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Neural encoding of navigable space involves a network of structures centered on the
hippocampus, whose neurons –place cells – encode current location. Input to the place
cells includes afferents from the entorhinal cortex, which contains grid cells. These are
neurons expressing spatially localized activity patches, or firing fields, that are evenly
spaced across the floor in a hexagonal close-packed array called a grid. It is thought that
grids function to enable the calculation of distances. The question arises as to whether
this odometry process operates in three dimensions, and so we queried whether grids
permeate three-dimensional (3D) space – that is, form a lattice – or whether they
simply follow the environment surface. If grids form a 3D lattice then this lattice would
ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A
tilted floor would transect several layers of this putative lattice, resulting in interruption of
the hexagonal pattern. We model this prediction with simulated grid lattices, and show
that the firing of a grid cell on a 40◦-tilted surface should cover proportionally less of the
surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However,
recording of real grid cells as animals foraged on a 40◦-tilted surface found that firing
of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal
surface, with if anything increased coverage and field number, and preserved field size.
It thus appears unlikely that the sloping surface transected a lattice. However, grid
cells on the slope displayed slightly degraded firing patterns, with reduced coherence
and slightly reduced symmetry. These findings collectively suggest that the grid cell
component of the metric representation of space is not fixed in absolute 3D space but
is influenced both by the surface the animal is on and by the relationship of this surface to
the horizontal, supporting the hypothesis that the neural map of space is “multi-planar”
rather than fully volumetric.

Keywords: spatial cognition, navigation, place cells, grid cells, theoretical model, dimensions

Introduction

Place cells in the hippocampus of freely foraging mice, rats, and humans emit action potentials
(spikes) when the organism is in a specific location in space, and are thought to provide the neural
basis for the sense of self-location (Moser et al., 2008). Recordings of neurons in posterior cortical
areas [including the medial entorhinal cortex (MEC) and pre- and para-subiculum(PaS)], made
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as an animal explores a large arena (Figure 1A), find that the
cells fire in an evenly spaced array of locations organized into
a regular hexagonal close-packed array (Figure 1B) known as
a grid (Hafting et al., 2005). It is thought that this spatially
regular organization, and in particular the relatively constant
inter-field distances, may allow the calculation of distances and
directions to aid the spatial computations supporting place cell
activity.

Most animals do not in fact move around on a completely
flat, two-dimensional (2D) surface, but rather explore a more
complex environment having hills, valleys, tunnels, branches, etc.
The animals are therefore not constrained to moving only in the
two dimensions of the horizontal plane, but have a component
of their movement that goes vertically, into the third (vertical)
dimension (see our companion review paper, Jeffery et al., 2015,
for a fuller discussion of these issues). Indeed, many animals that
can fly or swim (including our aquatic ancestors) move freely in
three-dimensional (3D) spaces without any constraints – that is,
in all three dimensions, or in what we call here volumetric space.
This raises the question of how the grid cells might encode 3D
space. We consider here two competing hypotheses (Figure 1C).
The first is that the array of grid fields that is sampled by
animals moving around on a horizontal surface actually extends
into volumetric space – that is, grid “fields” would actually be
spherical and be distributed throughout the space if we could
record while an animal sampled the space freely (as birds, fish,
and bats do). This proposition has been examined in theoretical

work that has predicted that fields would likely be distributed in a
close-packed 3D lattice (Horiuchi and Moss, 2015; Mathis et al.,
2015), of which the twomost efficient forms (described below) are
hexagonal close-packed and face-centered cubic. Alternatively, it
may be that grid fields follow the surface of the environment and
thus maintain the same metric characteristics that they do on the
horizontal plane. These two scenarios have different implications
for how animals might calculate distances across non-flat terrain.

We investigated these hypotheses with a combination of
modeling and grid cell recording. For the modeling, we
determined the predicted pattern of grid cell firing if the
underlying structure of grid fields is a lattice extending into
volumetric space (Figure 1D), vs. if it is planar and follows
the surface of the environment (Figure 1E). A lattice is the
arrangement that would occur if grid fields were spheres that
had been packed together into a box; the closest arrangement of
such spheres forms a volumetric close-packed array. For a purely
planar packing, where the fields are disks instead of spheres and
packed together on a surface instead of within a space, then
the arrangement is a planar close-packed array, in which the
disks form themselves into a hexagonal pattern. Note that if a
volumetric close-packed array is aligned to the horizontal plane
(as it would be for, say, a box of oranges settling under the
influence of gravity) then the arrangement of the bottom layer
of the lattice is a planar close-packed array. Since grid cell firing
patterns do in fact form a planar close-packed array, the question
we asked is – is this because their encoding is purely planar, or

FIGURE 1 | (A) Neurons recorded from a rat foraging on a square arena,
monitored by an overhead video camera. The black lines represent the
recent path of the meandering rat, and the red squares represent spikes
emitted by an entorhinal grid cell. (B) Raw data from a real grid cell,
showing how the spikes are laid down in regularly spaced clumps (“fields”),
forming a close-packed hexagonal array across the surface of the
environment. (C) Two hypotheses about the structure of grids in
three-dimensional (3D) space: that they are a lattice that permeates the

space (left), or a plane that lies only on the environment surface (right).
(D) Two views (for ease of visualization) of how a lattice grid would
intersect a surface sloped at 40◦ from horizontal. The red circles on the
right show the surfaces of grid fields that intersect the surface. (E) If the
grid is instead planar and follows the tilted surface, the fields would retain
the hexagonal close-packed arrangement they had on the horizontal plane.
Notice the increased number of fields and packing density, and their more
symmetrical arrangement.
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is it because it is volumetric but only the bottom layer of fields is
sampled in a typical experiment?

For the volumetric hypothesis we assumed that if the intrinsic
grid pattern in 3D space is a lattice, it would be aligned to the
horizontal plane, which would explain why the usual pattern
seen is a close-packed hexagonal array (the maximally efficient
packing pattern). We thus generated horizontally aligned close-
packed lattices [of which there are two forms, hexagonal close
packed (HCP) and face centered cubic (FCC), which are shown
in Figure 2A and described below], and then determined what
would happen to the grid pattern assuming an animal walked on
a steep slope that cut through the grids (Figure 2B).

For the recording, we created a two-compartment arena in
which one half was a 1 m × 1 m horizontal square and the other
half was a square of the same size, tilted at 40◦ (Figure 2C).
Rats were implanted with electrodes aimed at MEC. When grid
cells were isolated, the rats were allowed to forage over the entire
arena while recordings of the grid pattern were made. We then
compared the statistics of the firing patterns with the predictions
made by the model. We show here that in the model, transections
of a grid lattice for all angles other than horizontal result in a
decrease in the area covered by the activity, with one exception
which is the FCC pattern cut at 70◦. Our recordings showed,

however, in fact a slight increase in both coverage and field
number, a finding that is more consistent with the grid cell grid
having followed the tilted surface (in a slightly degraded way),
rather than being a volumetric lattice that was cut through at
an angle. However, there was a decrease in the coherence and
symmetry of the firing patterns, suggesting that locomoting on
a steep slope did have some effect on grid cell firing. We discuss
the implications of these findings for how rats may encode 3D
space, and explore the issues more fully in the companion paper
(Jeffery et al., 2015).

Materials and Methods

We describe first the modeling, and then the single neuron
recording protocol.

Three-Dimensional Model of Grid Cells
A model of grid firing in three-dimensions was constructed, in
order to interpret the patterns of actual grid cell firing observed
in the single neuron recording study. In two dimensions grid
fields optimally fill the plane in a close-packed hexagonal tiling
(Gauss, 1831), which is the most efficient way to pack circles on

FIGURE 2 | Basic methodology for the study, showing the model
generation and interrogation and the recording apparatus. (A) The
two forms of 3D closest packing used in our simulation: hexagonal
close-packed (HCP), which comprises alternating layers of differing
horizontal offsets (ababab. . .), and face-centerd cubic (FCC) for which
there are three layers (abcabc. . .). The layers that do not differ are shown
in red; turquoise and gold indicate the layers that distinguish the
packings. (B) Generation of the spike plots. An imaginary plane was
placed into the lattice at a given orientation and offset, creating a set of

circles where the plane intersected the spheres in the lattice. The
parameters derived from (B) were then used to generate simulated
spikeplots (inset) which were then analyzed in the same way as for real
spikes. (C) Schematic of the recording box used for grid cell data
collection, with one half flat and one half tilted 40◦. (D) For reference,
40◦ is slightly over twice the steepness of the “world’s steepest street,”
Baldwin Street, Dunedin, NZ. “Baldwinstreet”. Photgraph licensed under
Public Domain via Wikimedia Commons – http://commons.wikimedia.org/
wiki/File:Baldwinstreet.jpg#/media/File:Baldwinstreet.jpg.
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a plane (note that for grid fields there are spaces between the
fields – one can therefore think of a grid field as comprising
a patch of spiking surrounded by an empty annulus of the
same thickness as the field radius). In 3D space, there are many
different packing arrangements of equally sized spheres but only
two maximally efficient ones; HCP and FCC (Figure 2A). These
arrangements are similar in that they both comprise stacked
layers of spheres that have been packed into a close-packed
hexagonal arrangement; the difference between them is how the
layers are arranged. Each layer is translated slightly with respect
to the one underneath: for HCP there are two translational
positions and the layers alternate ABABAB. . ., for FCC there are
three, and the layers repeat ABCABC. . .

The model simulated these two packing arrangements and
was used to investigate what would happen when a 2D plane
intersected the volume of spheres. Full details of the model
can be found in the Supplementary Methods, but the brief
details are as follows, illustrated in Figure 2. A volume was
packed with spheres, each comprising a central core of radius
12 units, surrounded by an empty shell also 12 units thick (thus
resembling grid fields). The inter-field distance was thus 24 units.
The packing arrangement was either HCP or FCC (Figure 2A),
with the layers aligned horizontally (this was assumed as the
default because a horizontal transection of this lattice would yield
a planar close-packed hexagonal array, which is what is seen
with real grid cells). We then created a plane of dimensions
100 × 100 units (i.e., 4–5 fields across), which was placed
into the volume at various tilts (rotations around a horizontal
axis), orientations (rotations around a vertical axis), and offsets
(translations orthogonal to the intersection of the plane with
the horizontal plane). Wherever the plane intersected a sphere,
the circular area of intersection was filled with simulated spikes
(Figure 2B) using a Gaussian distribution centered on the circle’s
center and modulated by its radius. This was repeated for all of
the spheres intersected by the plane resulting in a ‘spike plot’
which served as the basis for a 2D histogram, equivalent to a rate-
map of position (x and y) vs. firing rate (z). These rate-maps were
then used to calculate measures such as inter-field distance and
grid field occupancy of the plane and for constructing the spatial
autocorrelograms (SAC)which are the basis of the grid score used
to assess grid field regularity. We then generated a systematic set
of planar sections through both packings, which were analyzed in
detail for various statistics (described below in the section Data
Analysis).

Surgical Procedures
For the single neuron recording experiment, four animals were
implanted with 16-channel microdrives (Axona Ltd, UK) each
carrying four sets of tetrodes, each tetrode comprising four
25 micron diameter platinum-iridium wires. The tetrodes were
aimed at the dorsal MEC at the following coordinates; AP:
0.1–0.3 mm anterior to the transverse sinus, ML: 4.0–4.5 mm
to lambda, DV: 1.5–2.0 mm with the electrodes angled 8–10◦
anteriorly in the AP plane. The animals also participated as
subjects in another study evaluating the effects on grid cells
of changing environmental context (Marozzi et al., 2015). All
procedures were performed under UK Home Office license

authority according to the Animals (Scientific Procedures) Act
1986. All recordings were carried out on an Axona dacqUSB
recording system (Axona Ltd, UK). Animals recovered post-
operatively for 7 days before screening for grid cells commenced.

Recording Apparatus
The recording apparatus, called here the “gradient box,”
(Figure 2C) was made from medium-density fibreboard
(MDF) and comprised two adjoining square floors, each
100 cm × 100 cm, one of which was tilted around the transverse
midline axis of the arena by 40◦ with respect to the horizontal.
This tilt was selected as being the steepest slope that the rats
would willingly, and without slipping, traverse for food, and
is twice as steep as the so-called “steepest street in the world”
(Figure 2D). The flat part of the environment was continuous
with the sloped section with no physical barrier between the two.
Henceforth, for simplicity we will refer to the two halves of the
box as “compartments” even though they were continuous. The
entire arena was surrounded by walls 50 cm high as measured
directly vertically upward from the surface of the recording arena;
the walls at the highest point were oriented vertically (rather than
orthogonal to the sloping floor) so as not to obscure the camera
view. The box was painted with white paint on both the walls and
floor and situated within a well-lit recording room that contained
the recording apparatus, computer, and shelving, all of which
were visible from the floor of the box and hence able to act as
orienting cues for the rat.

Screening and Recording Procedure
Recording began at least a week after surgery. Rats were
screened for cells in a separate room, by being placed in a
large 120 cm × 120 cm black or white box with 60 cm high
walls. Once grid cells were identified, based on observer-apparent
spatially localized multi-focal firing patterns, the animal was
carried through to the recording room and a trial was run in the
gradient box. Sweetened, cooked rice was thrown into the box to
encourage the animal to forage freely; the rice was slightly wet
so that it would not roll down the sloping floor and accumulate
at the join between the two compartments. The camera used
to track the animal’s position was located directly above the
center of the box. Both the camera and the recording arena were
kept in a fixed position throughout the experiment so that the
correct transformation could be applied to the positional data
post hoc to allow a comparison between the two compartments
(see Positional Data below). The trials varied in duration between
15 and 30 min depending on the experimenter’s judgment of
how completely the animal had sampled the spatial extent of the
gradient box (the experimenter could see the cumulative path of
the animal but not spike occurrences, during recording). This was
done to ensure homogeneous sampling of both sides of the box.
That this was successful is shown in the path analysis results.

Data Analysis
Model Analysis
Having generated the model, we then repeatedly sampled it
using a square cutting plane of 4–5 fields wide, to produce a
cut surface containing circles (from where the plane intersected
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spheres). To create a comprehensive sampling of the lattice
space, we positioned the plane at a variety of angular and linear
orientations with respect to the lattice, as follows. For a given
position of the plane’s central point, the plane was positioned in
the lattice at tilts between 0◦ (horizontal) and 180◦ (horizontal
again) in 3◦ increments, and for every tilt, it was rotated in
3◦ increments for the full 360◦ around the vertical axis. The
position of the plane’s central point was then translated along
the x-axis (i.e., in the direction of a row of fields) by 1/6th of
the inter-field distance, and the rotational sampling repeated.
This entire procedure (rotations followed by translation) was
repeated until a full cycle of the pattern (six repetitions) had been
sampled.

The circles generated as a result of the plane’s intersection
with the lattice (Figure 2B) were then used to generate “fields” of
spikes (Figure 2B), by using the centers and radii of the circles
to form the mean and width, respectively, of a 2D Gaussian
probability distribution, from which values were then drawn and
used to create the spike plots for each individual field. These were
then analyzed in the same way as for the actual neuronal data.
Details of this procedure are thus given in the section on neuronal
data analysis, below.

Positional Data and Its LFP Correlates
The camera that tracked the animals’ position was located over
the x, y midpoint of the gradient box and captured the position of
a single LEDmounted on the head-stage at a sampling frequency
of 50 Hz. Due to the design of the recording environment and the
position of the camera the positional data captured on the sloped
half of the gradient box appeared distorted (see Figure 3A for an
example). In order to allow comparison with the data collected
in the flat half of the environment it was necessary to correct
this distortion using a transformation algorithm fully described
in Supplementary Methods.

The transformed LED position values were smoothed with a
400 ms moving average filter and filtered to remove speeds in
excess of 4 m/s (i.e., tracking errors). For the theta/speed analysis
the speed filter was narrowed to only include speeds between 4
and 30 cm/s and for the remaining analyses the speed filter was
expanded to include speeds between 5 and 60 cm/s.

The heading direction of the animals was calculated based on
the current run direction as there was only one LED on the head-
stage. Heading direction was binned into 3◦ bins and smoothed
with a moving average filter with a width of 15◦.

A notable electrophysiological parameter that may be
important for odometry is the theta oscillation, a 7–11 Hz
oscillation seen in the local field potential (LFP). The nature
of the linear relationship between running speed and theta
frequency was assessed by following methods used by (Jeewajee
et al., 2008). To compensate for the fact that the animal’s
position was sampled at 50 Hz and the LFP signal at 250 Hz,
a 251-tap Blackman windowed band-pass sinc (sine cardinal)
filter in the theta range (7–11 Hz) was applied to the LFP
signal. By using the Hilbert transform the analytic signal
was then determined and the instantaneous theta frequency
calculated as the difference in phase between each time
point, and then averaged over five consecutive values so that

FIGURE 3 | Analysis procedure for single neuron data. (A) A grid cell’s
action potentials, or “spikes” (shown as waveforms seen on each of the four
component electrodes of a tetrode) were plotted onto an image of the rat’s
path as seen by an overhead camera (upper plot; spikes = red dots,
path = black line). The resulting spikeplot was then rescaled (lower plot) to
remove the effect of foreshortening produced by the 40◦-tilt of the sloped (left)
half of the apparatus. Note how the action potentials occurred in regularly
spaced clusters, reflecting an odometric (distance-measuring) process.
(B) The spikeplot was then divided into its sloped and flat components, and
each analyzed independently. (C) The spikeplot was converted into a firing
rate-map by binning the environment and creating a heat-map of firing rate
per bin. The centers of each firing field were then determined and used for
calculation of inter-field distances (black lines). (D) The rate-map was then
converted into an autocorrelogram by successively translating it by small
increments in x- and y-directions, and then correlating the shifted map with
the original – where the translation resulted in one of the blobs mapping onto
another the correlation was high (and likewise for the spaces between blobs).
The resulting correlogram enhances the periodicity of the firing pattern. The
black lines are drawn between the central blob and its two nearest
neighbors – these values were used to calculate orientation (measured as
angle from the dotted line). (E) In order to determine the symmetry of the
autocorrelogram, a symmetry plot was generated, using an additional
autocorrelation step in which the autocorrelogram was rotated in 1◦
increments and then correlated with the original – the resulting values are
plotted as in the line graph, which shows the rising and falling correlation
values as the autocorrelogram blobs come into and out of phase. For highly
symmetrical hexagonal close-packed firing patterns, as occurs on the plot
from the flat side, there are three peaks between 0◦ and 180◦ occurring one
every 60◦; for less symmetric patterns, as on the sloped side, the peaks are
reduced in height and often (as in this example) changed in number. The
green and red squares illustrate the locations of the peaks (values indicated);
the values at the locations of expected troughs (30◦ , 90◦, and 150◦ ) are
averaged and subtracted from the average values at the expected peaks (60◦
and 120◦ ); the result is the grid score, shown by the numbers beneath the
symmetry plots.
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corresponding speed and EEG theta frequency could then
be compared at 50 Hz. In order to quantify the speed–
frequency relationship in each compartment, the r correlation
coefficient was initially measured and transformed into a z
correlation value with the Fisher transformation. A regression
line was then fitted to the data from each recording session,
and also for each individual run lasting more than 10 s in
which running speed remained in the 4–30 cm/s range on
both compartments. For each recording session, two values
were then calculated for each compartment: (a) the intercept
of the regression line and (b) the slope of the regression
line.

For each run in both compartments, the sequence of the
LFP detected in each recording session was zero-padded to
the next highest power of 2 depending on the length of
the sequence, and the power spectra constructed by using
the fast Fourier transform (FFT) with the square-modulus
of each Fourier frequency coefficient being the signal power
at that frequency. A Gaussian kernel of width 2.0 Hz and
SD 0.19 Hz was applied to produce a smoothed power
spectrum. The mean theta frequency for each compartment
was then defined as the frequency at which the power
spectrum showed the maximum peak within the theta range
(7–11 Hz).

Single Unit Firing Pattern Analysis
Single units were initially isolated using a cluster cutting program
(Tint, Axona) in combination with KlustaKwik (Kadir et al.,
2014) Automatic clustering of the data using KlustaKwik was
fine-tuned and cleaned up manually (mainly to merge clusters
falsely identified as separate).

One criterion for inclusion in the data set was that the single
units had to each only be included once and so care was taken
to make sure that co-recorded cells were unique. Initially the
cluster space was examined to make sure that the single units
were occupying distinct parts of the cluster space. Second, if
two clusters were proximal the path/spike plots and firing rate-
maps were examined to ensure that the firing fields were distinct.
Additionally, temporal cross-correlograms were constructed and
inspected to make sure that there was no refractory period. All
putative single units were also tested for their grid score (see
below), which needed to be above 0 for inclusion in the remaining
analysis.

The firing pattern of grid cells was analyzed using standard
methods for spatial cells (Figure 3), beginning with construction
of a firing rate-map, and then analysis of this map for the
several parameters detailed below. Following transformation of
the position information (Figure 3A) the data were split into the
two compartments (Figure 3B) and a rate-map was constructed
for each one (Figure 3C). To accomplish this, for each rate-
map the compartment under consideration was divided into
3 cm × 3 cm bins and the number of spikes emitted in that
bin was divided by the total amount of time spent there, to
normalize for inhomogeneous spatial sampling. The resulting
map was then smoothed with a Gaussian kernel with a size of
5 × 5 bins. A number of summary measures were extracted from
the rate-maps. These measures were as follows:

(a) Peak rate; the value of the bin with the highest firing rate. For
the model these were set by hand, to match those seen in the
real data: given this peak-rate “clamping,” the model was then
interrogated with regard to the mean firing rate on the tilted
surface, for which a statistical comparison was then made.

(b) Mean rate; the total number of spikes divided by the total
dwell time;

(c) Spatial information (bits/spike); a measure of the extent to
which the firing of a cell can be used to infer the location of
the animal (Skaggs et al., 1993), was calculated as:

I(R|X) ≈
∑

i
p(−→xi )f (−→xi ) log2( f (

−→
xi)
F

) (1)

Where p(
−→
xi) is the probability for the animal being at location−→xi , f (−→xi ) is the firing rate observed at −→xi and F is the overall

firing rate of the cell. For spatial information to be expressed in
bits/spike the value obtained from Eq. 1 is divided by the overall
mean firing rate.

(d) Coherence; the value of the correlation between the
smoothed and unsmoothed firing rate-maps and is ameasure
of the ‘smoothness’ of the firing fields (e.g., round or
smoothly elliptical firing fields will have a higher coherence
score than irregular fields with jagged edges).

(e) Coverage; the percentage of bins with firing above a given
percentage of the peak rate.

(f) Field number; this was calculated by performing a watershed
segmentation on the rate-map and counting the number of
distinctly labeled regions. The watershed algorithm operates
by placing a ‘water source’ at each regional minimum in
the inverse of the rate-map (so that local maxima are now
local minima) and the entire ‘landscape’ is flooded from
these sources and barriers are built when different water
sources meet. The resulting set of barriers constitutes the
segmentation of the image.

(g) Field size is the number of bins per field in which firing
exceeded 50% of that field’s peak rate.

(h) Field center; the location of the peak bin.
(i) Inter-field distance; the mean of the distances between pairs

of field centers (Figure 3C).

The next analyses were extracted from the spatial
autocorrelogram SAC (Hafting et al., 2005; Sargolini et al.,
2006; Figure 3D), generated by correlating the original rate-map
with a copy of itself that was offset from the original at all possible
x- and y-values. The resulting map emphasizes periodicities in
the original image and is typically used to evaluate the metric
properties and symmetry of grid cells. Symmetry of this plot was
then quantified by applying a second autocorrelation procedure,
detailed below.

Thus, from the SAC, we calculated the following:

(j) Grid field orientation; this was measured as the angle in
degrees from an artificial horizontal at 3 o’clock on the SAC
(dotted line in Figure 3E) moving anti-clockwise to the
center of the nearest peak.
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(k) Grid symmetry; this was measured by taking a circular
section of the SAC centered on the central peak (which
was subsequently excluded) and bounded by the edges of
the peaks nearest the center, and then correlating rotated
versions of the SAC with the original, producing a sinusoidal
plot, or “symmetry curve,” of high and low correlation values.
Positive peaks in this plot were defined as the regions where
the derivative of the symmetry curve was zero and the second
derivative negative. For a grid with hexagonal close-packed
symmetry (the usual form in two dimensions), the symmetry
plot would show peaks recurring every 60◦; for a square
arrangement these would be at 90◦. Grid score was then
calculated from the resulting plot by subtracting the smaller
of the two values at 60 and 120 from the maximum of the
values at 30, 90, and 150.

Histology
At the end of the experiment the animals were deeply
anesthetized and transcardially perfused with saline followed by
paraformaldehyde. The brains were left in a 20% sucrose/4%
paraformaldehyde solution for 24 h or until the brains had sunk
to the bottom of the container. Forty micron sections were
then cut on a cryostat, mounted on microscope slides, stained
with cresyl violet, cover-slipped, and examined under a light
microscope for electrode track placement.

Results

Model Analysis
As described in the Section “Materials and Methods,” model
lattices (HCP and FCC) were generated and then transected by a
square plane oriented at various angles in 3D space (Figure 4A).
Simulated grid fields were then generated on the plane – an
example for both HCP and FCC lattices is presented in Figure 4B.
These spike plots were then converted into rate-maps and
analyzed for their firing statistics in the same way as for the unit
data.

Using the model, we generated predictions about how real
grid cells would behave when recorded in a non-horizontal
environment. Figure 4C summarizes the four most relevant
measures, expressed as heat plots; these were the percentage of
the simulated rate-map occupied with grid fields (“coverage”),
the distances between the centers of the grid fields, the
number of fields in the rate-map, and the grid score. For
each of these parameters, a complete four-dimensional plot was
generated, comprising three spatial axes for each of the spatial
transformations (two rotations and a translation), with color for
the fourth, summary measure. Because the resulting plot is a
solid block we do not show it in its entirety, but have selected
slices through it at pertinent places to show how the plots were
generated and what the outcomes were (Figure 4C).

Visual Inspection of the Plots
Visual inspection of these plots reveals some details about the
metric properties of the lattices. To begin with, it is evident
that orientation angle and offset make little difference – there

is little or no variation in the patterns along these axes, and so
they will not be considered further. Tilt angle, by contrast, has a
notable effect on the grid pattern for all the chosen parameters,
as evidenced by the distinct periodicity in the tilt axis, resulting
in a striking stripy pattern in the “backplane” (the tilt × angle
plane). Inspection of the pattern of stripes reveals some of the
symmetries of the two lattices. The HCP lattice displays mirror
symmetry around the x-axis (the zero-tilt line, shown by the
dotted black line in the plots) such that values either side of this
are identical. By contrast, the FCC lattice does not possess this
mirror symmetry due to the cyclic discontinuity that is present
in the way the vertical layers of the lattice are stacked (ABCABC
vs. the ABABAB layers of the HCP lattice). Instead, the symmetry
line is offset with respect to the x-axis origin and lies at either
−35◦ or +145◦.

For both the HCP and FCC lattices, there is a clear peak
(hottest colors) in the grid score, number of fields, and the
amount of firing in the rate-map when the intersection plane
was oriented horizontally (the zero-tilt line); this is unsurprising,
because in the horizontal plane the fields are closest-packed.
However, this closest packing never recurs in the HCP lattice
(evidenced by the absence of recurrence of hottest colors in
the patterns), while in FCC, there is a recurrence at −70◦ and
+110◦, such that the rate-maps generated from the plane/sphere
intersections are identical to those when the plane is horizontal
(not shown).

Most relevant for the present study is what happens when the
intersection plane is tilted at 40◦, which is the gradient of the
sloped compartment in the single neuron experiment. In the heat
plots, this is shown by the plane labeled “40◦ tilt plane” which
shows the values of each of the four parameters, for HCP and FCC
packings, at all orientations and offsets. For all four parameters
the plane passes through a “trough” in the heat plot (evidenced
by the cooler colors of these planes), such that predicted values
would be considerably less than those of the horizontal tilt.

Quantitative Analysis of the Plots
We quantified the above observations by collapsing the 4D plots
across orientation-angle and offset (since these had little effect),
to produce average predicted values for all four parameters for
the 40◦ tilt only. These were sampled at 10◦ intervals. The raw
results are tabulated in Table 1, and the statistical comparisons
presented below.

The peak firing rate of the plots changed only a few percent,
as expected given that this was set by the spike-generating
algorithm, but this was significant for HCP [t(35) = 2.19,
p < 0.05] though not for FCC [t(35) = 1.31, NS]. The HCP effect
is likely due to minor variance in the spike generation procedure
and is not meaningful. However, the mean rate dropped to
around half, which was a highly significant change [t(35) = 68.79,
p < 0.0001 for HCP; t(35) = 44.66, p < 0.0001 for FCC]. This
reflects the decreased number and size of fields (see below).

Spatial information (bits/spike) increased considerably for
both lattices, which was highly significant [t(35) = 66.28,
p < 0.0001 for HCP; t(35) = 51.05, p < 0.0001 for FCC], an
effect that is due to the smaller fields (see below). Coherence
changed minimally (<1%) which was expected due to the highly
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FIGURE 4 | Statistics extracted from the simulation. (A) An imaginary plane
was positioned in the HCP lattice (for which only its intersection with the
horizontal plane is shown, for clarity) at various offsets (translations in the
“x”-direction), tilts and rotations. (B) An example spikeplot from each of the
lattices transected at 40◦ of tilt. Note the loss of hexagonal symmetry, and the
decline in field number and size. (C) The parameters of interest were computed
for every combination of offset, tilt, and angle. The final product is a
four-dimensional (4D) plot, shown as a 3D solid with every voxel color-coded
(color being the fourth dimension) to reflect the percentage coverage (as

indicated by the scale bar). Shown here for four parameters are three orthogonal
planar sections through this solid at zero offset, zero angle, and 40◦-tilt (the tilt
used in the recording experiment). The black dotted line indicates the horizontal
plane (i.e., zero tilt). Since only tilt produced an appreciable variation in the
parameters, the data are then collapsed across the irrelevant ones (offset and
angle) and shown at the bottom of each panel as a line plot. The red dotted
lines in this plot show the 40◦ point where the samples were drawn for analysis.
Note that both on the 4D plots and on the line plots, the 40◦ point is far from the
maximum seen on the horizontal plane.

Frontiers in Psychology | www.frontiersin.org 8 July 2015 | Volume 6 | Article 925

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Hayman et al. Grid cell coding of sloped terrain

TABLE 1 | Mean (±SEM) for the main parameters calculated from the grid cell data for the flat and sloped compartments.

Model data Neural data

Flat Hexagonal close
packed (HCP) slope

Change Face centered
cubic (FCC) slope

Change Flat Slope Change

From the ratemaps

Peak rate (Hz) 38.44 (0.42) 37.06 (0.41) −3.16%∗ 37.67 (0.35) −1.58% 9.54 (1.26) 8.61 (1.23) −6.05%

Mean rate (Hz) 2.06 (0.01) 0.95 (0.01) −53.97%∗∗ 1.14 (0.01) −44.46%∗∗ 1.06 (0.19) 1.12 (0.22) +8.53%∗

Spatial information
(bits/spike)

2.42 (0.01) 3.53 (0.01) +46.28%∗∗ 3.26 (0.01) +35.12%∗∗ 0.57 (0.05) 0.49 (0.04) −4.61%∗∗

Coherence 0.92 (0.00) 0.91 (0.00) −0.43%∗∗∗ 0.92 (0.00) −0.18%∗∗ 0.60 (0.02) 0.54 (0.02) −8.77%∗∗

Coverage 29.83 (0.13) 13.78 (0.13) −53.77%∗∗∗ 16.57 (0.15) −44.41%∗∗∗ 19.26 (1.12) 23.22 (1.35) +25.11%∗∗

Field number 21.67 (0.16) 11.28 (0.18) −47.92%∗∗∗ 13.31 (0.22) −38 49%∗∗∗ 4.73 (0.17) 5.25 (0.20) +15.96% ∗

Field size (cm2) 137.78 (0.44) 123.17 (2.12) −10.64%∗∗∗ 125.12 (1.16) −9.19%∗∗∗ 235.61 (11.24) 221.14 (9.98) −2.5%

Inter-field distance (cm) 23.38 (0.02) 25.20 (0.27) +7.77%∗∗∗ 23.53 (0.10) +0.68% 15.78 (0.34) 14.59 (0.38) −6.49%∗

From the spatial autocorrelograms (SAC)

Grid orientation (degree) 34.90 (2.95) 36.48 (4.38) 1.58◦ 38.39 (4.65) 3.50◦ 26.72 (2.25) 23.29 (2.23) 3.43◦

Grid score 1.28 (0.00) −0.14 (0.01) −1.42∗∗∗ −0.04 (0.00) −1.32∗∗∗ 0.71 (0.07) 0.23 (0.08) −0.48∗∗∗

Symmetry peaks % % % % %

1 0 0 0% 0 0% 0 2 +2%

2 0 0 0% 0 0% 5 7 +2%

3 100 0 −100% 0 −100% 93 68 −25%∗∗

4 0 66 +66% 0 0% 2 18 +16%∗∗

5 0 3 +3% 100 +100% 0 5 +5%∗

6 0 31 −31% 0 0 0 0 0%

Significantly different at ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

mechanistic nature of the simulation; the change was nevertheless
statistically significant for both HCP [t(35) = 4.24, p < 0.0001]
and FCC [t(35) = 3.82, p < 0.001].

Coverage (percentage of area bins in which there was firing)
decreased to roughly half the area for both lattices, and was
very highly significantly different [t(35) = 82.91, p < 0.0001
for HCP; t(35) = 60.62, p < 0.0001 for FCC] – this reflects
the greater sampling of the inter-field spaces for the tilted plane
relative to the flat plane. Likewise, the number of fields decreased
considerably, by 40–50%, which was highly significant for both
HCP [t(35) = 51.86, p < 0.0001] and FCC [t(35) = 31.58,
p < 0.0001].

Field size also decreased slightly, by about 10%; this was
significant both for HCP [t(35) = 7.40, p < 0.0001] and FCC
[t(35) = 11.49, p < 0.0001]. Inter-field distance increased very
slightly for HCP [by ∼8%; t(35) = 7.28, p < 0.0001] but not for
FCC [t(35) = 1.64, NS].

We then subjected the transected firing field arrays to a 2D
SAC procedure (Hafting et al., 2005; Sargolini et al., 2006),
which enables extraction of metric properties of the field array
of orientation and symmetry. Grid orientation changed hardly
at all [t(35) = 0.33 for HCP, t(35) = 0.72 for FCC; both NS],
which is to be expected since the basic lattice did not rotate.
Grid score dropped notably, for both HCP [t(35) = 108.02,
p < 0.0001] and FCC [t(35) = 434.16, p < 0.0001], reflecting
the loss of hexagonal symmetry in the patterns. In support of

this observation, while the number of symmetry peaks for the
flat planes was 3 for 100% of the plots, reflecting the near-perfect
hexagonal symmetry of the simulated lattices, this changed for
HCP such that the majority of plots (66%) had four peaks while
3% had five and 33% had six. For FCC, all of the symmetry plots
had five peaks.

These observations provide predictions for what would be
observed in real grid cells recorded on a 40◦ slope, if the slope
transected a lattice. We tested these predictions by recording grid
cells as animals foraged on a two-part arena that was sloped in
one half and flat in the other. Results from this experiment are
described below.

Positional Data and Its LFP Correlates
Before analyzing the neural data, we looked at the behavior in
the apparatus to see if there were important differences between
the flat and sloped compartments. We also looked at the LFP
correlates of this behavior: we did this because evidence suggests
that the dominant LFP rhythm in the entorhinal-hippocampal
system, the theta rhythm, often shows a relationship to running
speed (McFarland et al., 1975; Li et al., 2012).

Locomotor behavior (Figure 5) was determined using the path
data from the camera’s tracking of the LED on the animal’s head.
After the position data had been transformed using the shrinking
paradigm described in the Section “Materials and Methods,”
the path of the animal across the recording trial was analyzed
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FIGURE 5 | Behavioral and local field potential (LFP) analyses. (A) Mean
dwell time and speed for the flat and sloped halves of the gradient box ± SEM.
(B) Mean directional dwell time for the flat and sloped halves showing
pronounced peaks aligned with the main axes of the recording environment, i.e.,

North–South and East–West. (C) Theta–speed relationship in both parts of the
box showing no difference in theta–speed relationship between the two
sections. Means ± SEM are shown with mean across all trials in thick black line
and individual trials shown in light gray lines.

to extract speed, total dwell time, and distribution of running
direction in the sloped half compared to the flat half of the
arena.

There was no difference in the amount of time spent in
the two compartments; rats spent on average 49.3 ± 3.4% of
their time in the sloped compartment and 50.7 ± 3.4% in the
flat compartment, which did not differ significantly [t(8) = -
0.20, NS]. There was also no difference in running speed,
this being 22.4 cm/s on the slope and 22.5 cm/s on the flat
[t(8) = 0.91, NS].

There was a strong bias in directional heading in both
compartments, but this was not different between the sloped
and the flat sides. Figure 5B illustrates how the distribution
of directional values is polarized along the length vs. width of
the gradient box. An ellipse was fitted to these distributions
and the major and minor axes of the ellipses calculated to
quantify how the distributions were oriented. The major axis
for the sloped and flat halves of the environment were oriented
at 3.5◦ and 0.9◦, respectively, showing a preference for the
animals to run along the orienting axes of the gradient box.
However, there was no difference in the probability distributions
of the directional values in the sloped and flat parts of

the environment when compared to a shuffled distribution
of directional values (Kolmogorov–Smirnov test: D = 0.16,
p > 0.05).

Using methods as reported in Jeewajee et al. (2008), we
extracted theta oscillation (7–11 Hz) from the recorded LFP
and then looked at whether it differed, in frequency, amplitude
or relationship to running speed, between the sloped and
flat compartments. In each recording session the mean theta
frequency was determined as the frequency with the maximum
peak in the EEG power spectrum filtered in the theta band
(7–11 Hz) and across trials it averaged 8.84 ± 0.18 Hz
on the slope and 9.19 ± 0.23 Hz on the flat which did
not differ significantly [t(8) = 1.74, NS]. Similarly, the peak
in the EEG power spectrum was compared across trials; it
averaged 5.86 × 10−7 ± 2.0 × 10−7 WH−1 on the slope and
6.50 × 10−7 ± 2.3 × 10−7 WH−1 on the flat, which was again
not significant [t(8) = 1.02, p > 0.05]. A linear relationship
between running speed and theta frequency was evident for
each trial for both compartments (Figure 5C). Comparisons for
the speed–theta z-correlation value, intercept, and slope of the
fitted regression line averaged across trials showed no difference
between compartments (mean z-correlation was 0.09 ± 0.01 on
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the slope and 0.08 ± 0.01 on the flat, t(8) = −0.45, NS; mean
intercept was 8.76 ± 0.04 Hz on the slope and 8.77 ± 0.03 on
the flat, t(8) = 0.43, NS; mean slope was 0.01 ± 0.00 cm−1 on
the slope and 0.01 ± 0.00 cm−1 on the flat, t(8) = −1.08, NS).
All these analyses were then run again, this time averaging data
from each rat and the comparisons showed again no differences
between compartments.

Our conclusion from the behavior/LFP analysis is thus that
there were no differences in behavioral or LFP parameters
between the flat and sloped compartments.

Single Neuron Firing Pattern Analysis
From the four rats, 76 cells were recorded in total and the
data analyzed to determine which neurons met the criteria for
being grid cells. Thirty were discarded due to low grid score
and two due to being repetitions from previous days. In total 44
grid cells were analyzed from four animals across nine separate

recording sessions, with one animal contributing to five separate
recordings (number of cells per animal; n = 1, n = 38, n = 1,
n = 4). An example of the firing of a single grid cell is shown
in Figure 3, and the entire data set is shown in Supplementary
Figure S1. Histology confirmed placement of electrodes in MEC
or PaS.

We analyzed the grid cell firing patterns as described in
the Section “Materials and Methods.” The results are shown
in Figure 6 and listed in Table 1. Peak firing rates did
not significantly change [t(43) = 1.59, p = 0.06], while the
mean rate increased slightly [t(43) = 1.69, p < 0.05]. The
mean rate change differed in sign from that predicted by the
simulations: in the model, they decreased, to about half. A t-
test comparing the percentage change from the HCP and FCC
values combined against the neural data showed a very highly
significant difference [t(114) = 18.86, p < 0.0001]. Thus, the
firing rate in the sloped compartment was not what would

FIGURE 6 | The main grid cell firing parameters that differed between
the flat and sloped compartments, compared against the predictions
made by the HCP and FCC lattice models (see text and Table 1 for

details and statistical tests). Note that peak rate for the model was set by
hand to match the data; the important comparison therefore is what happened
to the mean rate. Significantly different at ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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be expected for a 40◦ transection of a close-packed grid field
lattice.

There was significantly less spatial information content in
the firing patterns on the slope [t(43) = -2.47, p < 0.05],
an observation which contrasts with the predictions made by
the model, in which spatial information increased markedly.
In support of this, a t-test comparing the percentage change
from the HCP and FCC values combined against the neural
data showed a very highly significant difference [t(114) = 9.67,
p < 0.0001].

As well as reduced spatial information content, the neural
data also showed reduced spatial coherence [t(43) = −3.15,
p < 0.01]; comparison with the HCP/FCC combined data found
that this was a very much larger decrease than the minimal
change predicted by the modeling [t(114) = 3.69, p < 0.0001].
There was an increased percentage of coverage (bins containing
firing; [t(43) = 3.86, p < 0.001]). This is dramatically different
from the predictions of the models, in which coverage was
reduced by 50%; comparison of the neural data with the HCP
and FCC data combined showed a highly significant difference
[t(114) = 16.03, p< 0.0001]. There was also a significantly higher
number of firing fields in the sloped half compared to the flat
half [t(43) = 2.50, p < 0.05]; a change that, again, went in the
opposite direction to that predicted by the model; comparison
of the percentage change in the neural data with that in the
HCP/FCC data combined showed a highly significant difference
[t(114) = 12.220, p < 0.0001]. Fields were of similar size in both
halves [t(43) = 1.21, NS]; the percentage change was different
from that predicted by the models (comparison with HCP/FCC
combined; t(114) = 2.23, p < 0.05), although it went in the same
direction.

The increased coverage and field number, together with the
reduced spatial information and coherence, is consistent with a
general reduction in the spatial precision of firing on the slope, as
can be seen by eye in the plots in the Supplementary S1.

A consequence of there being more fields in the sloped
compartment compared to the flat, but the fields being the same
overall size, was that they were closer together in the sloped
compartment than in the flat [t(43) = 3.09, p < 0.05]. This
contrasts with the findings in the simulated lattices in which
inter-field spacing increased; the neural changes differed from
the combined HCP/FCC changes significantly [t(144) = 5.17,
p < 0.0001].

Analysis of the SAC revealed no significant difference in the
orientation of the grid fields [t(49) = −1.56, p > 0.05]. Grid
score declined significantly [t(35) = 5.27, p < 0.0001]; however,
comparison with the predictions from the lattice (HCP and FCC
combined) found that grid score in the neural data declined
considerably less than that of the models [t(144) = 12.32,
p < 0.0001]. The distribution of the number of symmetry peaks
shifted between flat and sloped data: the number of occurrences
of 1,2,3,4, and 5 symmetry peaks for the flat compartment
were 0,2,41,1,0, respectively; for the sloped compartment the
corresponding occurrences were 1,3,30,8, and 2 (note that three
peaks corresponds to sixfold – i.e., hexagonal – symmetry).
A chi-square test found these to be significantly different
[X2(46) = 10.26, p = 0.04], indicating a slight decline in the

hexagonal pattern, although far less than for the models (in which
there was a complete loss of hexagonal – 3-peak – symmetry;
Table 1).

Histology
Histology (Supplementary Figure S2) showed that the grid cells
were located in PaS (n = 1) and MEC (n = 3). The electrodes
were likely in layers II–III (based on the tracks, and the lack of
conjunctive cell properties).

Discussion

We compared two hypotheses about how grid cells might
organize their firing fields on sloping terrain (Figure 1C): (a) That
their firing fields would adopt a pattern consistent with the
slope having cut through a horizontally aligned, 3D, close-packed
(Figure 1D), or (b) that their fields would have the same pattern
that they show on a horizontal surface, as if the “grid” had
simply tilted along with the (Figure 1E). We first modeled the
predicted pattern if hypothesis (a) is the case, and found that at
40◦, the slope would cut through a lattice of fields in such a way
that the proportion of the surface covered by the fields would
be considerably reduced, and there should be fewer fields and
reduced hexagonal symmetry. We then tested these predictions
by recording grid cells on a flat vs. sloped surface, and found that
the lattice predictions were not upheld: there was not reduced
coverage (coverage was, if anything, slightly increased) nor fewer
fields (likewise), and there was only a slight decline in hexagonal
symmetry, as measured by the grid score and number of peaks in
the symmetry plots. Inspection of the firing rate-maps suggests
that for the majority of cells, the pattern on the flat side simply
flowed into the slope with little interruption (Supplementary S1),
although this continuity was difficult to quantify. We conclude
that hypothesis (b) has stronger support: it appears more likely
that grid cells on a sloping surface form a 2D hexagonal close-
packed array of the same form that they show on a horizontal
surface. However, there were some differences in some of the
firing statistics, particularly coverage, inter-field distances and
grid score, that suggest that the distance-measuring functions of
the cells were somewhat altered on the slope. Below, we discuss
the predictions of the models, followed by the implications both
of the preserved firing pattern and also of the alterations we saw,
concluding with some speculations about how rats encode 3D
space.

Our starting assumption for the modeling was that since
grid cell firing fields form a hexagonal close-packed array on
a flat surface, and then if they encode 3D space, they would
similarly do so with a 3D close-packing. In other words, their
firing fields would be spherical (instead of circular as they are
on the horizontal plane) and packed together as efficiently as
possible. There are two maximally efficient 3D close-packing
structures (Gauss, 1831), known as HCP and FCC: these are
subtly different but they do result in slightly different predictions
for some situations, so we generated simulated firing fields in
both forms. We then determined what would happen to the
firing field statistics if these lattices were transected by finite-sized
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planes (of dimensions similar, with respect to the field size, to
those of real-world recording environments) angled at various
tilts with respect to the horizontal, and at various orientations
and translations (“offsets”) with respect to a horizontal row of
fields. Because the pattern seen with a horizontal transection
is hexagonal close-packed, i.e., maximally efficient, tilts of the
transection plane away from the horizontal always resulted
in a decrease in packing density, which we called coverage,
(Figure 4), though the maximum was regained periodically
when the transection plane occasionally passed through another
plane of close-packed spheres (e.g., at 70◦ tilt in the FCC
lattice). Minimum coverage occurred for both lattices at all
orientations and offsets at around 40◦. At this tilt, which was
also the tilt value chosen for the recording experiment, the
average coverage would be around 50% of the horizontal value
and the number of fields would be 40% of the horizontal
value. We also examined the symmetry of the predicted
patterns and found a decrease in the number of symmetry
peaks.

The above analyses suggest that at a gradient of 40◦,
which is the maximum slope that our rats would readily
explore, we should see large declines in several grid-cell firing
parameters including field coverage, field number, inter-field
distance, number of symmetry peaks, and grid score. We
thus extracted the values for each of these parameters and
compared them against the neuronal recording data, which were
collected as the rats ran on either the horizontal surface or
one tilted by degrees (Figure 6). Analysis of running speed
and LFP found no significant differences between the sloped
and flat compartments in either the behavioral parameters
(running speed and distribution of running directions) or in
the LFP, although there were slight non-significant decreases
in theta frequency and amplitude. As mentioned earlier,
the pattern of grid cell activity on the sloping surface
was well preserved too; in contrast to the lattice-hypothesis
prediction of reduced coverage and field number, we saw a
preservation (and indeed, slight increase) in both of these
parameters, consistent with alignment of the grid to the tilted
surface.

Despite the preservation of firing pattern, on the sloping
surface there was a slight fall in spatial information content and
grid score, together with a decrease in the distance between field
centers. Inspection of the firing rate-maps suggested a slight
increase in background firing (see the data in Supplementary
Figure S1, particularly cells for which the depth of modulation
of the symmetry peaks is much less on the sloping side; cell
r488_120124_t3_c3 being a good example). It is not clear why
this degradation in the grid pattern occurred: one possibility
is that the increased locomotor demands afforded by the steep
slope reduced the attention the animals were able to pay
to spatial cues. Since grid cells are known to use external
landmarks such as boundaries to help anchor their firing (Barry
et al., 2007; Stensola et al., 2015), this could result in less
precise encoding of position by the cells, with increased extra-
field firing and a consequent drop in grid score. Despite the
decline in grid score, it remained significantly higher than that

predicted by the models (Figure 6): also, the average number
of peaks in the symmetry plots was not altered (Figure 6),
confirming that the packing arrangement was not distorted on
the slope.

These findings of preserved grid statistics lend support
to our earlier proposal, detailed in Jeffery et al. (2013) and
expanded in the companion paper (Jeffery et al., 2015), that
the metric framework for the neural representation of space
(the “cognitive map”) is 2D: that is, that grids form a close-
packed 2D array that allows for distance-measuring on a surface,
but not necessarily through volumetric space. Since rats do not
generally move through volumetric space, the lack of spatial
encoding in this dimension offers scant restriction to these
animals’ spatial encoding efficiency. Indeed, a flat grid map
offers some advantages – as shown by our modeling, a lattice
produces reduced field packing density and grid symmetry for
most planes other than horizontal and so a horizontally aligned
and volumetrically organized grid lattice may actually be less
useful to a surface-traveling animal. However, future experiments
will be required to determine whether true movement through a
volume – as might occur, for example, when moving through tree
branches – elicits a volumetric close-packed grid structure even
in rats.

The question arises as to the generality of these findings
across other species, particularly humans. Although we ourselves
are generally surface-traveling, our recent evolutionary ancestors
were not, and so we may have evolved volumetrically organized
grids. Studies of other volumetrically moving species such
as bats and monkeys may help answer this question, until
such time as it becomes possible to sample grids in human
subjects too.
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