis

The overall PE was 2.86%. The interaction between loudness
and response side was marginally significant, F(1,14) = 4.50,
p = 0.0522, MSE = 7.79, nf, = 0.24, reflecting that performances
were more accurate when high-level loudness was responded to
with right hand and low-level loudness with left hand (2.11%)
than the opposite (3.60%). The interaction between timbre-
mapping and response side was significant, F(1,14) = 7.69,
p = 0.0150, MSE = 3, nf) = 0.19. When responses were made
with left hand, piano-left/violin-right mapping elicited higher
error rates (3.34%) than the other mapping (2.11%). But, when
responses were made with right hand, piano-right/violin-left
mapping elicited higher error rates (3.60%) than the other
mapping (2.35%). This effect reflects that piano tones elicited
higher error rates than violin tones regardless of responding
hands. It is possible that participants confused the piano tones
with violin tones because piano tones were created electronically,
which made them sound somewhat unnatural. However, even
assuming this possibility, this effect is far from the mapping effect,
showing that the mapping of piano or violin to responses did not
influence the obtained correspondence effect.

Discussion

The correspondence effect between loudness and response side
was evident even when the loudness was task-irrelevant in the RT
data: an 8-ms loud-right/soft-left advantage was obtained. As in
Experiment 1, an asymmetric effect was observed between loud-
right and soft-left mappings, which might have resulted from
the additional processing benefits due to the + polarity codes
themselves (Lakens, 2012). The finding that the correspondence
effect was obtained even when participants were required to focus
not on the loudness of sound but on the timbre is in line with the
results from Cho et al.’s (2012) Experiment 2 in that loudness was
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Right

also coded automatically relative to the referent even when the
loudness of sound was irrelevant to the task. As in Cho et al.’s
(2012) experiment in which pitch height was manipulated, non-
musician participants were also able to form the categorical codes
for loudness when the referent tone was provided, as implied by
the polarity correspondence principle.

The correspondence effect between loudness and response
side obtained in Experiments 1 and 2 could have been due to
the spatial mental representation account. There is a population
stereotype for pulling a control to the right with a horizontal
linear control or rotating a knob clockwise to increase loudness
(Proctor and Van Zandt, 2008). That is, the existence of the
mental loudness line on which loudness is spatially represented
from left to right is also plausible. To test this possibility, the
effects of an additional polarity code caused by the eccentricity
of stimulation position were tested in Experiments 3 and 4.
If the obtained correspondence effects were due to polarity
coding, the correspondence effect would be modulated when
additional spatial codes are provided. In other words, adding
extra spatial codes by manipulating stimulation position would
influence the overall polarities of spatial codes and modulate
the correspondence effect between loudness and response side.
On the other hand, the spatial mental representation account
does not predict different patterns of results depending on the
stimulation position.

Experiment 3: Loudness-Judgment Task
with Eccentricity Manipulated

Experiments 1 and 2 showed that there was a correspondence
effect between loudness and response side regardless of

whether loudness was task-relevant or not. The purpose of
Experiment 3 was to expand the results obtained in the previous
experiments and to determine the underlying mechanism of
the correspondence effect of loudness with response side by
examining whether the correspondence effect is modulated by
stimulus position. According to the polarity correspondence
principle, the magnitude and direction of the orthogonal SRC
effect is expected to vary along the horizontal location at which
the responses are made, which is called the response eccentricity
effect (Michaels, 1989; Weeks et al., 1995; Cho and Proctor,
2002). Because the combined elemental spatial codes determine
the overall polarity of each response alternative (Proctor and
Cho, 2006), the additional spatial code of response location
contributes to an increase or decrease in the magnitude of the
polarity correspondence effect. Whereas response position was
manipulated in order to add extra spatial codes in all previous
experiments, resulting in a response eccentricity effect (Michaels,
1989; Michaels and Schilder, 1991; Cho and Proctor, 2002,
2004, 2005; Proctor and Cho, 2003; Nishimura and Yokosawa,
2006), stimulation position was manipulated in Experiment 3.
Because auditory stimuli were given through the headphone in
this experiment, manipulating stimulation position to which the
sound was given was expected to be a more direct way to generate
an additional spatial code than manipulating response position.
Just as the eccentricity of response location, if the stimulus
eccentricity contributes to addition of an extra spatial code and
influences response selection process, the correspondence effect
would be modulated by the side to which the target sound was
presented. The polarity correspondence principle predicts that
the correspondence effect would be larger when the sound is
provided to the right ear than when the sound is given to the
left ear.

Frontiers in Psychology | www.frontiersin.org

May 2015 | Volume 6 | Article 683


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Chang and Cho

Polarity coding and correspondence effect

Materials and Methods

Participants

Sixteen new undergraduate students (mean age = 23.06, 11
females) at Korea University participated for monetary reward
of KRW 5,000 (about 4 US dollars). Two had no prior musical
training experience; the other fourteen had an average of
5.28 years of musical training and had stopped it since 11.57 years
of age on average. All were right-handed and had normal hearing
as determined by self-report.

Apparatus, Stimuli, and Procedure

The apparatus, stimuli, and procedure were identical to
Experiment 1, except as noted (see Figure 4). The stimuli
consisted of a low-level loudness pure tone (59-dB, SPL) and
a high-level loudness pure tone (77-dB, SPL), which were
given to the participants unilaterally through PC convertible
headphones. Each tone was presented only to the left or right
ear randomly. The referent tone was an intermediate-level
loudness pure tone (67-dB, SPL) which was presented bilaterally.
The experiment consisted of two sessions of 16 practice trials
and 320 test trials each. Participants performed the loudness-
judgment task and were told to ignore the location of the sound
presented.

Results

0.12% of trials were removed from analyses using the same
RT cutoff criteria as in Experiments 1 and 2. Mean correct
RT and PE were calculated for each participant as a function
of loudness, response side, and stimulation position. Repeated
measures ANOVAs were conducted on the mean RT and PE
data, with loudness (low- or high-level loudness), response
side (left or right), and stimulation position (left or right) as
within-subject factors. Mean RT and PE data are shown in
Table 3.

RT Analysis

The main effect of loudness was significant, F(1,15) = 4.59,
p = 0.0490, MSE = 1,067, n% = 0.69. The mean RT was shorter
for high-level loudness tones (M = 358 ms) than low-level
loudness tones (M = 371 ms). The main effect of stimulation
position was also significant, F(1,15) = 4.76, p = 0.0454,
MSE = 130, nf, = 0.22. When the sound was heard from
the left ear, the mean RT was shorter (M = 362 ms) than
from the right ear (M = 367 ms). Furthermore, the interaction
between response side and stimulation position was significant,
F(1,15) = 117.99, p < 0.0001, MSE = 352, nf, = 0.95, reflecting
the auditory Simon effect. The mean RTs were shorter when the
sound and response locations corresponded (M = 346 ms) when
they did not (M = 382 ms). The interaction between loudness
and response side did not reach significance, F(1,15) < 1.0.
However, of importance, the interactions of loudness, response
side, and stimulation position were significant, F(1,15) = 12.36,
p = 0.0031, MSE = 144, n% = 0.45, indicating that the
correspondence effect between loudness and response side was
found as a function of stimulation position (see Figure 5).
When the sound was given to the right ear, a 9-ms loud-
right/soft-left advantage was obtained, F(1,15) = 1.27, p = 0.2766,
MSE = 936. On the other hand, when the sound was provided to
the left ear, a 6-ms loud-left/soft-right advantage was obtained,
F(1,15) < 1.0.

PE Analysis

The overall PE was 2.49%. The main effect of loudness was
significant, F(1,15) = 8.04, p = 0.0125, MSE = 3, n% = 0.18.
PE was higher for the low-level loudness (2.90%) than the
high-level loudness (2.09%). The interaction between stimulation
position and response side reached significance, F(1,15) = 17.46,
p = 0.0008, MSE = 10, n% = 0.64, indicating the auditory Simon
effect. When the sound location and response side matched

Blank (1,000 ms)

) +++ (=

FIGURE 4 | Example of a trial sequence in Experiments 3 and 4.

Referent tone (500 ms)

Target tone (500 ms)

Response (Until Response)

Feedback (1,500 ms)

Incorrect
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TABLE 3 | Mean RT (in milliseconds), PE, and stimulus and response polarities in parenthesis in Experiment 3 as a function of loudness, response side,

and stimulation position.

Left ear Right ear
Response side Low-level loudness High-level loudness Low-level loudness High-level loudness
RT (SD) PE (SD) RT (SD) PE (SD) RT (SD) PE (SD) RT (SD) PE (SD)
Left 353 (40.20) 0.55 (1.02) 338 (59.54) 1.88 (3.13) 390 (48.78) 2.90 (3.47) 383 (55.44) 4.62 (2.92)
(=) (++) (=) (+-)
Right 380 (46.61) 3.20 (3.74) 377 (51.32) 3.84 (2.41) 359 (47.50) 1.72 (1.82) 335 (51.73) 1.25 (2.62)
(=) (+,-) (= ++)
Correspondence effect 27 2.66 -39 —1.96 —31 —-1.18 48 3.37
400
—— Loud-Right/Soft-Left
390 —&— Loud-Left/Soft-Right
- 380
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£ 370 T 3
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FIGURE 5 | Mean RTs as a function of loudness-response mapping and stimulation position in Experiment 3 are shown along with their SE.

(1.35%), the performance was better than when they did not
(3.64%). All the other effects were not significant.

Discussion

Different patterns of the correspondence effect between loudness
and response side were found depending on stimulation position.
The loud-right/soft-left advantage was evident when the sound
was presented to the right ear (9 ms) but reversed to a loud-
left/soft-right advantage when the sound was presented to the
left ear (6 ms), resulting in a 15-ms stimulus eccentricity effect.
The obtained eccentricity effect indicates that the stimulation
position influenced the polarities of response codes. According
to the polarity correspondence principle (Proctor and Cho,
2006), the response that corresponds to the relative position
of the response set is positively coded. Even though this
experiment manipulated not the response position but the
stimulation position, the additional spatial code provided by
the stimulation position contributed to the overall polarity of
the response alternatives, resulting in opposite patterns of the
polarity correspondence. That is, it is evident that polarity
correspondence is modulated not only by response eccentricity

but also by stimulus eccentricity. However, it should be noted
that the magnitude of the stimulus eccentricity effect (15 ms) was
smaller than that of the response eccentricity effect (49 ms) of
Proctor and Cho’s (2003) Experiment 1. The reduction in the
size of the effect was expected considering that the polarities of
the response codes were modulated by stimulation position in
Experiment 3 but response position in orthogonal SRC tasks.
In other words, the response polarities were more strongly
influenced by a spatial feature of responses (response position)
than that of stimuli (stimulation position).

Experiment 4: Timbre-Judgment Task
with Eccentricity Manipulated

In Experiment 3, the correspondence effect between loudness and
response side was found as a function of stimulation position
when loudness was task-relevant. The correspondence effect was
larger when the sound was given to the right ear (9 ms) than to
the left ear (-6 ms); A 15-ms eccentricity effect was obtained. The
aim of Experiment 4 was to investigate whether the eccentricity
effect is present even when loudness is irrelevant to the task. In
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Experiment 4, a timbre-judgment task was performed with the
stimulation position manipulated. In other words, participants
responded to the timbre of sound, whether it was a piano tone
or a violin tone, while both loudness and the ear to which the
sound was given were manipulated. Even though it has been
suggested that the effect of orthogonal SRC is reduced when the
stimulus properties are irrelevant to the task (Wallace, 1971, 1972;
Proctor et al., 2003), a trend of an eccentricity effect was expected
if polarity codes are formed for the stimulation position.

Materials and Methods

Participants

Sixteen new undergraduate students (mean age = 22.5, 10
females) at Korea University participated for payment of KRW
5,000 (about 4 US dollars). Four had no prior musical experience;
the other twelve had an average of 6.66 years of musical training
and had stopped it since 12.16 years of age on average. All
were right-handed and had normal hearing as determined by
self-report.

Apparatus, Stimuli, and Procedure

The apparatus, stimuli, and procedure were identical to
Experiment 2, except as noted. The stimuli consisted of a low-
level loudness tone (58-dB, SPL) and a high-level loudness tone
(77-dB, SPL). Each tone was synthesized with piano and violin
timbre for a total of four different stimuli. The target tones
were given to the participants unilaterally through PC convertible
headphones. Each tone was presented only to the left or right
ear randomly. The referent tone was an intermediate-level
loudness pure tone (66-dB, SPL) which was presented bilaterally.
Before the experiment began, participants heard the stimuli
and determined that they can distinguish the piano and violin
tones. The experiment consisted of 32 practice trials and 640
test trials total. Participants performed the timbre-judgment task
and timbre-to-response mapping was counterbalanced across
participants. Participants were told to ignore the location of the
sound presented.

Results

0.70% of trials were removed from analyses using the same RT
cutoff criteria as in the previous experiments. Mean correct RT
and PE were calculated for each participant as a function of
loudness, response side, and stimulation position. ANOVAs were

conducted on the mean RT and PE data, with loudness (low- or
high-level loudness), response side (left or right), and stimulation
position (left or right) as within-subject variables, and timbre-to-
response mapping as a between-subject variable. Mean RT and
PE data are shown in Table 4.

RT Analysis

Analyses of variance revealed the main effect of loudness,
F(1,14) = 12.36, p = 0.0034, MSE = 204, nf) = 0.56. Faster
RTs were obtained with high-level loudness tones (M = 411 ms)
than low-level loudness tones (M = 420 ms). The interaction
between stimulation position and response side was significant,
F(1,14) = 71.00, p < 0.0001, MSE = 535, nf, = 0.95, reflecting
the auditory Simon effect. When the stimulation position
and response side were matched, the mean RTs were shorter
(M = 398 ms) than the non-matching mapping (M = 432 ms).
The interaction between loudness and stimulation position
was also significant, F(1,14) = 7.86, p = 0.0141, MSE = 58,
n2 = 0.19. When the sound was presented to the right
ear, high-level loudness tones (M = 411 ms) elicited faster
responses than low-level loudness tones (M = 416 ms). When
the sound was presented to the left ear, high-level loudness
tones (M = 411 ms) elicited faster responses than low-
level loudness tones (M = 423 ms). Even though the 3-way
interaction of loudness, response side and stimulation position
was only marginally significant, F(1,15) = 3.11, p = 0.0996,
MSE = 138, n%) = 0.18, the tendency was similar to the
results from Experiment 3; when the sound was presented to
the right ear, the correspondence effect was greater (8 ms)
than when the sound was given to the left ear (0 ms; see
Figure 6). Any effects regarding timbre-to-response mapping did
not reach significance, indicating that it is not a critical factor
for the correspondence effect between loudness and response
side.

PE Analysis

The overall PE was 3.49%. Only the interaction between response
side and stimulation position was obtained, F(1,14) = 17.60,
p = 0.0009, MSE = 28, n%, = 0.88, indicating an auditory
Simon effect. When the sound location and response side
matched (1.55%), the performance was better than when
they did not (5.44%). All the other effects did not reach
significance.

TABLE 4 | Mean RT (in milliseconds), PE, and stimulus and response polarities in parenthesis in Experiment 4 as a function of loudness, response side,

and stimulation position.

Left ear Right ear
Response side Low-level loudness High-level loudness Low-level loudness High-level loudness
RT (SD) PE (SD) RT (SD) PE (SD) RT (SD) PE (SD) RT (SD) PE (SD)

Left 411 (74.26) 1.73 (2.34) 399 (71.23) 1.45 (2.95) 435 (74.39) 4.93 (6.25) 437 (73.59) 6.68 (9.39)

=+ ++) (=) +-)
Right 435 (74.39) 5.73 (4.26) 422 (72.39) 4.43 (3.66) 397 (67.04) 2.13 (2.01) 385 (65.01) 0.88 (1.12)

(=) (+-) (= +) (++)
Correspondence effect 24 4.00 —-23 —2.98 —38 —2.80 52 5.81
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FIGURE 6 | Mean RTs as a function of loudness-response mapping and stimulation position in Experiment 4 are shown along with their SE.

Discussion
When participants were required to respond to the timbre rather
than the loudness, a marginally significant eccentricity effect was
obtained. The correspondence effect was larger when the sound
was presented to the right ear (8 ms) than to the left ear (0 ms).
The obtained stimulus eccentricity tendency is in line with the
polarity correspondence principle. Even though the loudness of
sound was irrelevant to the task, stimulation position as well as
loudness of tones and response sides was categorically coded as
+ or — polarity, respectively. As discussed in Experiment 3, the
eccentricity of stimulation position influenced the polarities of
the responses, which elicited the stimulus eccentricity effect.
However, the stimulus eccentricity effect was at most half the
size of the effect obtained in Experiment 3 in which loudness
was relevant to the task. This difference in the effect sizes is
in agreement with results found in the previous orthogonal
SRC experiments in which the size of orthogonal SRC effects
was smaller when stimulus location was irrelevant to the task
than when it was task-relevant (Wallace, 1971, 1972; Proctor
et al., 2003) and the magnitude of response eccentricity effects
also showed a similar tendency (Cho and Proctor, 2002, 2004;
Nishimura and Yokosawa, 2006; Cho et al., 2008). The previous
studies reported that the size of the response eccentricity effect
was smaller when stimulus location was task-irrelevant (25-
28 ms; Nishimura and Yokosawa, 2006; Cho et al., 2008) than
when it was relevant to the task (60-80 ms; Cho and Proctor,
2002, 2004). Even though the stimulus and response alternatives
are coded as + or — polarity and the correspondence of
the polarities influences response selection even when stimulus
location or loudness is task-irrelevant, the effect is not as clearly
evident as when stimulus location or loudness is relevant to the
task. The finding that no effect regarding timbre-to-response
mapping was found demonstrates timbre is not a critical factor
for the obtained correspondence effect and stimulus eccentricity
effect.

General Discussion

Primary Outcomes and Polarity Coding
Underlying Auditory Orthogonal SRC Effects
Consistent with the predictions based on the polarity
correspondence principle, a significant correspondence effect
was found between loudness and response side regardless of task
relevance (Experiments 1 and 2). According to the principle,
the polarity correspondence effect occurs because stimulus and
response alternatives are coded asymmetrically with one of two
alternatives for each dimension being categorically coded as
+ polarity and the other as —. That is, the correspondence of
polarity codes elicited by stimulus and response alternatives
are core determinants for the orthogonal SRC effects (Proctor
and Cho, 2006) and the SMARC effect, which is a variant of
the orthogonal SRC effect (Rusconi et al., 2006; Nishimura and
Yokosawa, 2009; Cho et al., 2012). It has been suggested that
“up” is coded as + and “down” as — when the alternatives vary
along the vertical dimension, while “right” is coded as + and
“left” as — when they vary along the horizontal dimension. This
is because “up” and “right” serve as the polar referent in each
dimension and “down” and “left” are coded in relative to their
respective referents as a result of asymmetric coding (Clark and
Chase, 1972; Olson and Laxar, 1973, 1974; Seymour, 1974a,b;
Carpenter and Just, 1975). Therefore, according to the polarity
correspondence principle, the correspondence effect between
loudness and response side is obtained because the polarity codes
for “loud” and “right” (+) and the codes for “soft” and “left” (—)
correspond, respectively.

Furthermore, the finding of the correspondence effect even
when the loudness was irrelevant to the task in Experiment
2 implies the possibility of the polarity codes for loudness
influencing the response selection processes in the previous
experiments that show inconsistent results on the horizontal
SMARC effect, in which the pitch height was irrelevant to
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the task. It is possible that trial to trial variations in loudness
influence pitch judgments and that variation in frequency
influences judgments on loudness. This is a type of Garner
interference (Garner and Felfoldy, 1970). To elaborate,
orthogonal variation on the irrelevant dimension causes
interference with the classification of the relevant dimension
when two dimensions interact. Numerous studies that have
used a tone, a multidimensional stimulus that consists of pitch
loudness and timbre, have shown that pitch and loudness
dimensions interact in an integral fashion (e.g., Grau and
Kemler-Nelson, 1988). Being relevant to this issue, it should
be noted that previous studies on the SMARC effect did not
control for or take equal loudness contours into consideration
when pitch was manipulated. According to the equal loudness
contours for the human ear, when the sounds are at different
frequencies the sensitivity of our hearing varies as the frequency
varies (Fletcher and Munson, 1933). In other words, sounds with
equal intensities but different frequencies are perceived to differ
in loudness. For example, a 1,000 Hz sound at 60 dB is perceived
louder than a 500 Hz sound at 60 dB. Furthermore, even though
the perceived loudness is related to its amplitude, loudness, and
amplitude do not have a simple linear—functional relationship.
Therefore, it has been recommended to use an instrument called
a sound level meter, to measure loudness and compensate for the
variation of sensitivity of the ear as a function of frequency by
weighting frequency (Howard and Angus, 2009). Considering
the equal loudness contours and the suggestions for loudness
measurement, the unequalized or inadequately equalized
loudness during the variation of frequency might have made
the perceived loudness of stimuli fluctuate and the variation in
loudness might have influenced pitch judgments in the previous
experiments as a type of Garner interference. That is, with regard
to the interactive relation between pitch and loudness, it is
highly probable that the variations in loudness, which was an
irrelevant attribute, interfered with pitch judgments in previous
studies. Hence, concerning that the loudness is also categorically
coded relative to a reference point on the loudness dimension
resulting in polarity coding, both pitch and loudness could have
elicited polarity correspondence effects with lateralized responses
respectively in the previous studies. It is plausible that different
levels of loudness led the high or low pitch tones to be coded as
loud (+) or soft (—), thus attenuating the SMARC effect.

In contrast, the spatial mental representation account
emphasizes a spatial correspondence between tones being located
on the vertical or horizontal pitch line and the up/right
or down/left response dimension, respectively. Regarding the
horizontal SMARC effect, Lidji et al. (2007) suggested that
musicians’ knowledge of using keyboard helps representing
pitch height on the keyboard-like horizontal line automatically.
They attributed the absence of horizontal SMARC effect in
non-musicians to their inability to automatically represent the
pitch height on to a mental horizontal line. In a similar way,
because of a population stereotype of loudness control in which
high-level loudness is associated with a rightward shift and
low-level loudness with a leftward shift, the correspondence
effects between loudness and response side were possibly
obtained in Experiments 1 and 2. However, the findings of the

correspondence effects obtained as a function of stimulation
position in Experiments 3 and 4 are hardly explicable with the
spatial mental representation account.

A significant stimulus eccentricity effect was found when
loudness was task-relevant in Experiment 3 and a marginally
significant stimulus eccentricity effect was obtained when
loudness was irrelevant to the task in Experiment 4. The
eccentricity effect has been mainly studied with the manipulation
of the response-set position along the horizontal dimension in the
orthogonal SRC task, resulting in the response eccentricity effect
(e.g., Michaels, 1989). In the current study, the first attempt was
made to reveal an eccentricity effect by manipulating stimulation
position along the horizontal dimension. It was assumed that
the stimulation position (ear) to which auditory sound was
presented was spatially coded relative to the body midline. For
example, when sound is presented to the right ear, the formed
spatial code “right” provides an additional + code, resulting in
an evident loud-right/soft-left advantage. On the other hand,
when sound is presented to the left ear, “left” is coded as +
polarity because of the additional “left” spatial code from the
stimulation position, resulting in a less evident loud-right/soft-
left advantage or a loud-left/soft-right advantage. In other words,
the response code corresponding to the stimulated ear earns +
polarity regardless of whether it is “right” or “left” whereas the
response code corresponding to the unstimulated ear earns —
polarity, simultaneously changing the polarity codes of responses
depending on the newly obtained spatial code. As a result,
an eccentricity effect emerges as a function of the stimulation
position. However, it should be noted that the Simon effect
was evident between the stimulated ear and response side in
Experiments 3 and 4 regardless of polarity codes. Thus, some
might argue that the eccentricity effects resulted possibly from the
Simon congruency. To test this possibility, additional statistical
analyses were conducted with only Simon corresponding trials
in Experiments 3 and 4. The results showed that RT was
significantly faster on polarity corresponding trials than polarity
non-corresopnding trials both in Experiment 3, F(1,15) = 8.88,
p = 0.0093, and Experiment 4, F(1,15) = 14.67, p = 0.0016,
indicating that the obtained stimulus-eccentricity effects were
due to polarity correspondence.

Overall, as predicted, the results showed that the
correspondence effect was larger when the sound was presented
to the right ear than when it was presented to the left ear in
both Experiments 3 and 4. This pattern of results indicates that
the polarity codes of response alternatives can be influenced
by a feature of stimulus (e.g., stimulation position), as well
as features of response (e.g., response position). For visual
tasks, the polarity correspondence effect varied as a function
of the response position relative to visual stimuli sets (Cho
and Proctor, 2005), whereas for the auditory tasks in the
present study, the effect varied as a function of the stimulation
position. This disparity is due to the difference between the
natures of the visual and auditory perceptual processes, as
demonstrated by the findings that separate neural subsystems
are involved in auditory and visual spatial localizations (e.g.,
Bushara et al., 1999) and that conceptual representations
as well as perceptual representations have their bases on
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modality specific systems (e.g., Barsalou et al., 2003). That is,
when a visual stimulus is presented, the response position relative
to it is evident. However, when an auditory stimulus is presented,
it is difficult to use the stimulus as a referent point for the response
position, even though the spatial code for the stimulation is
clearly formed.

It is important to note that Santiago and Lakens (2015)
failed to obtain the response eccentricity effect in a parity
judgment, a magnitude judgment, and a time categorization
task when the keyboard position was manipulated. The authors
indicated that conceptual congruency effects of both number and
time dimensions with the left-right spatial dimension were not
probably due to the polarity correspondence. However, Lakens
(2012) discovered the modulation of the polarity correspondence
in a conceptual categorizing task by adopting a training task in
which the relative frequencies of + and — polarity words were
manipulated. As Lakens (2012) and Santiago and Lakens (2015)
suggested, one possible reason for these inconsistent findings of
the modulation of the polarity correspondence effect is that a
strong manipulation is necessary to change the polarity structure
of the conceptual dimensions.

The Possibility of Polarity Correspondence
Principle as An Integrated Framework

A variety of non-spatial SRC effects including the aforementioned
SMARC effect have been found and the underlying mechanisms
have been widely investigated. For example, when people perform
a parity judgment task, the asymmetries between numbers and
responses exert two effects: the linguistic markedness association
of response codes (MARC) effect and the SNARC effect. The
MARC effect refers to the phenomenon in which performance
is better for the even-right/odd-left mapping than for the
opposite mapping (Hines, 1990; Reynvoet and Brysbaert, 1999;
Cho and Proctor, 2007). The MARC effect has been attributed
to the linguistic markedness because the correspondence of
the unmarked (even) and marked (odd) verbal codes with
the unmarked (right) and marked (left) response codes yields
better performance (Hines, 1990; Nuerk et al., 2004; Cho and
Proctor, 2007). The SNARC effect refers to better performance
yielded when a large number is associated with the right
response and a small number with the left response than
the opposite association. Many researchers believe that these
non-spatial SRC effects are due to the spatial aspect of the
mental representations of sequence information, as the spatial
mental representation account suggested. According to this
account, there is a horizontal line on which non-spatial sequence
information is represented from left to right along the horizontal

References

Adam, J. J., Boon, B., Paas, F. G., and Umilta, C. (1998). The up-right/down-left
advantage for vertically oriented stimuli and horizontally oriented responses: a
dual-strategy hypothesis. J. Exp. Psychol. Hum. Percept. Perform. 24, 1582-1595.
doi: 10.1037/0096-1523.24.6.1582

Bae, G. Y., Choi, J. M., Cho, Y. S., and Proctor, R. W. (2009). Transfer of magnitude
and spatial mappings to the SNARC effect for parity judgments. J. Exp. Psychol.
Learn. Mem. Cogn. 35, 1506-1521. doi: 10.1037/a0017257

axis in space, and the spatial correspondence between stimulus
and response dimension elicits the SRC effects (Dehaene et al.,
1993; Lidji et al., 2007).

However, those non-spatial SRC effects have been also
shown to conform to the polarity correspondence principle. As
mentioned earlier, the SMARC effect is obtained because the
polarity of a high pitch tone (4) corresponds with up or right (+)
response and that of a low pitch tone (—) with down or left (—)
response. Furthermore, the polarity correspondence principle
suggests that the parity and the magnitude of numbers are coded
asymmetrically with even or large numbers being coded as +
polarity and odd or small as — polarity. This would lead to
the MARC or SNARC effect when the right (+) and left (—)
responses are associated with even/large (4) and odd/small (—)
numbers. The findings that Arabic numerals as well as digit
words yielded the MARC effect, even though the size of the
effect was larger for digit words than Arabic numerals (Nuerk
et al., 2004), indicate that the MARC effect is not restricted to
verbal codes. Furthermore, the findings that the SNARC effect
was larger after practice with up-right/down-left mapping than
up-left/down-right mapping but being not affected by whether
participants practiced with a parallel SRC task with compatible
or incompatible mapping (Bae et al., 2009), provide a possibility
that the SNARC effect is due to polarity coding.

Even though various non-spatial SRC effects such as the
SMARC, the MARC, and the SNARC effects have been found
in diverse domains and explained in their own ways, the
polarity correspondence provides an integrated framework
encompassing those various non-spatial SRC effects as well
as the correspondence effect between loudness and response
side, which is the major finding of the current research.
The evidences from previous studies and the current study
demonstrate that the polarity correspondence principle plays
a fundamental role in process of response selection in binary
choice tasks in general. Therefore, when a variety of issues in
psychological research that involves the use of binary choice
tasks is investigated, researchers should be aware of how polarity
coding and correspondence operates and should rule out the
possibility of polarity coding of irrelevant dimension influencing
the obtained results.

Acknowledgment

This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (NRF-
2013R1A1A2058883).

Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003).
Grounding conceptual knowledge in modality-specific systems. Trends Cogn.
Sci. (Regul. Ed.) 7, 84-91. doi: 10.1016/S1364-6613(02)00029-3

Bushara, K. O., Weeks, R. A,, Ishii, K., Catalan, M. J., Tian, B., Rauschecker, J. P.,
etal. (1999). Modality-specific frontal and parietal areas for auditory and visual
spatial localization in humans. Nat. Neurosci. 2, 759-766. doi: 10.1038/11239

Carpenter, P. A, and Just, M. A. (1975). Sentence comprehension: a
psycholinguistic processing model of verification. Psychol. Rev. 82, 45-73. doi:
10.1037/h0076248

Frontiers in Psychology | www.frontiersin.org

May 2015 | Volume 6 | Article 683


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Chang and Cho

Polarity coding and correspondence effect

Cho, Y. S, Bae, G. Y., and Proctor, R. W. (2012). Referential coding contributes
to the horizontal SMARC effect. J. Exp. Psychol. Hum. Percept. Perform. 38,
726-734. doi: 10.1037/20026157

Cho, Y. S., and Proctor, R. W. (2002). Influences of hand posture and hand position
on compatibility effects for up-down stimuli mapped to left-right responses:
evidence for a hand referent hypothesis. Percept. Psychophys. 64, 1301-1315.
doi: 10.3758/BF03194773

Cho, Y. S., and Proctor, R. W. (2003). Stimulus and response representations
underlying orthogonal stimulus-response compatibility effects. Psychon. Bull.
Rev. 10, 45-73. doi: 10.3758/BF03196468

Cho, Y. S., and Proctor, R. W. (2004). Influences of multiple spatial stimulus
and response codes on orthogonal stimulus—response compatibility. Percept.
Psychophys. 66, 1003-1017. doi: 10.3758/BF03194991

Cho, Y. S, and Proctor, R. W. (2005). Representing response position
relative to display location: influence on orthogonal stimulus-response
compatibility. Q. J. Exp. Psychol. 58A, 839-864. doi: 10.1080/027249804430
00359

Cho, Y. S., and Proctor, R. W. (2007). When is an odd number not odd? Influence
of task rule on the MARC effect for numeric classification. J. Exp. Psychol. Learn.
Mem. Cogn. 33, 832-842. doi: 10.1037/0278-7393.33.5.832

Cho, Y. S, Proctor, R. W., and Yamaguchi, M. (2008). Influences of response
position and hand posture on the orthogonal Simon effect. Q. J. Exp. Psychol.
61, 1020-1035. doi: 10.1080/17470210701467979

Clark, H. H., and Chase, W. G. (1972). On the process of comparing sentences
against picture. Cognit. Psychol. 3, 472-517. doi: 10.1016/0010-0285(72)
90019-9

Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity
and number magnitude. J. Exp. Psychol. Gen. 122, 371-396. doi: 10.1037/0096-
3445.122.3.371

Eimer, M., Hommel, B., and Prinz, W. (1995). SR compatibility and response
selection. Acta Psychol. 90, 301-313. doi: 10.1016/0001-6918(95)00022-M

Fletcher, H., and Munson, W. A. (1933). Loudness, its definition, measurement
and calculation. Bell Syst. Tech. ]. 12, 377-430. doi: 10.1002/j.1538-
7305.1933.tb00403.x

Garner, W. R, and Felfoldy, G. L. (1970). Integrality of stimulus dimensions
in various types of information processing. Cognit. Psychol. 1, 225-241. doi:
10.1016/0010-0285(70)90016-2

Grau, J. W., and Kemler-Nelson, D. (1988). The distinction between integral and
separable dimensions: evidence for the integrality of pitch and loudness. J. Exp.
Psychol. Gen. 117, 347-370. doi: 10.1037/0096-3445.117.4.347

Hines, T. M. (1990). An odd effect: lengthened reaction times for judgments about
odd digit. Mem. Cogn. 18, 40-46. doi: 10.3758/BF03202644

Hommel, B. (1997). Toward an action-concept model of stimulus-response
compatibility. Adv. Psychol. 118, 281-320. doi: 10.1016/S0166-4115(97)
80041-6

Hommel, B., and Lippa, Y. (1995). SR compatibility effects due to context-
dependent spatial stimulus coding. Psychon. Bull. Rev. 2, 370-374. doi:
10.3758/BF03210974

Howard, D. M., and Angus, J. (2009). Acoustics and Psychoacoustics. Burlington,
MA: Focal Press.

Jaskowski, P., Szumska, I, and Sasin, E. (2009). Functional locus of intensity
effects in choice reaction time tasks. J. Psycho. 23, 126-134. doi: 10.1027/0269-
8803.23.3.126

Keuss, P. J. G., and van der Molen, M. W. (1982). Positive and negative
effects of stimulus intensity in auditory reaction tasks: further studies on
immediate arousal. Acta Psychol. 52, 61-72. doi: 10.1016/0001-6918(82)
90026-9

Lakens, D. (2012). Polarity correspondence in metaphor congruency effects:
structural overlap predicts categorization times for bipolar concepts presented
in vertical space. J. Exp. Psychol. Learn. Mem. Cogn. 38, 726-736. doi:
10.1037/a0024955

Lamberts, K., Tavernier, G., and d’Ydewalle, G. (1992). Effects of multiple reference
points in spatial stimulus-response compatibility. Acta Psychol. 79, 115-130.
doi: 10.1016/0001-6918(92)90028-C

Lidji, P., Kolinsky, R., Lochy, A., and Morais, J. (2007). Spatial associations for
musical stimuli: a piano in the head? J. Exp. Psychol. Hum. Percept. Perform.
33, 1189-1207. doi: 10.1037/0096-1523.33.5.1189

Lippa, Y., and Adam, J. J. (2001). An explanation of orthogonal SR
compatibility effects that vary with hand or response position: the end-
state comfort hypothesis. Percept. Psychophys. 63, 156-174. doi: 10.3758/BF03
200510

Lu, C. H,, and Proctor, R. W. (1995). The influence of irrelevant location
information on performance: a review of the Simon and spatial Stroop effects.
Psychon. Bull. Rev. 2, 174-207. doi: 10.3758/BF03210959

Marks, L. E. (1989). On cross-modal similarity: the perceptual structure of pitch,
loudness, and brightness. J. Exp. Psychol. Hum. Percept. Perform. 15, 86-602.
doi: 10.1037/0096-1523.15.3.586

Melara, R. D., and Marks, L. E. (1990a). Hard andsoft interacting dimensions:
differential effects of dual context on classification. Percept. Psychophys. 47,
307-325. doi: 10.3758/BF03210870

Melara, R. D., and Marks, L. E. (1990b). Interaction among auditory
dimensions: timbre, pitch, and loudness. Percept. Psychophys. 48, 169-178. doi:
10.3758/BF03207084

Melara, R. D., and Marks, L. E. (1990c¢). Perceptual primacy of dimensions: support
for a model of dimensional interaction. J. Exp. Psychol. Hum. Percept. Perform.
16, 398-414. doi: 10.1037/0096-1523.16.2.398

Melara, R. D., Marks, L. E., and Lesko, K. E. (1992). Optional processes in similarity
judgments. Percept. Psychophys. 51, 123-133. doi: 10.3758/BF03212237

Michaels, C. F. (1989). S-R compatibilities depend on eccentricity of responding
hand. Q. J. Exp. Psychol. 41, 263-272. doi: 10.1080/14640748908402365

Michaels, C. F., and Schilder, S. (1991). Stimulus-response compatibilities
between vertically oriented stimuli and horizontally oriented responses: the
effects of hand position and posture. Percept. Psychophys. 49, 342-348. doi:
10.3758/BF03205990

Mudd, S. A. (1963). Spatial stereotypes of four dimensions of pure tone. J. Exp.
Psychol. 66, 347-352. doi: 10.1037/h0040045

Nishimura, A., and Yokosawa, K. (2006). Orthogonal stimulus-response
compatibility effects emerge even when the stimulus position is task irrelevant.
Q. J. Exp. Psychol. 59, 1021-1032. doi: 10.1080/17470210500416243

Nishimura, A., and Yokosawa, K. (2009). Effects of laterality and pitch height
of an auditory accessory stimulus on horizontal response selection: the
Simon effect and the SMARC effect. Psychon. Bull. Rev. 16, 666-670. doi:
10.3758/PBR.16.4.666

Nuerk, H. C., Iversen, W., and Willmes, K. (2004). Notational modulation of the
SNARC and the MARC (linguistic markedness of response codes) effect. Q. J.
Exp. Psychol. 57A, 835-863. doi: 10.1080/02724980343000512

Olson, G. M., and Laxar, K. (1973). Asymmetries in processing the terms “right”
and “left”. . Exp. Psychol. 100, 284-290. doi: 10.1037/h0035453

Olson, G. M., and Laxar, K. (1974). Processing the terms right and left: a note on
left-handers. J. Exp. Psychol. 102, 1135-1137. doi: 10.1037/h0036348

Proctor, R. W., and Cho, Y. S. (2003). Effects of response eccentricity
and relative position on orthogonal stimulus-response compatibility with
joystick and keypress responses. Q. J. Exp. Psychol. 56A, 309-327. doi:
10.1080/02724980244000350

Proctor, R. W., and Cho, Y. S. (2006). Polarity correspondence: a general principle
for performance of speeded binary classification tasks. Psychol. Bull. 132,
416-442. doi: 10.1037/0033-2909.132.3.416

Proctor, R. W., and Van Zandt, T. (2008). Human Factors in Simple and Complex
Systems, 2nd Edn. Boca Raton, FL: CRC Press.

Proctor, R,, Vu, K. P. L., and Marble, J. G. (2003). Mixing location-relevant and
irrelevant tasks: spatial compatibility effects eliminated by stimuli that share the
same spatial codes. Vis. Cogn. 10, 15-50. doi: 10.1080/713756673

Reynvoet, B., and Brysbaert, M. (1999). Single-digit and two-digit Arabic
numerals address the same semantic number line. Cognition 72, 191-201. doi:
10.1016/S0010-0277(99)00048-7

Roswarski, T. E., and Proctor, R. W. (1996). Multiple spatial codes and
temporal overlap in choice-reaction tasks. Psychol. Res. 59, 196-211. doi:
10.1007/BF00425834

Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., and Butterworth, B. (2006).
Spatial representation of pitch height: the SMARC effect. Cognition 99, 113-129.
doi: 10.1016/j.cognition.2005.01.004

Santiago, J., and Lakens, D. (2015). Can conceptual congruency effects between
number, time, and space be accounted for by polarity correspondence? Acta
Psychol. 156, 179-191. doi: 10.1016/j.actpsy.2014.09.016

Frontiers in Psychology | www.frontiersin.org

May 2015 | Volume 6 | Article 683


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

Chang and Cho

Polarity coding and correspondence effect

Simon, J. R., and Rudell, A. P. (1967). Auditory SR compatibility: the effect of an
irrelevant cue on information processing. J. Appl. Psychol. 51, 300-304. doi:
10.1037/h0020586

Seymour, P. H. (1974a). Asymmetries in judgments of verticality. J. Exp. Psychol.
102, 447-455. doi: 10.1037/h0035865

Seymour, P. H. (1974b). Stroop interference with response, comparison, and
encoding stages in a sentence-picture comparison task. Mem. Cogn. 2, 19-26.
doi: 10.3758/BF03197486

Umilta, C., and Nicoletti, R. (1990). “Spatial stimulus-response compatibility,” in
Stimulus-Response Compatibility: An Integrated Perspective, eds R. W. Proctor
and T. G. Reeve (Amsterdam: Elsevier), 89-116.

van der Molen, M. V. D., and Keuss, P. J. G. (1979). The relationship between
reaction time and intensity in discrete auditory tasks. Q. J. Exp. Psychol. 31,
95-102. doi: 10.1080/14640747908400709

van der Molen, M. V. D,, and Keuss, P. J. G. (1981). Response selection and
the processing of auditory intensity. Q. J. Exp. Psychol. 33, 177-184. doi:
10.1080/14640748108400784

Wallace, R. J. (1971). SR compatibility and the idea of a response code. J. Exp.
Psychol. 88, 354-360. doi: 10.1037/h0030892

Wallace, R. J. (1972). Spatial SR compatibility effects involving kinesthetic cues.
J. Exp. Psychol. 93, 163-168. doi: 10.1037/h0032462

Weeks, D. J., and Proctor, R. W. (1990). Salient-features coding in the translation
between orthogonal stimulus and response dimensions. J. Exp. Psychol. Gen.
119, 355-366. doi: 10.1037/0096-3445.119.4.355

Weeks, D. J., Proctor, R. W., and Beyak, B. (1995). Stimulus-response compatibility
for vertically oriented stimuli and horizontally oriented responses: evidence for
spatial coding. Q. J. Exp. Psychol. 48, 367-383. doi: 10.1080/14640749508401395

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Chang and Cho. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org

15

May 2015 | Volume 6 | Article 683


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

	Polarity correspondence effect between loudness and lateralized response set
	Introduction
	Experiment 1: Loudness-Judgment Task
	Materials and Methods
	Participants
	Apparatus, Stimuli, and Procedure

	Results
	RT Analysis
	PE Analysis

	Discussion

	Experiment 2: Timbre-Judgment Task
	Materials and Methods
	Participants
	Apparatus, Stimuli, and Procedure

	Results
	RT Analysis
	PE Analysis

	Discussion

	Experiment 3: Loudness-Judgment Task with Eccentricity Manipulated
	Materials and Methods
	Participants
	Apparatus, Stimuli, and Procedure

	Results
	RT Analysis
	PE Analysis

	Discussion

	Experiment 4: Timbre-Judgment Task with Eccentricity Manipulated
	Materials and Methods
	Participants
	Apparatus, Stimuli, and Procedure

	Results
	RT Analysis
	PE Analysis

	Discussion

	General Discussion
	Primary Outcomes and Polarity Coding Underlying Auditory Orthogonal SRC Effects
	The Possibility of Polarity Correspondence Principle as An Integrated Framework

	Acknowledgment
	References




