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Understanding brain connectivity is one of the most important issues in neuroscience.
Nonetheless, connectivity data can reflect either functional relationships of brain activities
or anatomical connections between brain areas. Although both representations should
be related, this relationship is not straightforward. We have devised a powerful method
that allows different operations between networks that share the same set of nodes, by
embedding them in a common metric space, enforcing transitivity to the graph topology.
Here, we apply this method to construct an aggregated network from a set of functional
graphs, each one from a different subject. Once this aggregated functional network is
constructed, we use again our method to compare it with the structural connectivity to
identify particular brain regions that differ in both modalities (anatomical and functional).
Remarkably, these brain regions include functional areas that form part of the classical
resting state networks. We conclude that our method -based on the comparison of
the aggregated functional network- reveals some emerging features that could not be
observed when the comparison is performed with the classical averaged functional
network.

Keywords: structure-activity relationship, network analysis, functional connectivity, algebraic statistics,
multilayer, multiplex

1. Introduction

In the last decade, the use of advanced tools derived from neuroimaging and complex networks
theory have significantly improved our understanding of brain functioning (Sporns, 2011).
Notably, connectivity-based methods have had a prominent role in characterizing normal brain
organization as well as alterations due to various brain disorders (Varela et al, 2001; Stam
and van Straaten, 2012; Stam, 2014). Most of the recent works aim to quantify the role of
connectivity in the communication abilities of neural systems. However, the very same notion of
connectivity is controversial since data used in brain connectivity studies can reflect functional
neural activities (electrical, magnetic or hemodynamic/metabolic) or anatomical properties (Varela
et al, 2001; Bullmore and Sporns, 2009). Neuroanatomical connectivity is meant as the
description of the physical connections (axonal projections) between two brain sites (Bullmore and
Sporns, 2009), whereas functional connectivity is defined as the estimated temporal correlation
between spatially distant neurophysiological activities such as electroencephalographic (EEG),
magnetoencephalographic (MEG), functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET) recordings (Varela et al., 2001).
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In recent years, the concept of “brain networks” is becoming
fundamental in neuroscience (Stam and Reijneveld, 2007;
Bullmore and Sporns, 2009; Stam and van Straaten, 2012; Stam,
2014). Within this framework, nodes stand for different brain
regions (e.g., parcelated areas or recording sites) and links
indicate either the presence of an anatomical path between those
regions or a functional dependence between their activities. In
the last years, this representation of the brain has allowed to
visualize and describe its non-trivial topological properties in a
compact and objective way. Nowadays, the use of network-based
analysis in neuroscience has become essential to quantify brain
disfunctions in terms of aberrant reconfiguration of functional
brain networks (Stam and Reijneveld, 2007; Stam and van
Straaten, 2012; Stam, 2014).

Experimental evidence has revealed, for instance, alterations
in functional and anatomical brain networks in normal
cognitive processes, across development, and in a wide range
of neurological diseases (see Bullmore and Sporns, 2009; Stam,
2014; and references therein). Despite its evident interplay,
comparison between anatomical and functional brain networks
is not straightforward (Deco et al., 2011; Nicosia et al., 2014).
Theoretical studies provide support for the idea that structural
networks determine some aspects of functional networks (Deco
et al, 2011), but it is less clear how the anatomical connectivity
supports or facilitates the emergence of functional networks.
Although nodes with similar connection patterns tend to
exhibit similar functionality, the functionality of an individual
neural node is strongly determined by the pattern of its
interconnections with the rest of the network (Nicosia et al.,
2014).

Correspondences between functional and structural networks
remains thus an active research area (Honey et al., 2007, 2009,
2010). A better understanding of how anatomical scaffolds
support functional communication of brain activities is necessary
to better understand normal neural processes, as well as to
improve identification and prediction of alterations in brain
diseases.

In this paper we address this relationship between
anatomical and functional connectivity. In previous studies,
the correspondence of these networks has been often assessed
by the difference in an Euclidean space of vectors containing
connectivity measures such as the clustering coefficient, shortest
path length, degree distribution, etc. Here, we propose a radically
different framework for studying brain connectivity differences.
Instead of extracting a vector of features for each network
(anatomical or functional), we jointly embed all of them in a
common metric space that allow straightforward comparisons.
Before embedding the functional and the anatomical networks
into the common metric space, we aggregate a group of subjects
(e.g., functional networks) according to Simas et al., (submitted)
to obtain a group representation network. The method employed
in this work allows to preserve connected components and
to identify, among different subjects, a common underlying
network structure. Our approach may provide a useful insight
for the analysis of multiple networks obtained from multiple
brain modalities or groups (healthy volunteers vs. patients, for
instance).

2. Methods and Materials
2.1. fMRI and DTI Data

In this study we consider anatomical and functional brain
connectivities-extracted from diffusion-weighted DW-MRI and
fMRI data, respectively- defined on the same brain regions.
Brain images were partitioned into the 90 anatomical regions
(N = 90 nodes of the networks) of the Tzourio-Mazoyer
brain atlas (Tzourio-Mazoyer et al., 2002) using the automated
anatomical labeling method.

The anatomical connectivity network is based on the
connectivity matrix obtained by Diffusion Magnetic Resonance
Imaging (DW-MRI) data from 20 healthy participants, as
described in Iturria-Medina et al. (2008). The elements of this
matrix represent the probabilities of connection between the 90
brain regions of interest. These probabilities are proportional
to the density of axonal fibers between different areas, so
each element of the matrix represents an approximation of the
connection strength between the corresponding pair of brain
regions.

The functional brain connectivity was extracted from BOLD
fMRI resting state recordings obtained as described in Valencia
et al. (2009). All acquired brain volumes were corrected for
motion and differences in slice acquisition times using the SPM5!
software package. All fMRI data sets (segments of 5 min recorded
from healthy subjects) were co-registered to the anatomical data
set and normalized to the standard MNI (Montreal Neurological
Institute) template image, to allow comparisons between subjects.
As for DW-MRI data, normalized and corrected functional scans
were sub-sampled to the anatomical labeled template of the
human brain (Tzourio-Mazoyer et al., 2002). Regional time series
were estimated for each individual by averaging the fMRI time
series over all voxels in each of the 90 regions. To eliminate low
frequency noise (e.g., slow scanner drifts) and higher frequency
artifacts from cardiac and respiratory oscillations, time-series
were digitally filtered with a finite impulse response (FIR)
filter with zero-phase distortion (bandwidth 0.01—0.1 Hz) as
in Valencia et al. (2009).

A functional link between two time series x;(t) and x;(¢)
(normalized to zero mean and unit variance) was defined by
means of the linear cross-correlation coefficient computed as
rij = (xi(t)x;(t)), where (-) denotes the temporal average. For
the sake of simplicity, we only considered here correlations at
zero lag. To determine the probability that correlation values are
significantly higher than what is expected from independent time
series, 7;j(0) values (denoted r;;) were firstly variance-stabilized by
applying the Fisher’s Z transform.

1+ 15
Zij=0.5In ( rlj) (1)

— 1

Under the hypothesis of independence, Z; has a normal
distribution with expected value 0 and variance 1/(df; — 3),
where df is the effective number of degrees of freedom (Bartlett,
1946; Bayley and Hammersley, 1946; Jenkins and Watts, 1968). If
the time series consist of independent measurements, df;; simply

Uhttp://www.fil.ion.ucl.ac.uk
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equals the sample size, N. Nevertheless, autocorrelated time series
do not meet the assumption of independence required by the
standard significance test, yielding a greater Type I error (Bartlett,
1946; Bayley and Hammersley, 1946; Jenkins and Watts, 1968). In
presence of auto-correlated time series df must be corrected by
the following approximation é]_ ~ % + % . %rii(f)rjj(f),

where 7,(7) is the autocorrelation of signal x at lag 7.

2.2. Networks Normalization

From Equation (1) our networks weights are in a non-normalized
interval Z; € [a,b] C R.In order to apply the framework
described in Simas and Rocha (2015), we normalize our networks
weights into the unit interval I = [0, 1] by means of a unique
linear function:

_ (1-20)Zj + (2¢ — 1) - MIN(Zy)

Vi = T MAX(Zy) — MIN(Zy) @

where € in general is set to 0.01 in order to avoid merging and
isolate vertices with weights at the boundaries of Z;; € [a, b].
As proved in Simas and Rocha (2015), since the normalization
is done by a unique linear function this does not affect networks
properties.

2.3. fMRI Networks Aggregation and Embedding
Among many ways to aggregate a group of networks here
we employ a topological algebraic way to aggregate a group
of networks. The networks group possess the same nodes but
different edges values and can mathematical be represented by
a weighted graph G = (N, E). N is the set of nodes representing
the brain ROI's (N = 90 in this study) and E is the set of edges
values (connections) between ROT’s, e.g., Ve;; € E:e;j € [0, 1]
in the proximity space or Vd;; € E: d;; € R(J)r U {+o0} in the
distance space.

For the sake of simplicity, we denote a network with the
same notation we use for the set of nodes N, i.e., a set of n
networks (e.g., group of subjects) is represented by {Ny} with
ke{l,2,3....,n}

One possible way to aggregate a group of n networks is simply
by averaging the homologous edges values. Obtaining in this way
a group representative network, N*.

[K]
Zzzl e
Nj=ej=—1—" -~ (3)

where egﬁ] is the edge e; j from network Nj.

Another way to aggregate networks, as explained in Simas
et al., (submitted) is by considering all networks as a multilayer
network (often called multiplex), which can be represented as
a fourth-order tensor Simas et al., (submitted). This tensor can
be represented as a extended matrix (Sole-Ribalta et al., 2013).
The work of Simas and Rocha (2015), introduces a framework
to aggregate networks in an algebraic way, relating it with fuzzy
logic reasoning, and in Simas et al., (submitted) this work was
extended to multilayer networks. In order to work algebraically
with networks we have to set an algebra (defined as a vector

space equipped with a bilinear product). This algebra allows us
to perform algebraic operations with networks in the same way
we perform algebraic operations in other contexts with other
algebras (such as adding and multiplying real numbers). In short,
a network can be represented by an adjacency matrix and a
multilayer network by a tensor. Considering a set of tensors
working under the algebra L = (I, @, ®), where the weights
(tensor entries) of the tensors in I C IR (subset of extended
real line) and @ and ® two binary operators, we can represent
a multilayer network with tensor T in this algebra. In Simas
et al,, (submitted) we have shown the particular case of multiplex
networks, where layers are connected with weights w; ; 1, =1
(in the proximity space), that the representative group network
(e.g., functional) can be represented by N* in the distance space
(see below and Equation 6), as:

N*=NON, ®--- DN (4)

and the respective embedding by the following equation:

Nembedded=N*@N*2€B"'@N*r (5)

where N* is defined in Equation (4) and r, is the convergence
parameter (Simas and Rocha, 2015; Simas et al., submitted).
Figure 1 summarizes the metric embedding of a multiplex
network described above.

Embedding a network of networks or, in our specific case, a
multiplex fMRI network, allows us to determine which edges in
the several layers contribute to the aggregation. We can therefore
determine the subjects that contribute more/less or none to the
aggregated network, and identify in each subject the sub-graphs
for which they may have the highest contribution.

For our particular case, we embed our networks using the
Metric Closure (Simas and Rocha, 2015) defined by the algebra
L = (R U {+0o0}, min, +), where ® = min and ® = +.
The metric closure or metric embedding of a given network into

Multiplex Brain Networks
.- - .. Algebra
L=(N,®,®)

Aggregation
=2
Il
Z
@
5
@D

Metric Embedding

FIGURE 1 | Schematic representation of the main steps for the
described networks aggregation and metric embedding (defined here

for the algebra L).
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a metric space, is a generalization of All Pairs Shortest Paths
Problem (APSP) as shown in Simas and Rocha (2015). In this
case the Johnson algorithm can be used to calculate the metric
closure (Johnson, 1977).

Note that to calculate the metric closure (based on the Johnson
algorithm) of a network we have to translate our networks from a
proximity space into a distance space. There are many possible
mappings to map a similarity space into a distance space, see
(Simas and Rocha, 2015). Applying Equation (6) to all network
weights, w;; € [0, 1] (for more details see Simas and Rocha,
2015), we obtain the isomorphic distance network with weights
d,’ﬁj € Ra_ U {400}

dij= — —1 ©)
Wi j

The formalism behind the metric closure should not be confused
with the formalism in Tropical Algebra geometry (Pachter and
Sturmfels, 2004; Theobald, 2006). Both formalisms employ the
same algebra for the isomorphism d; ; = ¢(x) = —log(x), which
corresponds to a Schweizer-Sklar or Frank t-norm generator with
A = 0or 1 (see Equation 6 and Simas and Rocha, 2015) under the
formalism in Simas and Rocha (2015) . The formalism in Simas
and Rocha (2015) uses any isomorphism ¢ to set a specific metric
into a weighted graph when translated to the isomorphic distance
space. A more detailed discussion on this relation between the
work (Simas and Rocha, 2015) and Tropical geometry can be
found in Simas et al., (submitted).

Embedding networks or multilayer networks allows us: (a)
to detected clusters of nodes in a high-dimensional topological
spaces, and by projecting the algebraic high-dimensional
embedding into 3D, (b) it allows to perform exploratory
networks analysis (c) to preserve the multilayer sub-structures
across layers/subjects, better than other aggregations methods,
as compared with the specific case of “simple” averaging
(Equation 3).

Next we compare both methods of aggregation, “simple”
averaging (Equation 3) and algebraic aggregation (Equation 5
according to Simas et al, submitted) of our fMRI networks,
respectively, using our proposed method of embedding and
comparing networks.

2.4. Multimodal Networks Comparison

In general, networks have been compared using statistical
measures of local and global properties, such as: clustering
coefficient, small-worldness, degree distributions, etc. We can
find in the literature some examples of such techniques
to compare multiple networks (Bullmore and Sporns, 2009;
Stam, 2014). Our approach in this work is different. After
embedding networks into the same metric space defined by
the applied algebra, in our case L = (R(')" U {400}, min, +),
we are able to compared them topologically. However, since
networks generally come from different modalities (e.g., fMRI
and DTI) it requires a previous step. We need to normalize
the embedded edge weights distributions from the different
modalities to the same average and variance to remove scale
factors. One possible way to normalize both distributions, if

we assume normality, is by calculating the z-score of the edge
weights distributions (zero average and standard deviation set to
the unit).

The embedded networks represent a hyper-grid in a multi-
dimensional space with dimension equal or below to the number
of nodes. In order to simplify and have some visual insight we
can downgrade linearly this multidimensional grid into a 3D
grid. This can be achieved applying to the embedded networks
any technique for dimensionality reduction such as linear/non-
linear Multi-Dimensional Scaling (MDS). MDS procedures refer
to a set of related ordination techniques used in information
visualization, in particular to display the information contained
in a distance matrix (Borg and Groenen, 2005). These techniques
guarantee, with a given distortion, that the relative distance
between nodes is preserved in both multi-dimensional and
low-dimensional reduction space. Plotting this low-dimensional
grid (e.g., in 3D) we can use any statistical technique to fit a
continuous surface into the data (see below Figures 3, 4). Its is
natural to think that the difference between two surfaces obtained
from different networks will emphasize topologically differences
between the two connectivities. In this work we performed
this operation in the multi-dimensional space by subtracting
homologous embedded edges weights and take the absolute value
of both embedded hyper-grids. This is, we subtract homologous
embedded edges pairwise according to the formula:

M =|Mpyrr+ — Mpri| =

di
€ Mpry : A _ |e?jj — ez}‘|}

L]
™)
M is the difference grid in the multi-dimensional space. Because
the M-grid represents the difference between the two grids from
different modalities (see above), the relative distance between
nodes in M (given by Equation 7) should be concentrated at the
origin if they are topological similar, otherwise widely distributed
in the multi-dimensional space. Nodes at a distance from the
origin of s-standard deviations are statistical different. Moreover,
since we z-scored both embedded edge distributions this give us
some degree of statistical significance when we compare both
networks. All nodes that lay outside of a hyper-sphere with center
at the origin with radius R = s, are statistical different. Here
we had set 0 = 1 for both distributions (z-score variables are
estimated from the distributions of the embedded weights).
Figure 2 illustrates this process. After applying to both fMRI*
and DTT networks the same algebra and the metric embedding
described above, both networks rely on the same metric space,
therefore comparable. Topological differences can be visually
seen in a linearly downgraded to 3D dimensions using a MDS
technique, which preserves the relative distance between points
in the grid (nodes or brain areas).

diﬂ * kk
{ei’j :Ver; € Mpvrix A Ve

3. Results

In Figure 3 we illustrate the results of different aggregation
procedures on the ensemble of fMRI networks. Compared with
a fMRI connectivity matrix from a single subject (Figure 3A),
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one can notice the difference of a single averaging across
subjects (Figure 3B) and our proposed algebraic topologically
aggregated connectivity network (Figure 3C). It is clear that the
averaging procedure tends to blur connectivity values between
nodes. In contrast, the topologically algebraic aggregation
can preserve components that are common across subjects.
As other multilinear algebra or tensor-based analysis, our
approach provide a natural mathematical framework for
studying connectivity data with multidimensional structure.
For illustrative purposes, we also show the DTI connectivity
matrix in Figure 3D). It worths noticing the similarity of
the anatomical connectivity structure with the aggregated
(multiplex) connectivity obtained in Figure 3C. Moreover, since
each layer encodes the functional network for a given subject,
each subject contributes to the tensor aggregation/embedding
with some or none connections (edges), as depicted in metric
closure, Equation (5). If a layer do not contribute for the

fMRI connectivity DTI connectivity

ROIs ROIs

B

ROIs
ROIs

FIGURE 2 | Topological algebraic networks comparison. Connectivity
from different modalities (here fMRI and DTI) are firstly embedded (black dot
points on the manifolds indicate the brain nodes) and then compared in a
low-dimensional space. Black points outside the sphere correspond to nodes
with a topological difference (at a given threshold) in the two modalities.

aggregation/embedding, we may consider this layer (subject
network) as an outlier. Moreover, we are also able to identify the
specific sub-network contribution (edges) of a given layer to the
aggregation/embedding.

Low-dimensional embeddings of different aggregated
networks are illustrated in Figure 4. High-dimensional data,
such as the information contained in the distance matrix
obtained for the different networks, can be difficult to interpret.
Here, multidimensional scaling (MDS) was used for visualizing
the level of similarity of individual nodes of each -aggregated-
network. The MDS algorithm aims to place each node in a
low dimensional space such that the between-nodes distances
are preserved as much as possible. This representation into
a low-dimensional space enables an exploratory analysis and
makes data analysis algorithms more efficient. Indeed, from the
different plots of Figure 4 one can identify brain areas that are
topologically close in the aggregated network as those points that
are close on the 3D grid. This is clearly illustrated by the MDS
representation of the multiplex functional network (Figure 4C).
Nodes from the occipital regions form a compact group of
nodes topologically close (with similar connectivity structure),
as revealed by the blue points depicted on Figure 4C. We also
notice that a compact group of nodes is formed by regions of the
temporal lobe, putamen and insula, which are indicated by the
red circle. Similarly, the anatomical network in Figure 4D clearly
displays a natural organization, i.e., nodes of the two hemispheres
lie on both sides of the dotted black line. Further, nodes from
occipital regions in the anatomical network, indicated by the
blue circles (including calcarina, cuneus, precuneus, ...), are
distantly located from the group of frontal brain areas indicated
by the red marks.

Finally, Figure 5 displays the difference grid M in a low-
dimensional space. As defined in Equation (7), M corresponds to
the relative distance between nodes in networks from different
modalities. Differences between brain areas are represented as
points widely distributed in the low-dimensional space. Those
nodes from different modalities (fMRI and DTI) that share an
identical topological structure are located at the origin. The
larger the difference in the connectivity structure, the larger
the distance from the origin. By setting a threshold s, one can
identify brain areas with similar connectivity as those points
that lie inside of the hyper-sphere of radius s with center at the
origin.

A B
ROIs

ROIs

FIGURE 3 | (A) fMRI single subject network (B) Average aggregated fMRI network (C) fMRI Algebraic Topologically aggregated (multiplex) network (D) DTI network.
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FIGURE 4 | Multi-Dimentional Scaling (MDS) of the embedded
networks (A) fMRI single subject (B) fMRI average embedded
network (C) fMRI Algebraic Topological aggregation (multiplex)

embedded network (D) DTI embedded network. Black dots indicate the
embedded nodes. In plots (C,D), blue and red points indicate the groups of
brain areas discussed in the text.

2 15

FIGURE 5 | Comparisons between DTI and all other embedded
fMRI networks. (A) 3D projections from Equation (7). Only points
outside the sphere are plotted. (B) Number of ROIl's inside the
sphere of radius of s. Results from a single subject, average
connectivity and multiplex networks are represented by the red, blue,

(o:]

Number of ROIs inside the sphere

and green points and curves, respectively. We consider the regions
statistically different for s > 1 and statistically equal for s <1. This
shows that the multiplex algebraic aggregation (green) is more similar
algebraically to DTl then average aggregation (blue) and single
subject fMRI network (red).

The number of brain regions (ROIs) with similar anatomical
and functional connectivity are given in Figure 5B as a function
of the threshold s. Curves correspond to the number of regions
inside a hyper-sphere of various radius. We notice that the
number of regions differ as a function of the aggregated network’s
type. It is worthy to mention that the differences above s-standard
deviations are the important ones, since is above this threshold

that the ROT’s or nodes become statistical different when compare
networks. In our example, the fluctuations below one standard
deviations may give us some trend but all nodes in the networks
are statistical equal for all types of aggregation. For our specific
case, as an example, the brain areas located outside the hyper-
sphere of radius s = 1.2 for the two types of aggregation, are
listed in the Table 1.
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TABLE 1 | ROIs with connectivity differences from DTI at 1.2 standard
deviation.

AVERAGED AGGREGATED NETWORK
Calcarine (left) Superior occipital gyrus (left)
Calcarine (right) Superior occipital gyrus (right)
Cuneus (left) Middle occipital gyrus (left)
Cuneus (right) Middle occipital gyrus (right)
Inferior occipital gyrus Insula (right)
Lingual (left) Superior temporal gyrus (left)
Lingual (right)

MULTIPLEX AGGREGATED NETWORK

Posterior cingulate gyrus (right)

Superior temporal gyrus (right)

Middle occipital gyrus (right)
Amygdala (right) Inferior occipital gyrus (left)
Postcentral gyrus (right) Inferior occipital gyrus (right)
Superior Temporal gyrus (right) Thalamus (left)

Heschl (right)

4. Discussion

The  recent prevalence of  applications involving
multidimensional and multimodal brain data has increased
the demand for technical developments in the analysis of such
complex data. Indeed, the discrepancy between structural
and functional brain connectivity is a current challenge for
understanding general brain functioning. In this paper, we
presented a method for characterizing the correspondences
between functional and anatomical connectivity. To summarize,
the main steps of our method are:

1. Metric network embedding: This procedure embed a
group of connectivity graphs in a common space allowing
straightforward comparisons. In contrast with simple
averaging of connectivity matrices, the topologically
algebraic aggregation can preserve components that are
common across different subjects or different neuroimaging
modalities. This tensor-based aggregation allows enhancing
the common underlying structures providing a natural
mathematical framework for studying connectivity data with
multidimensional structure.

2. Multimodal Networks comparison: the differences between
the embedded networks are calculated and represented in
a low-dimensional space. Multi-Dimensional Scaling simply
enables to display the information contained in the resulting
distance matrix allowing thus an exploratory analysis of the
data.

3. Detection of nodes (ROI’s) with different connectivities:
from points widely distributed in the low-dimensional space
one can detect brain nodes that share a similar topological
structure as those points are located close to the the origin.
One can identify brain areas with the largest difference
between anatomical and functional connectivity as those
points located outside an imaginary hyper-sphere of a radius
given by a threshold (Table 1).

Our findings suggest that embedding a brain network on a metric
space may reveal regions that are members of large areas or

subsystems rather than regions with a specific role in information
processing. This is clearly illustrated for the anatomical network
in Figure 5D, where frontal and occipital brain areas of both
hemispheres are situated at distantly and located points of the
space. Contrary to a classical averaging of connectivity matrices,
the embedding of the multiplex functional network reveals brain
areas that play a role in large brain system such as the occipital
regions, known to be active when the subject is at wakeful rest.

Although experimental evidence suggests that functionally
linked brain regions have an underlying structural core,
this relationship does not exhibit a simple one-to-one
mapping (Wang et al,, 2014). These correspondences have
also been investigated in specific subsystems, must of them
focused on the default mode network (DMN), which is a group
of brain regions that preferentially activate when individuals
engage in internal tasks, i.e., when the subject is not focused on
the outside world but the brain is at wakeful rest. Several studies
report that the DMN exhibits a high overlap in its structural
and functional connectivity (Honey et al,, 2009; Wang et al.,
2014). Nevertheless, strong discrepancies have been reported and
strong functional links can be found between regions without
direct structural linkages (Honey et al., 2009).

At a group level, one of the reasons for this discrepancy
between structural and functional connectivity has
been suggested to be the functional variability across
subjects (Skudlarski et al, 2008; Honey et al., 2009; Wang
et al., 2014). Indeed, clinical studies have provided evidence for a
large heterogeneity of the functional connectivity, particularly in
groups of patients with brain disorders such as neuropsychiatric
disorders, which strongly alters the structural-functional
relationships (Wang et al., 2014). Analytical tools are therefore
required to account for this variability in order to enhance the
common underlying network structure.

Results suggest that averaged aggregation captures the general
differences in regions that play a role in visual, auditory and
body self-awareness processes, but fails to identify in detail
other specific areas across the subjects/groups. In Table 1 we
observed that the average aggregation essentially captures part
of visual (calcarine, cuneus, lingual, occipital), auditory (superior
temporal gyrus), and insula regions that are associated to visual
process and body self-awareness. Detection of visual and auditory
regions suggest that the averaged aggregation mainly capture
regions activated by the resting state condition of the recordings.

From the multiplex aggregation (or algebraic aggregation)
shown in Table1, we observed that besides capturing the
well-known visual (occipital areas), primary sensory cortex
(postcentral), and auditory regions (Heschl gyrus, superior
temporal, thalamus), this approach also captures some other
network sub-structures involved in touch activation (postcentral
gyrus, thalamus) and emotional state activations (amygdala,
thalamus, posterior cingulate). This alines with our claim
that algebraic aggregation preserves better the multilayer sub-
structures across a group of subjects (multilayers) accounting for
as much of the variability in the data as possible.

Although we cannot definitively provide a one-to-one
mapping of the structural and functional connectivity, we think
that our method could provide new insights on the organization
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of brain networks during diverse cognitive or pathological states.
We therefore hope that our approach will foster more principled
and successful analysis of multimodal brain connectivity
datasets.

For all the methods described in this article we provide the
corresponding MATLAB software code. Data and code are freely
available at the website https://sites.google.com/site/fr2eborn/
download.
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