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From phonetic features to connected discourse, every level of psycholinguistic structure
including prosody can be perceived through viewing the talking face. Yet a longstanding
notion in the literature is that visual speech perceptual categories comprise groups
of phonemes (referred to as visemes), such as /p, b, m/ and /f, v/, whose internal
structure is not informative to the visual speech perceiver. This conclusion has not
to our knowledge been evaluated using a psychophysical discrimination paradigm.
We hypothesized that perceivers can discriminate the phonemes within typical viseme
groups, and that discrimination measured with d-prime (d’) and response latency is
related to visual stimulus dissimilarities between consonant segments. In Experiment
1, participants performed speeded discrimination for pairs of consonant-vowel spoken
nonsense syllables that were predicted to be same, near, or far in their perceptual
distances, and that were presented as natural or synthesized video. Near pairs were
within-viseme consonants. Natural within-viseme stimulus pairs were discriminated
significantly above chance (except for /k/-/h/). Sensitivity (d’) increased and response
times decreased with distance. Discrimination and identification were superior with
natural stimuli, which comprised more phonetic information. We suggest that the notion
of the viseme as a unitary perceptual category is incorrect. Experiment 2 probed
the perceptual basis for visual speech discrimination by inverting the stimuli. Overall
reductions in d’ with inverted stimuli but a persistent pattern of larger d’ for far than
for near stimulus pairs are interpreted as evidence that visual speech is represented by
both its motion and configural attributes. The methods and results of this investigation
open up avenues for understanding the neural and perceptual bases for visual and
audiovisual speech perception and for development of practical applications such as
visual lipreading/speechreading speech synthesis.

Keywords: visual speech perception, visemes, lipreading/speechreading, discrimination, synthetic visual speech,
motion capture, multisensory perception, audiovisual speech perception
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Introduction

Visual speech perception (i.e., also known as lipreading or
speechreading) relies exclusively on visible information from
a talking face. Published literature suggests that every level
of psycholinguistic speech structure (e.g., phonetic features,
phonemes, syllables, words, and prosody) is visible (Bernstein
and Liebenthal, 2014), although there are individual differences
in the ability to perceive the information in visual speech
(Bernstein et al., 2000; Auer and Bernstein, 2007). For example,
deaf lipreaders scored between zero and 85% correct on a
test of lipreading words in sentences, and hearing lipreaders
scored between zero and 75% correct (Bernstein et al., 2000).
Isolated monosyllabic word identification with highly similar
rhyming words was as high as 42% correct in deaf lipreaders
and 24% correct in hearing lipreaders (see also, Conklin,
1917; Utley, 1946; Lyxell et al., 1993; Auer, 2002; Mattys
et al., 2002). There is evidence that phonemes and phonetic
features are visible, again with perceptual accuracy varying
across factors such as the talker, the stimulus materials,
the perceiver, and the perceiver group (e.g., deaf, hearing,
children; Woodward and Barber, 1960; Fisher, 1968; Massaro
and Cohen, 1983; Owens and Blazek, 1985; Demorest and
Bernstein, 1992; Bernstein et al., 2000, 2001; Jiang et al.,
2007; Tye-Murray et al., 2014). Lexical and sentential prosodic
distinctions vary in their visibility (Fisher, 1969; Eberhardt
et al., 1990; Lansing and McConkie, 1999; Munhall et al.,
2004; Scarborough et al., 2007). The study reported here
is concerned with the resolution of visual speech phoneme
perception, which as we discuss below is widely regarded as
poor.

Visual Speech Phoneme Perception
The visual information in speech derives from the same
articulatory organs that drive audible speech, the lips, teeth,
tongue, jaw, velum, larynx, and lungs (Catford, 1977); but only
the lips, teeth, jaw, and intermittently the tongue are directly
visible. Additional face parts such as cheeks and eyebrows can
convey speech information that is correlated with the actions
of the articulatory organs (Yehia et al., 1998; Lansing and
McConkie, 1999; Jiang et al., 2007; Lucero and Munhall, 2008).
The invisibility of the larynx and the velum should not be taken as
evidence that phonetic features such as voicing are also invisible
as phonemic categories are signaled by multiple phonetic cues.
For example, vowel duration, a visible feature, is a primary cue
to English post-vocalic consonant voicing (Raphael, 1971), and
patterns of pre- and post-vocalic consonant perception vary.
There is evidence for voicing being visible in syllable-final but not
in syllable-initial position (Hnath-Chisolm and Kishon-Rabin,
1988).

Where did the current conception of visual phoneme
perception arise? In an early and influential paper on visual
speech phoneme perception, Woodward and Barber (1960)
reported that there are only four visually contrastive consonantal
units available to lipreaders (i.e., /b, p, m/, /hw, w, r/, /f, v/, and all
other consonants in the remaining group). Their conclusion was
based on a psychophysical method that may not be sufficiently

sensitive1. Given their small number of derived contrastive units,
in order to explain proficient lipreading in deaf individuals,
Woodward and Barber (1960) appealed to higher-level language
and context. Their results led to research by Fisher (1968),
who coined the term viseme to describe the units of visual
speech perception that he derived from a forced choice word
identification task, in which the available responses to be used
by participants did not include the correct word. Fisher (1968)
reported that initial consonant visemes comprise /p, b, m, d/, /f,
v/, /k, g/, /hw, w, r/, and, /S, t, n, l, s, z, h, dZ, tS/. Subsequently,
Walden et al. (1977) introduced hierarchical clustering analysis to
derive viseme groups from data in stimulus-response confusion
matrices obtained in a forced-choice identification paradigm.
When the clustering threshold was set so that 71% of responses
to each phoneme were within a cluster, they obtained nine
viseme units (see also, Owens and Blazek, 1985). Subsequently,
Auer and Bernstein (1997) generalized the clustering methods
to produce a range of within-cluster response thresholds. They
introduced the terminology phoneme equivalence class (PEC) to
designate a family of within-cluster thresholds. The PECs were
intended to characterize levels of within-cluster groupings that
can be tested against various performance measures, and the PEC
was thus not a statement about limitations on discrimination.
These authors used PECs to test models of visual spoken word
recognition over a range of theoretically derived perceptual
category resolutions.

The Auer–Bernstein PEC is a view that runs counter to the
traditional and now pervasive notion of the viseme as a perceptual
unit (Mattheyses and Verhelst, 2014). Massaro characterized
the traditional viseme view saying, “Because of the data-limited
property of visible speech in comparison to audible speech, many
phonemes are virtually indistinguishable by sight, even from a
natural face, and so are expected to be easily confused” (Massaro
et al., 2012, p. 316); and that, “a difference between visemes
is significant, informative, and categorical to the perceiver; a
difference within a viseme class is not” (Massaro et al., 2012,
p. 316).

However, there is abundant evidence that viewers are very
sensitive to visual speech information. For example, even
point-light speech stimuli (only the movement of a few points
on the face) can enhance the intelligibility of acoustic speech in
noise (Rosenblum et al., 1996) and can interfere with audiovisual
speech perception when they are incongruent (Rosenblum
and Saldana, 1996). Importantly, visual phonetic information
enhances speech perception in acoustically noisy and distorting

1Woodward and Barber (1960) carried out their discrimination experiment with
consonant-vowel (CV) stimuli. Based on an a priori articulatory analysis, they
ranked stimulus visibility from labial, to alveolar or palatal, to velar or glottal. They
constructed a discrimination test that used the 22 initial English consonants and
/hw/ and /Z/ and also presented CV versus /A/ vowel contrasts. They only tested a
sample of possible contrasts, which were grouped into ones thought to be “visually
contrastive,” “visually similar,” or “visually equivalent.” Discrimination rankings
were calculated based on subtracting the percentage of perceivers (N = 185) with
“different” from “alike” scores for each stimulus pair, not taking into account same
trials in their analyses of the results. They then designated stimulus pairs to be
contrastive, similar, and equivalent along a roughly linear scale. They argued that
the small set of contrasts could not explain proficient deaf lipreading and suggest
that it must rely on higher-level linguistic knowledge, because the phonetic stimuli
were too impoverished.
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environments or with hearing loss (Sumby and Pollack, 1954;
MacLeod and Summerfield, 1987; Ross et al., 2007; Grant
et al., 2013), and subtle differences in individual speech tokens
control the type of audiovisual perceptual (Jiang and Bernstein,
2011) and neural interactions (Bernstein et al., 2011) that are
obtained withmismatched audiovisual stimuli. In addition, visual
speech synthesis is improved when phonetic context-sensitive
models are used rather than simpler models that use the same
viseme regardless of context (Mattheyses et al., 2013), implying
perception of phonetic structure within putative visemes. Indeed,
phoneme confusions vary with vowel context, leading to different
visemes (Owens and Blazek, 1985).

Recently, Bernstein (2012) introduced direct evidence that
sub-viseme phonetic cues are informative. When presented
with pairs of spoken words that differed phoneme-by-phoneme
within viseme groups, participants (both deaf and normal-
hearing adults) were able to identify which of the spoken words
corresponded to an orthographic target word (Bernstein, 2012).
Target identification remained highly accurate even when word
pairs were constructed from PECs comprising hierarchically
earlier (more confusable) phonemes than within typical viseme
groups. A group of normal-hearing lipreaders scored between 65
and 80% correct, and deaf participants scored between 80 and
100% correct.

To our knowledge, there has been minimal testing of within-
viseme perception using a psychophysical discrimination
approach, even though the study of auditory phoneme
categorization has long been known to require both
discrimination and identification paradigms (Liberman et al.,
1957). The categorical perception approach was applied by
synthesizing continua of visual speech (Walden et al., 1987).
But the continua endpoints were highly discriminable between-
viseme phonemes, /bA/ to /vA/ to /wA/. Six linearly interpolated
(using vector graphics with 130 vectors) stimuli were generated
between the consonant-vowel (CV) pairs. Discrimination was
significantly more sensitive than that predicted by identification
functions. But stimuli were highly artificial, generated using
only on an initial closed-mouth video frame, a frame with a
maximally articulated consonant, and a single vowel gesture
frame with total stimulus duration fixed; and not all of the
stimuli appeared to be natural to the participants. In a task
requiring discrimination, Massaro et al. (1993) presented CVC
words in two-word trials for initial consonant identification
with between-viseme phonemes. Performance was near ceiling.
A preliminary experiment reported in (Jerger et al., 2009) showed
that adults could categorize /p, b, t, d/ as voiced or not voiced at
above chance levels, although voicing contrasts with homorganic
stops (e.g., /b/ vs. /p/ or /d/ vs. /t/) are considered to be within
viseme groups. A recent study showed that adults can also
discriminate /b/-/m/ at above chance levels (Lalonde and Holt,
2014).

Recently, we reported on a small set of discrimination results
in an electroencephalography (EEG) study (Files et al., 2013)
that was designed using a visual mismatch negativity (MMN)
paradigm (Winkler and Czigler, 2012) with the intent to obtain
a change detection response. Both within- and between-viseme
pairs elicited the MMN response.

The Current Study
We carried out a study of visual speech discrimination and
identification. Stimulus materials from a single talker were
generated in sets of triplets of CV syllables. Out of these sets,
stimulus pairs were presented for same-different discrimination,
and all same trials used different tokens of the same phoneme.
Seven consonants were designated as anchors for the triplet
sets, and each anchor was paired with a perceptually same,
near, or far consonant. The perceptual distance factor was
obtained from a previous modeling study (Jiang et al., 2007).
Here, near stimulus pairs were from within viseme-level PECs,
and far stimulus pairs were from across visemes-level PECs.
In the modeling study (Jiang et al., 2007), CV stimuli (with
23 different initial consonants) were recorded simultaneously
with a video camera and a three-dimensional optical recording
system. Optical recording tracked the positions of retro-reflectors
pasted on the talker’s face (see Figure 1A). The video CV
stimuli were perceptually identified, and the obtained confusion

FIGURE 1 | Still frames from natural and synthetic speech stimuli. The
white dots on the face of the talker (A) are retro-reflectors that were used
during video recording for motion-capture of 3D motion on the talker’s face.
This 3D motion drove the motions of the synthetic talking face (B). Video and
synthetic stimuli were presented in full color against a dark blue background.
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data were submitted for multidimensional scaling (Kruskal and
Wish, 1978) to compute Euclidean distances between stimuli.
The three-dimensional motion tracks were also used to calculate
optical Euclidean distances. The perceptual distances were used
to linearly warp the physical distances using least squares
minimization (Kailath et al., 2000). This linear mapping approach
was highly successful in accounting for a separate sample of
perceptual identification results. The variance in the perceptual
distances accounted for by the physical distances ranged between
46 and 66% across the four talkers who were studied and between
49 and 64% across the three vowels (/A/, /i/, and /u/) in the
CV stimuli. The syllables in the current study have thus been
previously characterized not only in terms of their PEC status but
also their perceptual and physical dissimilarities.

In addition, stimuli in Experiment 1 were presented as
natural video or synthesized video. Every naturally produced CV
utterance is expected to be physically different to some extent,
not only in its unique instantiation of a particular CV sequence,
but also in terms of other stimulus information such as the
talker’s eye gaze, head motion, and possibly subtle differences
in talker affect or emotion. Therefore, the current study used
two tokens of every phoneme type and also used visual speech
synthesis to control for natural variation and to probe the basis
for visual speech discrimination. The three-dimensional motion
data in the modeling study (Jiang et al., 2007) were used to drive
a visual speech wire-frame synthesizer (Jiang et al., 2008). The
synthesized speech removed many of the natural non-speech
stimulus characteristics that could inflate discrimination. The
synthesized talking face image had fixed head and eye positions
and no facial emotion or affective changes. We also probed
visual speech stimulus features in Experiment 2 by inverting the
video stimuli. Inversion disrupts face processing to some extent
(Valentine, 1988; Maurer et al., 2002; Richler et al., 2011; Gold
et al., 2012).

Materials and Methods

Experiment 1: Discrimination and Identification
of Natural and Synthetic Visual Speech
Participants
Twelve volunteers (8 female, 11 right-handed), mean age 35 years
(range 22–47 years), participated in Experiment 1. Participants
were recruited from an existing database of volunteers screened
to have normal or corrected-to-normal vision, normal hearing,
and lipreading ability no worse than one-half standard deviation
below the mean for hearing individuals on a sentence lipreading
screening test (Auer and Bernstein, 2007). There are large
individual differences in lipreading ability among adults with
normal hearing (Bernstein et al., 2000; Auer and Bernstein,
2007); poor lipreaders were excluded as they might generate little
useful data. All participants gave informed consent and were
compensated financially for their participation. Most participants
completed the experiment in fewer than 3 h. The research
was approved by the University of Southern California and St.
Vincent’s Hospital (Los Angeles, CA, USA) Institutional Review
Boards for the use of human subjects.

Stimuli
Natural CV syllables were recorded with a production quality
camera (Sony DXC-D30 digital) and video recorder (Sony
UVW 1800). Simultaneously, retro-reflectors on the talkers
face were recorded using a three-camera, three-dimensional
motion capture system (QualisysMCU120/240 Hz CCD Imager).
Figure 1A shows the retro-reflector positions, which included
three on the forehead that were used to separate and eliminate
overall head movement from visible speech movement in
the synthesized video stimuli. The speech stimuli were from
recordings of Talker M2 in (Jiang et al., 2007), from which tokens
were selected that were free of large head motion and noticeable
artifacts such as large eye movements and non-verbal mouth
motion. The syllables used in this study were /bA, pA, dA, tA, gA,
kA, dZA, tSA, ZA, hA, lA, nA, rA, vA, fA/.

The stimulus selection used for the discrimination testing
is described in detail in Table 1. The table is organized in
terms of stimulus pair triplets, for which each anchor stimulus
is part of a (1) a same stimulus pair (i.e., anchor vs. anchor)
but using different tokens, (2) a far pair with a large physical
distance (i.e., anchor vs. far), and (3) a near pair with an
intermediate physical distance (i.e., anchor vs. near). Same pairs
used different recorded tokens so that speech-related differences
that were not phonemic would be present in the stimulus set,
in addition to non-speech token differences. PEC groupings
that were computed across all of the initial consonants in CV
syllables were /w, r/, /m, p, b/, /f, v/, /�, ð/, /t, d, s, z, S,
Z, Ù, dZ/ and /y, l, n, k, h, g/ (Jiang et al., 2007). Thus, far
pairs were from across PECs (visemes), and near pairs were
from within PECs. Same pairs used different stimulus tokens
in order to defend against discrimination judgments based on
irrelevant (non-speech) stimulus attributes such as the talker’s
eye gaze. Different pairs selected from two tokens of each
syllable, so that discrimination between phonemes generalized
across tokens. In Jiang et al. (2007), the largest physical stimulus
distances for this speech were ∼4, and here far pairs had distance
of ∼4. Near pairs corresponded to physical stimulus distances
of ∼2.

The stimulus generation organized in terms of sets of triplets
afforded collection of valid response time measures to evaluate
perception. The mean syllable duration was 0.530 s. But the
range was 0.270–1.120 s. In order to compare latencies across
pair distance, it was necessary to present anchors second in
each trial, measure response times from the anchor’s onset, and
compare latencies within triplets. This approach had the side
effect, however, of requiring foil stimulus pairs, so that stimulus
position could not be used as a clue to the correct discrimination
response (see Table 1). Same foils were added to the stimulus set
whenever the near or far phoneme in a triplet never served as
an anchor in another triplet. Different foils were added whenever
an anchor in one triplet did not appear in any other triplet:
Otherwise, whenever it was first in a trial the correct response
same would be obvious. Some foil trials served that purpose for
more than one triplet.

All stimuli were edited so that the first video frame showed the
mouth in closed position and the moving stimulus ended when
the mouth reached maximal opening and jaw drop. Thus, the
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TABLE 1 | Summary of all stimulus pairs in Experiments 1 and 2.

Triplet anchor Pair Stimulus distance Role

Experiment 1

dA pA dA 3.92 Far

pA pA 0 foil (same)

ZA dA 2.32 Near

dA dA 0 Same

dZA vA dZA 3.96 Far

vA vA 0 foil (same)

dA dZA 2.88 Near

dZA dZA 0 Same

kA rA kA 4.08 Far

rA rA 0 foil (same)

hA kA 2.27 Near

hA hA 0 foil (same)

kA kA 0 Same

lA ÙA lA 4.04 Far

ÙA ÙA 0 foil (same)

gA lA 1.96 Near

gA gA 0 foil (same)

lA lA 0 Same

lA kA 2.05 foil (different)

nA vA nA 4.24 Far

kA nA 2.15 Near

nA nA 0 Same

nA kA 2.15 foil (different)

tA bA tA 3.99 Far

bA bA 0 foil (same)

dZA tA 2.28 Near

tA tA 0 Same

ZA fA ZA 4.04 Far

fA fA 0 foil (same)

tA ZA 2.28 Near

ZA ZA 0 Same

Experiment 2

dA pA dA 3.92 Far

pA pA 0 Foil (same)

ZA dA 2.32 Near

ZA ZA 0 Foil (same)

dA dA 0 Same

dZA vA dZA 3.96 Far

vA vA 0 foil (same)

dA dZA 2.88 Near

dZA dZA 0 Same

dZA tA 2.28 Foil (different)

kA rA kA 4.08 Far

rA rA 0 foil (same)

hA kA 2.27 Near

hA hA 0 Foil (same)

kA kA 0 Same

nA vA nA 4.24 Far

kA nA 2.15 Near

nA nA 0 Same

nA kA 2.15 Foil (different)

Stimuli were organized in terms of triplets of same, far, and near stimuli relative to
an anchor. Foil stimuli were selected to defeat discrimination judgments based on
stimulus position in a discrimination trial. Foils may serve that purpose for more
than one triplet in the table. Stimulus distance is the perceptually warped stimulus
distance from Jiang et al. (2007). Experiment 2 stimuli were a subset of those in
Experiment 2.

stimulus was truncated to reduce testing time, without sacrificing
relevant stimulus information. Pilot testing suggested that this
truncation scheme did not affect discrimination accuracy. The
initial video frame (at 29.97 frames/s) of the still face was repeated
five times before the speech stimulus began to move, and the final
frame was repeated five times at the end, resulting in ten frames.
The inter-stimulus-interval for each trial was 333 ms of neutral
face.

Synthetic Stimuli
Visual speech stimuli were synthesized based on the three-
dimensional optical data that were recorded simultaneously
with the video. The synthetic talker (Jiang et al., 2008)
(Figure 1B) was based on a wire framemesh of three-dimensional
polygons that defined the head and its parts (Xue et al., 2006).
The original three-dimensional face model was obtained from
www.digimation.com. The model was later edited (addition,
deletion, and modification of some vertices, polygons, and
textures) to have 1915 vertices and 1944 polygons. An algorithmic
layer allowed the mesh to be deformed for performing facial
actions as well as preventing errors (such as incursion of the
lower lip into the volume of the upper lip). Optical trajectories
were registered (calibrated) onto the key points on the face
model, and these key points were used to deform the rest of the
face vertices using a modified radial basis functions (Ma et al.,
2006; Xue et al., 2006). Reconstructed 3-D motion data were
processed to remove head motion, compensate for missing data
and for eyebrow motion, remove noise, normalize the head-size,
and smooth the motion tracks. Texture was re-mapped onto
the deformed face and animation with lighting and background
using the openGL graphics application-programming interface.
Lighting in the face animation was chosen to be close to that of the
natural video. The synthetic face was scaled and shifted to have
the same position and size as the natural face (see Figures 1A,B).
The animation had a resolution of 720× 480 pixels. The resulting
60-Hz AVI videos were then interlaced to produce 30-Hz video.
Using this model previously (Jiang et al., 2008), synthesized
versus natural words were presented in pairs for discrimination,
and perceptual distance was varied among word pairs. The results
showed that perceivers could judge across the natural versus
synthetic stimuli whether the words were the same or different,
suggesting that the synthesis generated perceptually useful speech
information.

Procedures
Natural and synthetic CV stimuli were presented on a CRT
monitor. The video source was a DVD player driven by
custom software. The discrimination testing was followed by a
forced choice perceptual identification test, with the order of
natural versus synthetic stimuli during testing the same across
the discrimination and identification paradigms but counter-
balanced across participants.

Prior to discrimination testing, participants were told that they
would see video clips of a face silently speaking pairs of nonsense
syllables, and that their task was to judge if the two syllables
were the same or different. Instructions emphasized that even
when the syllables were the same, the two video clips would be
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different. Participants were instructed to respond as quickly and
as accurately as possible. Two brief six-trial practice blocks—
one with natural stimuli, the other with synthetic—preceded the
experimental data collection.

Each of the 94 stimulus pairs comprising a discrimination
block was presented in a pseudo-random order. Blocks were
repeated 10 times per stimulus type (synthetic and natural) with
a new pseudo-random order on each block. The hand used to
report same or differentwas counter-balanced across participants.
Feedback indicating the correct response was delivered via a
pair of blue light-emitting diodes mounted on the sides of the
video display. Response times were recorded using a custom-
built timer, triggered by a specially designed audio track on
the DVD, which was verified to ensure accurate and reliable
synchronization between the video stimulus and the response
timer.

Following the discrimination task, closed-set perceptual
identification was carried out on the 15 syllables (two tokens
each) from the triplet stimulus sets in the discrimination
task. Stimuli were presented singly in blocks of natural or
synthetic stimuli. Participants identified each CV syllable by
using a computer mouse to click one of 15 labeled response
buttons on a separate display. Each button showed a letter
and an example word to identify the phoneme. Stimuli were
presented ten times each blocked by natural or synthetic
type. No feedback was provided, and response times were not
recorded. Two brief six-trial practice blocks—one with natural
stimuli, the other with synthetic—preceded the experimental data
collection.

Analyses
Statistical analyses were carried out using SPSS version 17.0
and MATLAB 7.10. Analysis was primarily repeated-measures
analysis of variance (ANOVA) with degrees of freedom corrected
for violations of sphericity using the Huynh-Feldt correction (∼ε)
when needed. To provide a measure of effect size, η2 values are
reported. Error bars in figures are within-subjects 95% confidence
intervals (Morey, 2008).

Discrimination Data
Analyses on discrimination data were limited to triplet set
stimulus pairs and not foil pairs. Percent correct was calculated
as the proportion of different responses for near and far trials,
and same responses for same trials. Discrimination sensitivity,
d’, was calculated on a per-triplet basis using the common
normal and equal-variance assumption. Within a triplet, the
false alarm rate was the proportion of times the different
response was given when the syllables were the same, and
the correct detection rate was the proportion of times the
different response was given when the syllables were different
(either near or far). d’ was computed as [Z(correct detection) −
Z(false alarm)]√2, where Z() is the inverse cumulative normal
distribution function. The multiplication by

√
2 is used for a

roving standard paradigm and transforms the resulting d’ into
an estimate of the sensitivity to the difference between the two
syllables in a near or far trial (Macmillan and Creelman, 1991,
pp. 155–158).

Response Time Data
Discrimination response times on correct (non-foil) trials were
analyzed per participant. Outliers were removed by calculating
the participant’s response timemean and SD and using only those
response times within 2.5 times of their SD. Fewer than 3% of
trials were excluded by this approach.

Identification data
Percent correct was calculated per participant and consonant.
Analyses involving proportion correct measures were carried out
with and without applying the arcsine transformation to stabilize
variance. All of the results were replicated across transformed and
untransformed scores. For simplicity and ease of interpretation,
the proportion correct results are presented rather than the
transformed score results.

Shannon entropy (Shannon, 1948) was calculated for each
syllable as − ∑

n plog2p, where n is the number of response
categories (i.e., initial consonants in syllables), and p is the
proportion of responses in that category. Low entropy implies
that responses to the stimulus were assigned to one or a small
number of syllables. A high value implies that responses are
distributed across available response categories. With the 15
alternatives in the identification task, entropy ranges between 0
for all correct responses or use of one incorrect response, to 3.9
for an equal number of responses in each cell of the confusion
matrix.

Results
Discrimination
Figure 2 shows that group mean d’ scores for natural and
synthetic stimulus pairs were higher for far pairs compared to
near pairs collapsed over the different syllable triplets. The figure
shows that the same pattern held when syllable triplets were
considered separately.

Repeated-measures ANOVA was carried out on d’ scores with
the within-subject factors of distance (far, near), stimulus type
(natural, synthetic), and triplet (7). The distance and stimulus
type main effects were reliable. Far pairs were discriminatedmore
accurately than near pairs, F(1,11) = 337.5, η2 = 0.573, p < 0.001
(far mean d’ = 3.67, near mean d’ = 1.10). Natural stimuli
were discriminated more accurately than synthetic stimuli,
F(1,11) = 65.9, η2 = 0.108, p < 0.001 (natural mean d’ = 2.94,
synthetic mean d’ = 1.83).

However, there were reliable two-way and three-way
interactions among distance, stimulus type, and triplet. In order
to gain insight into the interactions, repeated measures ANOVA
was carried out for each of the seven triplets. The within-subjects
factors were distance (far, near) and stimulus type (natural,
synthetic). Statistics for each triplet are given in Table 2. Across
triplets, the main effect of distance, with d’ for far pairs higher
than for near pairs, and the main effect of stimulus type, with
d’ for natural higher than d’ for synthetic pairs, were reliable.
Interactions of distance with stimulus type were reliable for the
anchors /nA/, /tA/, and /ZA/. For triplets with anchor syllables
/nA/ and /tA/, the interaction was attributable to a larger effect
of stimulus type for the near pairs than the far pairs. For the
triplet with anchor syllable /ZA/ the interaction was attributable
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FIGURE 2 | Experiment 1 group mean d’ sensitivity. The large panel (Left) shows results averaged across stimulus triplets, and the small panels (Right) show
results for each triplet. Error bars are within-subjects 95% confidence intervals.

TABLE 2 | Analyses of variance on d’ for the triplets in Experiment 1.

Anchor Source df F η2 p Mean difference Confidence interval

/dA/ Distance (far, near) 1 364.3 0.77 0.001 2.10 [1.86 2.35]

Type (natural, synthetic) 1 9.7 0.08 0.010 0.69 [0.20 1.17]

Distance with type 1 1.62 0.00 0.230

Error 11 0.14

/dZA/ Distance (far, near) 1 220.6 0.74 0.000 2.73 [2.32 3.13]

Type (natural, synthetic) 1 20.2 0.12 0.001 1.10 [0.56 1.64]

Distance with type 1 0.1 0.00 0.770

Error 11 0.14

/kA/ Distance (far, near) 1 217.6 0.89 0.000 3.09 [2.63 3.55]

Type (natural, synthetic) 1 4.4 0.01 0.059 0.34 [−0.02 0.69]

Distance with type 1 0.4 0.00 0.530

Error 11 0.09

/lA/ Distance (far, near) 1 32.4 0.36 0.000 2.17 [1.33 3.01]

Type (natural, synthetic) 1 51.6 0.40 0.000 2.29 [1.59 3.00]

Distance with type 1 0.4 0.01 0.530

Error 11 0.24

/nA/ Distance (far, near) 1 78.7 0.60 0.000 2.92 [2.19 3.64]

Type (natural, synthetic) 1 25.6 0.15 0.003 1.46 [0.60 2.33]

Distance with type 1 6.0 0.02 0.032

Error 11 0.23

/tA/ Distance (far, near) 1 217.7 0.74 0.000 2.80 [2.39 3.22]

Type (natural, synthetic) 1 18.4 0.12 0.001 1.12 [0.55 1.70]

Distance with type 1 10.1 0.01 0.009

Error 11 0.12

/ZA/ Distance (far, near) 1 156.6 0.70 0.000 2.18 [1.80 2.56]

Type (natural, synthetic) 1 12.0 0.10 0.005 0.80 [0.29 1.31]

Distance with type 1 5.7 0.02 0.035

Error 11 0.18

Each of the anchor stimuli and its triplet set were analyzed separately (see text). Mean difference is level 1 minus level 2 (i.e., far minus near, natural minus synthetic).
Values in brackets are lower and upper 95% confidence intervals.
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to a smaller effect of stimulus type for the near pair than the far
pair.

To assess whether discrimination was reliably different from
zero, one-sample t-tests (df = 11) were run for each stimulus
pair. After Bonferroni correction, all far pairs (natural and
synthetic) were reliably discriminable, as were all natural near
pairs with the exception of /hA/-/kA/. These results support
the expectation that discrimination is possible within the same
visemes for natural speech. For synthetic speech only two of the
synthesized near pairs were reliably discriminable: /tA/-/ZA/ and
/ZA/-/dA/.

Discrimination Response Times
After removing outliers, 97.3% of the 12,545 response times
were retained. Individual responses times were generally long
(mean = 1,231–1,781 ms), because measurements were initiated
at the beginning of the triplet stimulus in the second trial interval.
Results are summarized in Figure 3.

Response times were submitted to a repeated-measures
ANOVA with the within-subjects factors of distance category
(same, near, far), stimulus type (natural, synthetic), and triplet.
(One participant’s data were excluded, because they could not
discriminate /lA/-/ gA/ with the synthetic visible speech). There
was a significant main effect of distance, F(2,20) = 38.9,
η2 = 0.345, p < 0.001. Far pair responses (mean RT = 1,293 ms)
were faster than near (mean RT = 1,592 ms) and same (mean
RT = 1,628 ms) pairs. Far syllables were discriminated more
than 300 ms faster than near or same syllables. Thus, there was
no speed/accuracy trade-off in this task. Stimulus type was a
reliable factor, F(1,10) = 282.6, η2 = 0.490, p < 0.001, with
responses to natural stimulus pairs (mean RT = 1,326 ms)
being faster than those to synthetic stimulus pairs (mean
RT = 1,683 ms).

Order (natural first, synthetic first) was used in this analysis.
It was not a reliable main effect, F(1,9) = 0.3, η2 = 0.024,

p = 0.624, but it interacted with stimulus type, F(1,9) = 19.2,
η2 = 0.020, p = 0.002. Both presentation orders resulted
in reliably faster responses to natural compared to synthetic
stimuli, but the response time disadvantage of synthetic stimuli
was smaller for participants who discriminated natural stimuli
first.

Because there were interactions with the anchor factor,
repeated-measures ANOVA was applied separately for each
triplet (7) with within-subjects factors of distance category (far,
near, same) and stimulus type (natural, synthetic), and between-
subjects factor of presentation order (natural first, synthetic first).
Statistics are reported in Table 3. All of the main effects of
distance category and stimulus type were reliable. Responses to
natural stimuli were always faster than responses to synthetic
stimuli, and far pair responses were always faster than near or
same pair responses.

Correlations between d’ and Modeled Perceptual
Dissimilarity
The organization of stimuli into triplet sets converted continuous
perceptually warped physical measures from Jiang et al. (2007)
into distance categories. In order to test the association
between continuous distance and d’, the modeled perceptual
distances from Jiang et al. (2007) were used in computing
Pearson correlation coefficients (Figure 4), with each participant
contributing a score for each stimulus pair. The correlation
between the perceptually warped physical dissimilarity and d’ for
natural stimuli was r(166) = 0.676, p < 0.001, and the correlation
for synthetic stimuli was r(166) = 0.828, p < 0.001.

Pearson correlations were also computed separately for each
participant. For natural stimuli, the correlations between d’
and perceptually warped physical distance were statistically
reliable (p < 0.05) in 10 out of the 12 participants, mean
r(12) = 0.720, range r(12) = 0.446–0.893 (variance accounted
for range 19.9–79.7%). For synthetic stimuli, the correlations

FIGURE 3 | Experiment 1 response times. Group mean response times pooled over anchor syllable are shown in the (Left), and group mean response times for
each anchor syllable are shown in the (Right). Error bars are within-subjects 95% confidence intervals.
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TABLE 3 | Analyses of variance for response times in Experiment 1.

Anchor Source df F
∼
ε η2 p

/dA/ Distance (far, near, same) 2, 20 17.8 1 0.29 0.000

Type (natural, synthetic) 1, 10 198.2 1 0.46 0.000

Distance with type 2, 20 1.6 1 0.01 0.230

/dZA/ Distance (far, near, same) 2, 20 23.8 1 0.30 0.000

Type (natural, synthetic) 1, 10 348.7 1 0.41 0.000

Distance with type 1.6, 16.6 7.2 0.83 0.04 0.004

/kA/ Distance (far, near, same) 2, 20 17.8 1 0.41 0.000

Type (natural, synthetic) 1, 10 129.2 1 0.31 0.000

Distance with type 1.4, 14.2 3.9 0.71 0.02 0.055

/lA/ Distance (far, near, same) 1.9, 17.4 17.8 0.97 0.11 0.000

Type (natural, synthetic) 1, 9 88.6 1 0.65 0.000

Distance with type 2, 18 0.9 1 0.01 0.436

/nA/ Distance (far, near, same) 2, 20 23.0 1 0.30 0.000

Type (natural, synthetic) 1, 10 80.4 1 0.42 0.000

Distance with type 2, 20 0.8 1 0.00 0.471

/tA/ Distance (far, near, same) 2, 20 31.8 1 0.43 0.000

Type (natural, synthetic) 1, 10 70.9 1 0.26 0.000

Distance with type 1.4, 14.2 0.1 0.71 0.00 0.819

/ZA/ Distance (far, near, same) 2, 20 17.3 1 0.27 0.000

Type (natural, synthetic) 1, 10 147.9 1 0.36 0.000

Distance with type 2, 20 6.3 1 0.04 0.008

Each of the anchor stimuli and its triplet set were analyzed separately (see text).

FIGURE 4 | Correlations between d’ scores and perceptually warped
physical distance. Results are shown separately for natural (A) and synthetic
(B) syllable pairs. Error bars are within-subjects 95% confidence intervals.

were reliable for all 12 participants, mean r(12) = 0.861,
range r(12) = 0.710–0.981 (variance accounted for range 50.4–
96.2%). Correlation coefficients were reliably higher for synthetic

compared to natural visible speech, as tested using a paired-
samples permutation test (p = 0.004). The scatter plot for
perceptual distance versus d’ sensitivity (Figure 4) suggests that
stimulus pairs, /lA/-/gA/ and /nA/-/kA/ were responsible for the
difference in correlations across natural versus synthetic stimuli.

Identification
Percent correct
Group mean percent correct phoneme identification is shown
in the upper panel of Figure 5. No individual participant’s 95%
confidence interval computed using the binomial distribution
included the percent correct expected by chance, 6.67% for
either natural or synthetic speech. The scores are similar to
those obtained in Jiang et al. (2007) for the natural speech of
Talker M2 in the /A/ context. The range of correct scores was
35–45%. Stimulus-response confusion matrices are shown in
Figure 6.

A repeated measures ANOVA for percent correct consonants
was carried out with the within-subjects factors of stimulus
type (natural, synthetic), and consonant /bA/, /tSA/, /dA/, /fA/,
/gA/, /hA/, /dZA/, /kA/, /lA/, /nA/, /pA/, /rA/, /tA/, /vA/, and
/ZA/. Natural video speech was perceived more accurately
(mean percent correct = 44.2) than synthetic (mean percent
correct = 33.4), F(1,11) = 96.2, η2 = 0.032, p < 0.001.
However, the small eta squared shows that the effect was small.
Consonant was also a reliable factor, F(12.2,134.6) = 6.91,
η2 = 0.264, p < 0.001, as was its interaction with stimulus
type, F(10.9,120.0) = 16.52, η2 = 0.169, p < 0.001. Follow-
up paired t-tests showed that natural visible speech consonants
/fA, hA, dZA, lA, nA, rA/ were more accurately identified
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FIGURE 5 | Experiment 1 group mean phoneme identification
percent correct and entropy. Group mean percent correct (upper)
and Shannon entropy (lower) are shown. Error bars show
within-subjects 95% confidence intervals. Correct identification was
reliably above chance (6.7%, dashed line) for all syllables except /gA/

in the natural type and /lA/ and /nA/ in the synthetic type. Even for
cases with low percent correct identification, entropy was generally low,
well below the theoretical maximum for this task (3.91, dashed line),
indicating that responses were typically allocated to a small number of
response categories.

than their synthetic counterparts, and synthetic /gA/ was more
accurately identified than its natural counterpart, p < 0.05
(uncorrected).

Entropy
Group mean Shannon entropy is shown in the lower panel
of Figure 5. A repeated-measures ANOVA was carried out on
entropies with within-subjects factors of stimulus type (natural,
synthetic) and consonant (/bA/, /tSA/, /dA/, /fA/, /gA/, /hA/,
/dZA/, /kA/, /lA/, /nA/, /pA/, /rA/, /tA/, /vA/, /ZA/) and between-
subjects factor of presentation order (natural first, synthetic first).
Lower entropy was obtained with natural than with synthetic
stimuli, F(1,10) = 77.3, η2 = 0.092, p < 0.001 (natural, mean
entropy = 1.19; synthetic, mean entropy = 1.61). But consonant
was a reliable factor, F(7.9,79.2) = 15.7, η2 = 0.385, p < 0.001,
and there was an interaction between consonant and stimulus
type, F(12.5,124.7)= 8.1, η2 = 0.104, p< 0.001. Follow-up paired
comparisons showed that there was significantly lower entropy
for the natural compared to synthetic /fA, hA, lA, nA, tSA, dA, tA/
stimuli, p < 0.05 (uncorrected).

Discussion
Experiment 1 showed that natural and synthetic visual speech
consonants from between and within PEC (viseme) groups
were discriminable, and that discriminability was associated
with perceptually warped physical stimulus dissimilarity.
Discriminability was also inversely associated with response
times, the more discriminable the stimuli, the shorter the
response latency. Natural speech was more discriminable and
resulted in shorter latencies than synthesized speech. Natural
and synthetized stimuli were identified at above chance levels,

but natural stimuli were more accurately identified. Errors
were more systematic with natural speech. These results
are compatible with the evidence summarized in Section
“Introduction” that suggests that perceivers are sensitive to
phoneme differences that are traditionally regarded to be
invisible and non-informative.

The comparison between natural and synthesized speech
supports the conclusion that lipreaders discern fine details in the
natural visual stimulus. The synthetic stimuli did not incorporate
a tongue model. It is likely that glimpses into the talker’s mouth
are important for perception of place and manner of articulation.
For example, articulation of /l/ involves a flattened tongue blade
that can be glimpsed through the open lips when the consonant
is followed by /A/. Modeling of the lip motion using only the
outer lip margin as was the case here reduces visible articulatory
information, because the inner and outer lip margins are not
necessarily correlated in their shape and movements. Also, the
algorithmic approach to interpolating movement among sparse
three-dimensional data such as for the synthetic talker’s cheeks
probably reduces perceptible speech information. The overall
implication of these effects is that perceivers are sensitive to
and make use of the details in natural speech stimuli, and their
sensitivity and response times are affected when those details are
reduced or eliminated.

Experiment 2: Inverted and Upright Visual
Speech Discrimination
Several investigators have used inverted talking faces to
evaluate aspects of audiovisual and visual-only speech
perception (Massaro and Cohen, 1996; Rosenblum et al.,
2000; Thomas and Jordan, 2004). In Massaro and Cohen
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FIGURE 6 | Identification confusion matrices. Group response
proportions are shown for identification of (A) natural stimuli and (B) synthetic
stimuli. The initial consonant of the CV stimulus (with /a/ in the vowel context)
is shown at the head of each row, and responses to that stimulus are in
separate columns. Correct responses fall on the diagonal, and incorrect
responses are in off-diagonal cells of the matrix.

(1996), inversion of four synthetic CV syllables reduced
identification accuracy by ∼10% points. Among the four
stimulus consonants, /b, v, d, ð/, /v/ was most affected
by inversion. In Rosenblum et al. (2000), there were few
identification errors to /b/ versus /v/. But errors in identifying
/g/ were substantial in the contrast between /b/ and /g/.
In Thomas and Jordan (2004), six CVC real words were
presented for identification, and inversion reduced identification
accuracy.

Face inversion reduces face identification accuracy, implying
that internal face representations are not fully invariant to

orientation (Yovel and Kanwisher, 2005; Jiang et al., 2006; Susilo
et al., 2010; Gold et al., 2012). However, the Jiang et al. (2007)
model that was used to generate dissimilarities for Experiment
1 did not take orientation into account. Its between-phoneme
distance estimates also do not take into account the spatial
organization of the individual motion points. In Experiment 2,
a subset of the discrimination pairs from Experiment 1 was
presented in order to probe whether speech discrimination is
invariant to orientation. If perceivers were sensitive only to visual
speech motion, as represented in the optical recordings, we
would predict that orientation would not affect discrimination
scores. This prediction is consistent with the organization of
the visual pathways, which represent motion at a lower level of
organization than complex multi-feature images, such as natural
faces performing non-speech motions (Fox et al., 2009; Pitcher
et al., 2011). If, however, perceivers use the spatial organization
of talking face (i.e., their configuration), inversion is expected to
diminish discrimination sensitivity and increase response times.

Methods
In Experiment 2, discrimination was carried out with upright
versus inverted stimuli. No identification testing was carried out.
Methods followed those from Experiment 1, except as described
below.

Participants
Twelve volunteers (10 female, all right-handed, mean age
25 years, range 19–37 years), none from Experiment 1, gave
written informed consent and were financially compensated for
their participation.

Stimuli
Stimuli were four triplets from the natural stimuli in Experiment
1 (see Table 1) and only the foils needed in the context of the
reduced set. The total number of stimulus pairs was 58; however,
an additional pair, /gA/-/gA/ was inadvertently included, so the
total number of pairs presented was 59. Stimuli were inverted by
presenting them on an inverted monitor.

Procedure
Stimulus pairs were presented in pseudo-random order within a
block. Blocks were repeated (with stimuli in a different order each
time) a total of six times per condition (upright, inverted). All
blocks of a particular condition were completed before blocks of
the other condition were begun, with counter-balancing across
participant groups. Before each condition there was a six-trial
practice to familiarize the participant with the experimental
setup. Because response time effects did not interact with button
side mapping in Experiment 1, Experiment 2 did not counter-
balance button side mapping.

Results
Discrimination
Figure 7 summarizes the discrimination results and suggests
that the pattern of discrimination across near and far stimulus
pairs was invariant to orientation. A repeated measures ANOVA
was carried out with within-subjects factors of stimulus distance
(near, far), orientation (upright, inverted), and anchor syllable
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(/dA/, /dZA/, /kA/, /nA/). Distance was a reliable main effect,
F(1,11) = 399.5, η2 = 0.525, p < 0.001, with d’ for far (mean
d’ = 3.67) greater than near pairs (mean d’ = 1.50). Anchor was a
reliable main effect, F(2.13,23.43) = 11.21, ∼ε = 0.710, η2 = 0.11,
p < 0.001. However, orientation was also a reliable but very small
main effect, F(1,11) = 4.85, η2 = 0.015, p = 0.05, with higher d’
for upright (mean d’ = 2.77) than inverted stimulus pairs (mean
d’ = 2.41).

All of the interactions were reliable, but the effect sizes were
small: Orientation with distance, F(1,11) = 7.15, η2 = 0.004,
p = 0.022; Anchor consonant with distance, F(3,33) = 6.85,
η2 = 0.019, p < 0.001; Orientation with anchor consonant,
F(3,33) = 6.09, η2 = 0.04, p = 0.002; and Distance, orientation,
and anchor, F(3,33) = 3.39, η2 = 0.006, p = 0.029.

Separate repeated measures ANOVAs were run for each of
the four triplets with the factors orientation (upright, inverted)
and stimulus distance (near, far) (see Table 4). The analyses
suggest that the triplet with anchor /dZA/ was the main source of
effects involving orientation in the omnibus analysis, and within
that triplet, the orientation effect was apparently due to the far
pair. Paired t-tests revealed that there was a reliable inversion
effect (upright more discriminable than inverted) for the far pair
(/vA/-/dZA/) but not for the near pair (/dA/-/dZA/).

Response time
After removing outliers, 97.3% of the responses (4,396)
were retained. A repeated-measures ANOVA was carried out
with within-subjects factors of stimulus distance (same, near,
far), orientation (upright, inverted), and anchor (/dA/, /dZA/,
/kA/, /nA/). The main effect of orientation was not reliable,
F(1,10) = 0.5, η2 = 0.006, p = 0.495. Distance was a reliable main
effect, F(2,20) = 31.1, η2 = 0.290, p < 0.001. Responses to far
pairs (mean RT = 1,058) were faster than those to near (mean

RT = 1,255) or same pairs (mean RT = 1,225), but same and near
were not different.

Anchor was a reliable main effect, but this effect was largely
attributable to differences in the duration of the anchor syllable.
The interaction of distance category with anchor was reliable, and
follow-up paired comparisons showed that all triplets exhibited
the same pattern of difference observed in the main effect of
distance category, namely that responses to far pairs were faster
than to near or same pairs (all p < 0.05).

The interaction of stimulus orientation with distance category
and anchor consonant accounted for a small but significant
amount of the variance, F(3.3,32.7) = 2.8, η2 = 0.019, p = 0.049.
Follow-up paired comparisons showed that in both upright and
inverted conditions, the far pair response was faster than the near
and same pair responses for all of the anchors, with the exception
of the inverted far pair /vA/-/dZA/ that was not faster than its near
counterpart.

Discussion
Experiment 2 showed that the effect size of stimulus inversion was
small. The d’ difference between upright and inverted stimuli was
only 0.37. There was not a main effect of inversion on response
time, although there were indications that inversion affected the
perceived stimulus information in /vA/. There was reduction in
discrimination sensitivity and no advantage in response time
under inverted conditions for the /vA/-/dZA/ far pair. Perception
of the syllable /vA/ was previously shown to be affected by
inversion (Massaro and Cohen, 1996; Rosenblum et al., 2000). In
natural video, the /v/ is articulated with the teeth placed against
the lower lip. This feature is highly visible. Thus, this result
suggests that configural information is important at least for
labiodental articulations, and that visual speech discrimination
involves more than motion discrimination.

FIGURE 7 | Experiment 2 mean d’ sensitivity for inverted and upright stimuli. The left panel shows group mean d’ averaged over all anchors, and the small
panels show group mean d’ separated out by triplet anchor. Error bars are 95% within-subjects confidence intervals.
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TABLE 4 | Analyses of variance on d’ for the triplets in Experiment 2.

Anchor Source df F η2 p Mean difference Confidence interval

/dA/ Distance (far, near) 1 399.5 0.64 0.001 1.66 [1.30 2.03]

orientation (inverted, upright) 1 0.0 0.00 0.979 0.01 [-0.66 0.67]

distance with orientation 1 0.0 0.00 0.905

Error 11 0.36

/dZA/ distance (far, near) 1 79.9 0.52 0.001 2.08 [1.57 2.59]

orientation (inverted, upright) 1 13.7 0.18 0.003 -1.23 [−0.50 −2.00]

distance with orientation 1 10.8 0.04 0.007

Error 11 0.26

/kA/ distance (far, near) 1 257.0 0.86 0.001 2.80 [2.42 3.19]

orientation (inverted, upright) 1 1.8 0.01 0.210 0.34 [−0.22 0.91]

distance with orientation 1 0.1 0.00 0.773

Error 11 0.13

/nA/ distance (far, near) 1 140.0 0.73 0.001 2.14 [1.74 2.53]

orientation (inverted, upright) 1 4.2 0.05 0.065 -0.56 [−1.16 0.04]

distance with orientation 1 1.3 0.00 0.275

Error 11 0.22

Each of the anchor stimuli and its triplet set were analyzed separately (see text). Mean difference is level 1 minus level 2 (i.e., far minus near, inverted minus upright). Values
in brackets are lower and upper 95% confidence intervals.

General Discussion

This study shows that there is more phonetic information
available in visual speech consonants than predicted by the notion
of visemes as perceptual categories (Woodward and Barber, 1960;
Fisher, 1968; Massaro et al., 2012). Experiment 1 showed that
discrimination is excellent for consonants that represent different
viseme-level PECs and is also reliable for consonant pairs within
PECs. We therefore suggest that while the viseme, or more
generally the PEC (Auer and Bernstein, 1997), can be useful for
describing patterns of phoneme similarities and dissimilarities
(Walden et al., 1977; Owens and Blazek, 1985; Iverson et al.,
1998; Mattys et al., 2002) resulting from the invisibility of some
articulatory information, the notion of the viseme as a perceptual
category without internal perceptual structure or information is
incorrect.

Experiment 1 also investigated the model by Jiang et al.
(2007) which used consonant identification data and three-
dimensional optical recordings to obtain perceptually warped
physical stimulus distances. The experiment showed that
discriminability is correlated with perceptually warped physical
stimulus distance. The synthetic speech stimuli that were based
on the three-dimensional optical recordings produced similar
patterns of discriminability, although the synthetic speech was
perceived less accurately. In addition, perceptual distances were
predictive of response latencies. Thus, we have demonstrated
complete consistency between earlier results on identification
and distance from Jiang et al. (2007) and present results on
discrimination and response latency. We comment further below
on the potential usefulness of these relationships for determining
the neural basis of visual speech perception.

Experiment 2 used stimulus inversion to probe whether
visual speech information comprises solely motion attributes
independent of orientation or face configuration. Some evidence
was obtained concerning perception of /vA/ to support the

expectation that face configuration is represented during visual
speech perception, although the general pattern of better
discriminability for far than for near stimuli held regardless of
orientation. Coupled with the reduction in performance between
natural and synthetic stimuli in Experiment 1, we conclude that
visual speech perceivers are sensitive to relationships among face
parts and not just to attributes of motion such as speed and
velocity.

Our results on consonant identification in Experiment 1
once again demonstrated relatively low accuracy levels consistent
with other reports in the literature. The range of natural
consonant correct scores was 35–45%. In contrast to the view that
low consonant identification invariably leads to the conclusion
that lipreading must rely on higher-level linguistic and extra-
linguistic knowledge, we again point out that partial phonetic
information is regularly used to perceive speech as demonstrated
by speech communication in noisy environments (Sumby and
Pollack, 1954; MacLeod and Summerfield, 1987; Ross et al.,
2007) and distorting environments (Grant et al., 2013) and by
communication with hearing loss (Walden et al., 1975; Grant
et al., 1998). Words can be identified even when they are
phonetically impoverished, in part because the lexicon does not
use all the phoneme combinations available within a language,
and this is true evenwhen the lexicon is modeled in terms of PECs
(Auer and Bernstein, 1997; Iverson et al., 1998; MacEachern,
2000; Mattys et al., 2002; Feld and Sommers, 2011). The evidence
here shows that the relatively poor phoneme identification was
present in the same perceivers whose discrimination sensitivity
extended to near stimulus pairs.

Dissimilarity in Visual Speech Perception and
Underlying Neural Representations
In addition to our interest here in discrimination results for
demonstrating that perception is not limited to viseme categories,
we are interested in how visual speech is represented by
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the brain. Recently, Bernstein and Liebenthal (2014) reviewed
the perceptual evidence on visual speech in relationship to
the neural evidence on the organization of the auditory and
visual speech neural pathways. They presented a model of the
auditory and visual speech pathways and their interactions
during audiovisual speech perception. One of their strong
suggestions was that the visual perception of speech relies on
visual pathway representations of speech qua speech. That is,
the visual system represents speech in parallel with the auditory
system to at least the level of phonetic features or phonemes
and possibly to the level of lexical forms. While we do not
wish to reiterate their arguments here, we do want to discuss
an example that demonstrates the importance of discrimination
paradigms and measures of perceptual and physical stimulus
dissimilarity for learning about how visual speech is represented
by the brain.

A subset of the stimuli tested here was used in an EEG visual
mismatch negativity (MMN; Pazo-Alvarez et al., 2003; Czigler,
2007; Kimura et al., 2011; Winkler and Czigler, 2012) study by
Files et al. (2013). The visual speech syllables were selected to
be near versus far in physical and perceptual distance (Jiang
et al., 2007). Reliable visual MMN responses were observed
in the higher-level visual pathway (posterior temporal cortex)
on the left when the visual speech stimulus change was across
far stimuli and in the homologous right hemisphere area to
stimulus changes that were far and also near. The results were
interpreted to be consistent with a specialization in the left
posterior temporal cortex for phoneme category representation
(Bernstein et al., 2011) and for sensitivity to phonetic change
that may not be perceived as different phonemic categories on
the right. Thus, the Files et al. (2013) study demonstrated the
utility of knowledge about perceptual discrimination of visual
speech for investigating the underlying neural representations of
visual speech stimuli. In addition, their results are consistent with
the findings reported here on near stimulus pair discrimination,
that is that near differences are perceptible, although the
finding that the right hemisphere is more sensitive to visual
speech stimulus change raises interesting questions about its
role in visual speech perception given the left-lateralization of
speech processing in most right-handed individuals (Hickok
and Poeppel, 2007; Desai et al., 2008; Rauschecker and Scott,
2009).

Audiovisual Speech Processing
Many studies of audiovisual speech processing invoke the
viseme as an established visual speech category in describing
their stimulus selection, carrying out data analyses, and/or in
theorizing (these references are examples of the typical usage:
Campbell, 2008; Arnal et al., 2009; Kyle et al., 2013; Matchin
et al., 2013; Jesse and McQueen, 2014)2. In many cases, the
viseme concept may be a proxy for having measurements of
phoneme identification and discrimination for the stimuli in the
particular study. This practice may lead to incorrect inferences,
not only because phonemes within visemes can be discriminated,

2We cite these references merely as examples of usage that is extremely widespread.
Any number of alternate citations would be appropriate for the same purpose.

but because visual phonemes vary in their phonetic information
across talkers, stimulus tokens, and position in the syllable
(Owens and Blazek, 1985; Demorest et al., 1996; Jiang and
Bernstein, 2011; Auer and Bernstein, in preparation). Depending
on the hypotheses being tested, using viseme categories may or
may not be detrimental to the goals of the research.

The notion of the viseme may also be problematic for
audiovisual neuroimaging research, because it may encourage
simplification of what needs to be explained. Indeed, the
neuroimaging research has focused on interaction or integration
(Stein and Meredith, 1990) mechanisms rather than on the
information that is integrated. Auditory speech is expected to be
highly informative, but visual speech is not. If only a very small
set of viseme categories can be perceived, one possibility is that
the underlying neural representations of the talking face are not
even specific to speech. This possibility seems consistent with
the view that, “associations of speech processing with regions
implicated in face processing suggest that seeing speech makes
use of face-processing mechanisms” (p. 705) and, “some face
processing appears to be a necessary, if not a sufficient [emphasis
added], base for understanding speech from faces” (Campbell,
2011, p. p. 705). Viseme categories might simply correspond
to motion features. This possibility seems consistent with the
possibility that, “viseme-dependent facilitation” might depend on
“visual motion but no detailed phonological information” (Arnal
et al., 2009, p. 13445).

In fact, non-phonetic visual forms or motion, or even
vibrotactile pulse-trains can interact with or influence auditory
speech perception. For example, the onset of a rectangle
or a tactile vibration can reduce uncertainty and improve
speech detection (Bernstein et al., 2004; Tjan et al., 2014).
A single uninformative lip gesture can improve forced choice
identification of a small set of voiced versus unvoiced stimuli
(Schwartz et al., 2004). Head motion correlated with the
voice fundamental frequency can also improve auditory word
identification in noise (Munhall et al., 2004). Audiovisual speech
effects could arise in response to both phonetic and non-phonetic
stimulus attributes.

As suggested earlier, this study supports the view that visual
speech perception is not equivalent to either face motion or face
configurations. Specifically, the synthetic stimuli were generated
on the basis of sparse motion and configural data, and they
were less well discriminated and identified than the video
stimuli. This comparison strongly implies that visual speech
perception relies on integration of both configural and motion
features. In addition, Experiment 2 of the current study further
demonstrated that orientation is a significant factor in visual
speech discrimination, a result that also implies configural as well
as motion feature integration.

We suggest that an accurate and complete account of how
auditory and visual speech is integrated or interacts will require
abandoning the viseme as the unit of visual speech perception and
taking into full account the information that is actually available
to the visual speech perceiver. From our perspective, acceptance
of the viseme as the unit of visual speech perception stands in the
way of understanding how audiovisual speech is integrated as well
as what is integrated.
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Visual Speech Synthesis
There are many applications for a visual speech synthesizer,
including its potential for use in language training, human-
machine interfaces, and clinical or educational training (Massaro
et al., 2012; Mattheyses and Verhelst, 2014). For example,
audiovisual stimuli have been shown to promote perceptual
learning of phoneme contrasts in a second language (Hazan et al.,
2006), and a synthesizer could be used to provide unlimited
visible speech materials for a training approach (Massaro, 2006).
Our intent here was to use synthesis to probe the perceptual basis
for visual phoneme identification and discrimination, and extend
the work of Jiang et al. (2007) by using their model of perceptual
dissimilarity.

A practical question is how much information should be
engineered into synthesized visible speech? The discrimination
results here suggest that phoneme synthesis based on a small set
of visemes will not be adequate, because perceivers are sensitive
to sub-visemic features. A recent report on concatenative visual
speech synthesis also supports the importance of co-articulatory
visual phonetic detail. Mattheyses et al. (2013) showed that
fixed viseme units are inferior to phonemic-context-sensitive
visemes. Another synthesis study found that 150 dynamic
“viseme” sequences resulted in higher quality judgments
than sequences based on static viseme poses (Taylor et al.,
2012).

However, the synthetic visible speech tokens in the present
study were not developed for a general speech synthesis
application. They were generated exclusively on the basis of
three-dimensional optical data that were recorded at the time
the video frames were recorded and were appropriate for
investigating relationships between modeled dissimilarities and
discrimination based on synthesis using the same data. The
more accurate identification of natural /hA, dZA, lA, nA, rA/ than
synthesized visible speech and the lower entropy for natural /tSA,
dA, fA, hA, lA, nA, tA/ can be attributed to readily identifiable
weakness in this approach to synthesis.

The three-dimensional optical signals were constrained by
the recording technology to be obtained from the surface of
the face (Jiang et al., 2007). The retro-reflectors that were used
to record the infrared flashes were relatively sparsely spaced
over the face. This is a particular concern for modeling the
lips. Figure 1A shows that the lip retro-reflectors were place
around the vermillion border of the lip. However, during speech
production the outer lip border does not maintain a constant
relationship with the inner edge of the lips.

There were no optical markers on the tongue. Lipreaders
of natural visible speech stimuli have visual access to the
tongue when the mouth is open. Tongue motion is incompletely
correlated with movement of the face (Yehia et al., 1998; Jiang
et al., 2002), so being able to see into the mouth can afford
additional speech information. The lack of the gesture that
involves placement of the teeth against the lower lip likely
accounts for the /fA/ natural stimuli being more accurately
identified than the synthetic ones.

On the other hand, despite the relatively few optical channels
that drove the synthesizer, identification and discrimination
were quite good. The synthesizer was successful in eliminating

stimulus information that was not incorporated in the perceptual
model, and so its deficits were the same as the potential deficits
in the perceptual model. We believe that the approach presented
here, which uses the same three-dimensional optical data for
synthesis and for modeling perception, can be a very useful
technique for gaining a better understanding of what information
is needed to generate high quality synthetic visual speech.

Summary and Conclusion

A longstanding notion in the literature is that the perceptual
categories of visual speech comprise groups of phonemes
(referred to as visemes), such as /p, b, m/ and /f, v/, that
do not have within-viseme internal perceptual structure or
information. We evaluated this notion using a psychophysical
discrimination paradigm that measured d’ and response latency
and found instead that discrimination was reliable within pairs
of stimuli that are typically considered to be within visemes.
Natural within-viseme stimulus pairs, except for /k/-/h/, were
discriminable. Two of the near synthetic pairs were discriminable
suggesting that more detailed or complete information is needed
for synthesis. Nevertheless, even the results with synthetic speech
point to the sensitivity of visual perceivers to even highly
reduced speech information. Some evidence was obtained for
both configural and dynamic visual speech features in that
stimulus inversion reduced discrimination, although it remained
reliable. The /v/ phoneme with its distinct articulation of the
teeth against the lower lip appears to be particularly sensitive
to inversion. The results reported here have direct implications
for future research, theory, and practical applications. Our
demonstration of sub-visemic discrimination implies that more
phonetic information is available to comprehend speech, and
as with auditory speech perception, visual speech perception is
expected with even reduced phonetic cues. Thus, the theoretical
status of visual speech is more parallel to that of auditory
speech. Acceptance that there is a range of visual phoneme
discriminability could lead to experiments with explicit control
of visual phoneme discriminability, affording new opportunities
to understand how information combines across auditory and
visual speech input. Sub-visemic discrimination also implies
that detailed visual phonetic information should improve results
involving practical applications such as synthesized visual speech.
Overall, abandoning the notion that visual speech perception
relies on a small set of viseme categories seems a sound
recommendation given our data.
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