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Bayesian inferences: how task
characteristics influence responses
Sebastian Hafenbrädl* and Ulrich Hoffrage
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In research on Bayesian inferences, the specific tasks, with their narratives and
characteristics, are typically seen as exchangeable vehicles that merely transport the
structure of the problem to research participants. In the present paper, we explore
whether, and possibly how, task characteristics that are usually ignored influence
participants’ responses in these tasks. We focus on both quantitative dimensions of the
tasks, such as their base rates, hit rates, and false-alarm rates, as well as qualitative
characteristics, such as whether the task involves a norm violation or not, whether
the stakes are high or low, and whether the focus is on the individual case or on the
numbers. Using a data set of 19 different tasks presented to 500 different participants
who provided a total of 1,773 responses, we analyze these responses in two ways:
first, on the level of the numerical estimates themselves, and second, on the level of
various response strategies, Bayesian and non-Bayesian, that might have produced
the estimates. We identified various contingencies, and most of the task characteristics
had an influence on participants’ responses. Typically, this influence has been stronger
when the numerical information in the tasks was presented in terms of probabilities or
percentages, compared to natural frequencies – and this effect cannot be fully explained
by a higher proportion of Bayesian responses when natural frequencies were used.
One characteristic that did not seem to influence participants’ response strategy was
the numerical value of the Bayesian solution itself. Our exploratory study is a first step
toward an ecological analysis of Bayesian inferences, and highlights new avenues for
future research.

Keywords: Bayesian inference, updating beliefs, ecological analysis, task characteristics, base rate,
signal-detection, representation format, natural frequencies

Introduction

A woman receives a positive HIV test—what is the probability that she is infected? An eyewitness
claims that she saw a blue cab involved in an accident—what is the probability that the cab was
actually blue? A potential customer asks for a second sales presentation—what is the probability
that he will ultimately place an order? Even though these questions come from different domains,
they all share the same underlying structure: an individual receives new diagnostic information and
wants to update her beliefs accordingly. Tasks that provide (a) information about prior probabilities
of some hypotheses, (b) information that new evidence is available, and (c) information about
the probabilities of such new evidence under various conditions, are called Bayesian inference
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problems and their solution can be calculated using Bayes’ rule.
For more than 50 years, researchers have been interested in
the psychological processes individuals deploy to solve such
problems as well as how to help individuals to solve such
problems more effectively (Mandel, 2014, 2015; Johnson and
Tubau, 2015; McNair, 2015).

Sirota et al. (2015) pointed out that Bayesian reasoning is
not restricted to textbook problems, and that there is a wide
range of situations that call for Bayesian reasoning “in the wild,”
that is, in real life contexts in which information is usually
not provided in numerical form and in which people (and
animals) nevertheless have to behave after some events occurred
or after some information became known (see also Griffiths
and Tenenbaum, 2006). This distinction is akin of Hertwig
et al.’s (2004) distinction between decisions-from-description and
decisions-from-experience. In a similar vein, Mandel (2014) called
for adopting a wider perspective and for studying Bayesian
reasoning in domains other than textbook problems. In the
present paper, we do not follow this call, and we analyze, as
most researchers on Bayesian reasoning do, people’s responses
to textbook problems. Yet, we aim at going beyond the usual
treatment of such problems. Usually, the content of a given
task is just regarded as decoration—what is important is that
the task has a certain structure and that this structure and the
information given in the task qualify it as a Bayesian inference
task for which Bayes’ rule, as a “content-blind” norm, provides
the solution (Gigerenzer, 1996). We question what often seems
to be taken for granted, namely that task content does not matter
and is exchangeable. This avenue does not lead us into the wild,
but it leads us into white territory from the viewpoint of classic
textbook problem analysis. We seek to explore the effect of task
dimensions that are usually ignored.

We are not the first to challenge the tacit assumption that
task content is decorative and can be ignored as long as it
serves its purpose, namely to convey what the structure is
and which normative principle applies. For instance, Cosmides
(1989) argued that the content and context of the task used
to study deductive reasoning matters: while a Wason selection
task with an abstract content yields very few normatively correct
responses, people’s ability to correctly apply the modus tolens
increased dramatically when the rule that needed to be checked
was formulated as a social contract—even though this was
irrelevant from a logical point of view. Another example is
Krynski and Tenenbaum’s (2007) finding that performance in a
Bayesian reasoning task depends on verbal content, specifically,
whether a reason for a false-alarm in a medical test has been
given (“the presence of a benign cyste”) or not. Note that
providing participants with an alternative cause for a positive
test is irrelevant from a normative point of view because it
does not affect the false-alarm rate. In other words, the false-
alarm rates in both versions, with and without reason for
the false-alarm, were the same. However, providing a reason
boosted the proportion of Bayesian answers from about 25% to
about 45%—which is, according to Johnson and Tubau (2015),
“some of the highest performance reported with normalized
data in the absence of visual cues.” To provide one more
example, Mellers and McGraw (1999) hypothesized that the

beneficial effect of natural frequencies (for an explanation of
this concept, see below) is minimized for tasks with a high
base rate, which amounts to saying that the usage of a Bayesian
response strategy in the probability/percentage version and in
the natural frequency version is differentially affected by the
base rate stated in the problem. Note that the claim is not that
the Bayesian solution depends on the base rate—this is trivial
and follows from Bayes’ rule. Rather the claim is empirical in
nature, namely that a participant’s chance of answering with
the Bayesian solution does depend on the base rate. Mellers
and McGraw (1999) provided supportive evidence for their
interaction hypothesis, and when we tested it with our own
data, we could confirm that the pattern of results for the cab
problem (which Mellers and McGraw used) seemed indeed to
be special, but we could not obtain supportive evidence for the
hypothesized interaction in general (Gigerenzer and Hoffrage,
1999).

Our research question is directly in line with these three
examples: are there characteristics of Bayesian textbook
problems—and if so, which—that influence participants’
responses? Note that this investigation conceives participants’
responses to Bayesian inference tasks as a function of task
characteristics and can thus be considered as an example of how
strategy usage depends on ecological dimensions (Todd et al.,
2012).

Materials and Methods

Databasis
To explore how characteristics of Bayesian inference tasks
influence responses and the usage of response strategies, we
reanalyzed data that was obtained by prior research. In particular,
we pooled the data from Hoffrage et al. (2015) and the data from
Study 1 of Gigerenzer and Hoffrage (1995). Our pooled data set
consists of 19 different tasks (4 tasks from Hoffrage et al., 2015
and 15 tasks from Gigerenzer and Hoffrage, 1995), presented to a
total of 500 different participants who provided 1,773 responses.
Table 1 gives an overview of these tasks and how they score on
various quantitative and qualitative dimensions (which will be
introduced in more detail below).

Tasks 13, 15, 17, and 18 have been taken from Hoffrage
et al. (2015; for the full descriptions, see their introduction, their
Table 1, and their Appendix). The 440 participants who worked
on these tasks were 259 undergraduate students of a business
school and 181 managers in their role as students in an Executive
MBA program. For each of the four tasks, two versions were
constructed, one in which the information was presented in
percentages and one in which natural frequencies were used.
Each of the participants responded to two different tasks, either
two percentage versions, or two natural frequency versions; in
other words, representation format (henceforth the label for his
variable) has been manipulated between-subjects.

Natural frequencies are the tallies in a natural sample in which
hit rate and false-alarm rate are not normalized with respect
to base rates (see Hoffrage et al., 2002 and Gigerenzer and
Hoffrage, 2007; for an example of how probability information
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can be translated into natural frequencies, see the caption
of Table 1). Natural Frequencies have proven to facilitate
diagnostic inferences in laypeople (Gigerenzer and Hoffrage,
1995), advanced medical students and advanced law students
(Hoffrage et al., 2000), patients (Garcia-Retamero and Hoffrage,
2013), physicians (Hoffrage and Gigerenzer, 1998), and managers
andmanagement students (Hoffrage et al., 2015). For a discussion
about when and why natural frequencies are effective, see
Gigerenzer and Hoffrage (2007), Brase (2008), Hill and Brase
(2012), Brase and Hill (2015), and Johnson and Tubau (2015).

The remaining 15 tasks were taken from Gigerenzer and
Hoffrage (1995; see Table 2, p. 293). In this study, four versions
were constructed per task, but for the present re-analysis, we
will only use two versions, namely the probability version and
the natural frequency version of what Gigerenzer and Hoffrage
(1995) called the standard menu. The information provided
in the standard menu is displayed in Table 1 (the two other
versions involving the so-called short menu, which provides the
information about the conjunctions D&H and D&–H, either in
probabilities or in natural frequencies, are not included in the
present re-analysis). Each of the 60 participants of Gigerenzer
and Hoffrage (1995) received all 15 tasks in two versions. For 30
participants, these were probabilities, standard menu and natural
frequencies, short menu, and for the other 30 participants, these
were probabilities, short menu and natural frequencies, standard
menu. The experiment took place in two sessions, most of them
one week apart from each other. For each participant, half of
the tasks in the first session were presented in one version, and
the other half were presented in the other version. During a
given session, a given participant has seen each task only once,
that is, the two versions of the same task were given in different
sessions. For the present re-analysis, which ignores all responses
in the short menu version, this implies that we used a between-
subject design: 30 participants responded to 15 tasks, each with
information presented in terms of probabilities (seven tasks in
one session and eight tasks in another session, one week apart
from each other), and 30 other participants did the same, except
that they were presented with the natural frequency versions of
the same 15 tasks.

While both studies used a natural frequency condition, the
condition with normalized information differed between the
studies: Hoffrage et al. (2015) used percentages for their four
tasks, and Gigerenzer and Hoffrage (1995) used probabilities for
their 15 tasks. According to Gigerenzer and Hoffrage’s (1995)
analysis (result 7, p. 689), this difference should not have an
effect on Bayesian performance—a theoretical result that was
confirmed by their own data and in numerous studies of other
authors since then. We will thus pool the data from these two
studies, and we will, henceforth, refer to this condition as the
probability/percentage condition.

Task Characteristics: Quantitative Dimensions
We will now introduce some candidate predictor variables
that may explain some variance, across tasks, of participants’
responses. One obvious dimension along which the tasks vary
is the numeric information: the base rate, the hit rate and
the false-alarm rate. Note that the third example given in our

introduction (Mellers and McGraw, 1999) was of this kind: the
authors argued that the chance of responding with the Bayesian
solution (which must not be confused with the Bayesian solution
itself!) is affected bywhether the base rate is high or low. There are
some observations about this set of three quantitative variables
that we can make already before looking at the participants’ data.
First, the prior probability (i.e., base rate) is linked to the posterior
probability: in our set of 19 tasks, the correlation is 0.76. The
fact that this correlation is positive and substantial is trivial as
the following analysis shows. Consider the so-called odds version
of Bayes’ rule, which can be read as a division of two equations
(more precisely: after the posterior odds ratio has been extended
by p(D)/p(D), the four numerators constitute one equation and
the four denominators the other one):

p(H|D)

p (−H|D)
︸ ︷︷ ︸

posterior odds ratio

= p(H)

p(−H)
︸ ︷︷ ︸

prior odds ratio

× p(D|H)

p(D| − H)
︸ ︷︷ ︸

likelihood ratio

(1)

Equation 1 has the following implications: (a) if the likelihood
ratio equals 1—which means that the data D is not at all
diagnostic—then the posterior odds ratio is identical to the prior
odds ratio, (b) if the likelihood ratio is larger than 1—which is
usually the case and which is also the case for 17 of our 19 tasks—
then the posterior odds ratio exceeds the prior odds ratio, and (c)
the posterior odds ratio is a linear function of the prior odds ratio,
with the likelihood ratio as a constant. Hence, one should expect
a positive correlation between prior probability and posterior
probability (although this link could be offset in a sample of tasks
by some correlation patterns between the likelihood ratios and
the corresponding prior odds in these tasks). For the sake of
completeness, we want to mention that the correlation between
base rate and the Bayesian solution (recall, 0.76) was found to be
substantially higher than any other correlations that included the
hit rate (Hr) and the false-alarm rate (F): corr (Bay∗Hr) = 0.16,
corr (Bay∗F) = 0.34, corr (Br∗Hr) = −0.15, corr (Br∗F) = 0.51
and corr (Hr∗F) = 0.14.

Task Characteristics: Qualitative Dimensions
Besides these quantitative dimensions, we categorized the 19
tasks along three qualitative dimensions. Note that the second
example in our introduction (Krynski and Tenenbaum, 2007)
was of this kind: these authors demonstrated that the chances of
responding with the Bayesian solution is affected by whether or
not a reason for the existence of false-alarms is given. We agree
that this is an interesting variable and we embrace Johnson and
Tubau’s (2015) problem solving approach to Bayesian reasoning
that can account for why providing a reason facilitates Bayesian
performance. We would have appreciated to also include this
variable in the present analysis—yet, none of the 19 tasks
provided such a reason, and accounting for variance on a
criterion variable is pointless if there is no variance on the
predictor variable. Fortunately, we were able to identify three
other variables as meaningful and interesting for our purpose at
hand.

The first variable is henceforth referred to as norm deviation. It
denotes whether the focal hypothesis constitutes a deviation from
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a norm, in the sense that H can be considered an exception or
something unusual that requires specific attention, whereas −H
can be considered the normal case. To illustrate this variable
with some examples from our set of 19 tasks, norm deviation
has been coded as 1 for breast cancer (vs. non-breast cancer),
HIV infection (vs. no infection), and incorrect tax report (vs.
correct tax report). Note that such tasks can be conceived as
signal-detection tasks: signals (or data,D) are used to detect norm
deviations (or H). In contrast, norm deviation was coded as 0 for
tasks in which it seemed to be hard, if not impossible, to say which
was the normal case; for instance, red ball (vs. blue ball), blue cap
(vs. green cap), or supplier A (vs. supplier B; for more examples,
see Table 1).

Our second qualitative variable, henceforth referred to as
stakes, denotes whether being in the state of H or −H makes a
big difference (e.g., being infected with HIV, having an accident,
or causing a prenatal damage has been coded as 1) or whether
the stakes are either relatively low or not specified in the task
description (e.g., drawing a red ball from an urn, being an active
feminist, or choosing a course in economics has been coded as 0;
Table 1).

Finally, our third qualitative variable is the main focus of the
task. The main focus can either be on the individual case or on
the numbers involved. For many tasks, the context story makes
it clear that the central question is whether some individual or
protagonist is in the state of H or −H, and the numbers given
in the task description mainly serve the purpose of determining
whether, given the observed data, this individual case should
be treated as if H (vs. −H) were true. Examples include
the questions of whether a specific woman (with a positive
mammogram) has breast cancer or not, or whether a specific
man (with fresh needle pricks) is a heroin addict or not. For such
tasks, this variable has been coded as 1. In contrast, it was coded
as 0 for tasks in which the main focus was on the relationship
between the data D and the hypothesis H, in particular, on the
posterior probability (or the corresponding relative frequency).
The individual case is rather in the background and serves as
an illustration. Examples include the Varden Soap task in which
the vice president for production is not at all interested in the
treatment of an individual soap container that was identified
as defective, but in which he adopts a long run perspective
and wonders about a fair allocation of costs between the two
production facilities Ohio (H) and Virginia (−H) (see the
appendix of Hoffrage et al., 2015).

Dependent Variables
To find out how the quantitative and qualitative task
characteristics can account for variance on participants’
responses, we analyze these responses in two ways. Specifically,
our first dependent variable is the participants’ numerical
estimate, which is continuous and comes in form of probabilities,
percentages, or ratios, ranging from 0 to 100%. Our second
dependent variable is the cognitive strategy a participant used to
combine the given numbers (e.g., whether s/he provided the hit
rate as a response). This is a categorical variable with as many
levels as there are strategies, but it can also be seen as a vector
of mutually exclusive binary (dummy) variables, each of which

coded as present (i.e., with a value of 1) if a certain strategy is
used, and which yields, aggregated across responses, proportions.

Two of these cognitive strategies that we used as a model in
our analyses below are the base rate and the hit rate. The base
rate is identical to the normative (i.e., the Bayesian) solution if the
likelihood ratio is 1, that is, if the diagnostic information is not at
all diagnostic—which is the case if the hit rate and the false-alarm
rate are identical. Providing the hit rate as a response has been
referred to as the “inverse fallacy” (Koehler, 1996; Villejoubert
and Mandel, 2002), the “Fisherian algorithm” (Gigerenzer and
Hoffrage, 1995) or the “conversion error” (Wolfe, 1995), and
it has been accounted for by the representativeness heuristic
(Kahneman and Tversky, 1972) or the “confusion hypothesis”
(Macchi, 1995). Providing the false-alarm rate as a response
happened in only 1.6% of the cases and so we decided to omit the
results for this strategy in our analyses below (in Hoffrage et al.,
2015, this occurred in 3.2% of the responses, see their Table 2; and
it did not even pass the 1% threshold in Gigerenzer and Hoffrage,
1995, see their Table 3).

The two other cognitive strategies that we used are the
Bayesian, as the normative response strategy, and the joint
occurrence, which is the probability (or percentage) of cases
in which both the data (D) are present and the hypothesis
(H) is true: p(D&H). This number can easily be calculated by
multiplying the base rate and the hit rate (p(D&H) = p(D|
H)∗p(H); or by applying the hit rate information to the base rate
of the focal hypotheses, e.g., 10 out of 1,000 women have breast
cancer and 8 out 10 womanwith breast cancer test positive, hence
8 out of 1,000 have breast cancer and test positive, see Table 1).
Joint occurrence is the numerator of Bayes’ rule, and given that
p(H|D) = p(D&H)/p(D), it can be seen as a step toward the
Bayesian solution that falls short of carrying the computation to
the end (see Johnson and Tubau, 2015). While we only classified
responses as stemming from the base-rate or the hit-rate strategy
when the responses were the exact values of the base rate or the
hit rate, respectively, we used a more lenient criterion for those
strategies for which the number could not simply be read off
but had to be computed. Specifically, we classified responses as
Bayesian or as stemming from the joint occurrence strategy when
the responses were in the range of ±1% point from the value of
the Bayesian solution or joint occurrence, respectively.

Gigerenzer and Hoffrage (1995) identified a wide range of
other strategies, some of them were very exotic, have rarely
been used, and basically reveal that participants had no clue and
combined the numbers in an arbitrary and/or unreliable way.
Such attempts come close to guessing, andmany participants said
right away that they simply guessed, without having been able
to say in which way they used the numbers exactly. Whether
‘guessing’ deserves being labeled as a strategy is a matter of
taste—pragmatically, that is, from a modeling point of view, it
is useless as ‘guessing’ does not allow one to make predictions
and to calculate goodness-of-fit measures. In sum, we restricted
the report of our results to four cognitive strategies—Bayes, base
rate, hit rate, joint occurrence—each of which made a precise
point prediction. Based on the previous literature (in particular
Gigerenzer and Hoffrage, 1995, and Hoffrage et al., 2015), these
were the most frequently used strategies.
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Results

We structure the report of our results as follows: first, we
analyze how the quantitative variables defined above are related
to the qualitative dimensions of the tasks, and, second, how
the qualitative variables are related to each other. Note that
these analyses are conducted without any participant data. Third,
we will present an overview of our data that comes close
to presenting the raw data, thereby comprising all essential
variables of the present analysis. Fourth, we will report how the
quantitative and, fifth, how the qualitative task dimensions affect
the numerical estimates. These analyses ignore process data and
do not take into account whether a participant used a particular
cognitive strategy, for instance, gave the hit rate as a response.
Subsequently, we will turn to those 52.3% of the responses
that have been identified as stemming from one of the most
prominent strategies. For this subset of our data, we will analyze
how, sixth, the representation format, seventh, the quantitative,
and, eigth, the qualitative dimensions affect the usage of cognitive
strategies.

How are the Quantitative Dimensions Related
to the Qualitative Dimensions?
In many real world contexts it may be the base rates that
determine which category stands out and attracts special
attention. In fact, for our 19 tasks, the correlation between base
rate and norm deviation is −0.64 [average base rate for tasks with
norm deviation coded as 1 and 0 is 3.4% and 35.1%, respectively,
t(16) = 3.43, p = 0.004]. Similarly, the correlation between the
Bayesian solution and norm deviation is −0.56 [average Bayesian
solution for tasks with norm deviation coded as 1 and 0 is
11.9 and 44.1%, respectively, t(16) = 3.06, p = 0.008], that is,
tasks for which H constitutes a norm deviation tend to have
lower Bayesian solutions. Moreover, it can be expected that for
these tasks (for which H can be seen as a norm deviation), the
stakes are high. If we consider natural catastrophes, diseases,
crimes, fraud, or failure of technical systems, then we find that
these are not only rare events and norm deviations, but that
there are usually also high incentives to detect them early in
order to be able to intervene and to prevent the worst. In other
words, stakes are high. Hence not surprisingly, Pleskac and
Hertwig (2014) observed that for many events in the real world,
probabilities and utilities are negatively correlated: the lower the
probability of events, the higher their magnitude in utility terms,
either as a cost (e.g., earthquakes with higher severities are less
likely), or as a benefit (e.g., higher stakes lotteries are less likely
to be won). Consistent with Pleskac and Hertwig (2014), the
correlation between base rate and stakes that we observed in
our set of 19 tasks is negative [−0.26; the average base rates for
high stake tasks is 14.8% and for low stake tasks it is 30.2%;
t(15) = 1.13, p = 0.27]. In turn, the Bayesian solutions for high
stakes tasks are also lower (27.2%), than for low stakes tasks
[41.2%, t(15) = 0.86, p= 0.40]. Also our third qualitative variable
is correlated with some of the quantitative variables: even though
the base rate for problems in which the main focus is on the
individual is lower than when the main focus is on the numbers
[11.9 vs. 22.1, t(17) = 0.86, p = 0.40], this does not translate into

differences in the Bayesian solution [32.6 vs. 29.6, t(17) = −0.21,
p = 0.83]. This pattern can be explained by a combination
of both smaller false-alarm rates [10.1 vs. 17.9, t(17) = 1.0,
p = 0.33] and higher hit rates [74.7 vs. 50.0, t(17) = −1.66,
p = 0.12].

How are the Qualitative Dimensions Related to
Each Other?
All correlations in the triangle of qualitative variables are
substantial and significant. The one between norm deviation
and stakes is 0.62 (p = 0.005), that is, in tasks centering on
norm deviations and abnormal cases, stakes tend to be high.
The correlation between norm deviation and main focus is 0.45
(p = 0.05), that is, tasks about norm deviations tend to focus on
the individual case. Moreover, the correlation between stakes and
main focus is 0.55 (p = 0.01), that is, problems involving high
stakes tend to focus on the individual case.

The results reported so far did not contain any participant
responses and could hence have been reported before the first
participant has shown up. Nevertheless, these are empirical
findings that capture aspects of the statistical structure of
Bayesian tasks. We will now turn to participants’ responses.

How are Participants’ Responses Distributed
in the 19 Tasks?
Figure 1 displays the 19 tasks listed in Table 1. It thereby
uses the same order, namely the one established by the base
rates, and the identification numbers in Table 1 correspond to
those in Figure 1. This figure comes close to a presentation
of the raw data. It visualizes, for each task, all variables that
are included in the present analyses: the two sets of predictor
variables (quantitative and qualitative task dimensions), and
the two kinds of dependent variables (numerical estimates and
response strategies). The quantitative dimensions of the task
are included as lines that represent the numerical values of
the base rate (Br), of the hit rate (Hr), of the false-alarm rate
(F), and also of the Bayesian solution (Bay). The letters that
stand for the three qualitative dimensions introduced above—
norm deviation (N), stakes (S), and main focus (M)—indicate
that the corresponding variable has been coded as “1” (absence
of a letter for a given task indicates that the dimension has
been coded as “0”). On the side of the dependent variables,
the figure displays the distribution of numerical estimates,
highlighting the estimates that correspond to specific response
strategies in vertical bars, while all other responses that could
not be assigned to one of the strategies that we selected for this
analysis are visualized in a horizontal bar. The height of the
vertical bars depicts the relative frequency of response strategy
usage.

The advantage of this kind of data representation is, at
the same time, its disadvantage. The figure contains a lot of
information and is very detailed. In the subsequent sections we
will hence focus on specific effects that the predictor variables
exert on the dependent variables, that is, we split the data into
subgroups and aggregate them so that some effects become better
visible.
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FIGURE 1 | Continued

FIGURE 1 | Continued

Distribution of numerical estimates for the 19 tasks compiled in Table 1
split by representation format. The 19 tasks are displayed below each
other, and sorted by their base rate. Responses to task versions in which
numbers were presented in terms of probabilities or percentages are plotted,
in blue color, above the x-axes, and responses to natural frequency versions
are plotted, in red color, below the x-axes. The figure does not highlight all
numerical estimates, but only those for the following five strategies: Bayes
(Bay), base rate (Br), hit rate (Hr), false-alarm rate (F) and joint-occurrence
(J). The y-axes of Figure plots the frequency of use of these strategies, that
is, of giving the corresponding number as an estimate (one gridline indicates
20% points) against the number that correspond to these strategies (on the
x-axes). These five strategies together account for a total of 53.9% of the
responses; the remaining 46.1% are distributed across the six intervals that
are defined by the five numerical estimates of the five strategies. The widths of
the bars for the strategies was set to be 1% and the heights of the intervals
between the strategies (or between the strategies and the end points of the
scales) were chosen such that equal areas amount to equal percentages of
participants responding with the corresponding numerical estimate (be it the
precise number of a given strategy or any estimate that falls within a given
interval). For some tasks, the numerical estimates corresponding to some
strategies yielded a value between 0 and 1, so that our chosen resolution would
require to plot them behind each other, with overlapping bars (and with the
consequence that the total areas would no longer be constant across tasks).
For these tasks, we stacked the areas corresponding to the involved strategies
on top of each other, so that the bars gained in height and were comprised of
different strategy users. Specifically, for Task 1 (probability version, p) the bar
at 0 represents: 1 Br; Task 1 (natural frequency version, nf): 3J; for Task 4p: 4J
and 2Bay; Task 4nf: 1J, 1Br, and 4Bay; Task 5nf: 1J and 2Br; Task 11p: 1J,
6Hr, and 5Bay; Task 11nf: 1J, 3Hr, and 13Bay. Moreover, for 10 of the tasks
from Gigerenzer and Hoffrage (1999), a total of 46 responses (corresponding
to 9.6% of all responses for these tasks) could not be displayed because
they fell between two adjacent responses of different strategies that were
too close to each other to allow for graphical representation. In addition, the
figure contains the classification for the three qualitative variables introduced
in section “Materials and Methods”: Norm deviation (N), Stakes (S), and Main
focus (M). Capital letters denote that the hypothesized event constitutes a norm
deviation, that stakes were high and that the main focus was on the individual
case; absent letters denote the opposite; and letters in lower case denote that
we could not agree how to code this variable (for instance, is being pregnant
a norm deviation or not?). When computing the correlations or the regressions
that are reported in the text, such unclear cases have been coded with 0.5,
and when reporting the relative frequencies of strategy usage, the results for
this variable level have been omitted.

How do the Quantitative Dimensions Affect the
Numerical Estimates?
To see how the numbers given in the task affect the
numerical estimates of the participants, we choose a data
representation that combines (a) scatter-plots in which each
dot denotes the average numerical estimate for a given task
and information representation format, with (b) marginal effects
from regression analysis and their corresponding confidence
intervals (Figure 2).

Figure 2A shows the numerical estimates as a function of
the Bayesian solution. If every participant would have given
the Bayesian response, the slope would have been one. Both
slopes fitting the participants’ estimates are smaller than 1, but
the slope in the frequency condition is significantly steeper
than in the percentage condition. This is partly due to the fact
that the proportion of Bayesian responses was higher in the
frequency condition; however, this interaction effect also persists
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FIGURE 2 | Graphical exploration of how the quantitative variables
(displayed at the x-axes) affect the numerical estimates (displayed
at the y-axis). Each blue dot represents the average response in the
probability/percentage version of a task, each red dot the average
response in the natural frequency version, and the size of each dot
indicates the number of responses on which these averages are based
(see also the rightmost column of Table 1). The marginal effects and
their confidence intervals are based on regression analysis. In (A) showing
the Bayesian solution on the x-axis, the regression included only
representation format and the Bayesian solution as main effects, as well
as their interaction. It does not include the three quantitative variables as
control variables, as the Bayesian solution already combines them
(according to Bayes’ rule). The other three panels (B–D) display the three
quantitative variables, base rate, hit rate, and false-alarm rate on the
x-axis. Each of the marginal effects and confidence intervals was
computed with representation format and all three quantitative variables as
main effects as well as interaction effects between representation format

and each of the three quantitative variables. In all regressions, standard
errors were clustered for each participant. We included four coefficients
and corresponding p-values in each panel. If at least one of the four
p-values in a given panel was lower than 0.1, then all four coefficients
and their corresponding p-values are displayed; otherwise not a single
number is reported. The reported numbers are arranged in the shape of
a diamond, the main effect on top and the interaction with representation
format at the bottom. On the left, we included the main effect when
calculating the regression only for responses in the probability/percentage
condition, and on the right the main effect in the natural frequency
condition. It does not come as a surprise that the numbers on top (main
effect) and the numbers on the right (main effect in the natural frequency
condition) are almost identical: the interaction is coded as the interaction
with the probability/percentage condition, thus the main effect captures
the effect in the natural frequency condition. The number on the left can
thus also be calculated by adding the main effect (the numbers on top)
and the interaction (numbers on the bottom).

when looking only at the non-Bayesian responses (B = −0.21,
p < 0.001). In particular, the slope in the probability/percentage
condition decreased from B= 0.40 when all responses were taken
into account to B= 0.30 when considering only the non-Bayesian
responses, and the slope in the frequency condition decreased
from B = 0.71 to B = 0.51 (all p’s < 0.001). Moreover, we found
that participants that were presented information in terms of
natural frequencies were more likely to respond with the Bayesian
solution; and if they did not, their responses were on average
closer to the Bayesian solution [note that this decrease in average
absolute differences among the non-Bayesian responses could not
be observed for the subset of the four tasks taken from Hoffrage
et al. (2015)—to the contrary, there we even found the opposite].

Figure 2B shows that, when statistically controlling for
the other two quantitative variables, higher base rates lead to
higher numerical estimates. As we have discussed above when
introducing the odds version of Bayes’ theorem, the prior odds,
represented by the base rate, should be positively correlated to the
posterior odds. Not surprisingly, such a positive correlation could
also be observed between base rates and participants’ numerical
estimates of posterior probabilities. Again, this effect is partly
driven by participants who give the Bayesian response, however,
it persists even after all Bayesian responses have been excluded
from the regression; in fact, this exclusion reduced the coefficient
(B = 0.31) but it still remains significant (p < 0.001). At the same
time, higher base rates are also associated with higher absolute
differences between numerical estimates and Bayesian solutions

(overall B = 0.09, p = 0.016; and when only considering the non-
Bayesian responses B = 0.25, p < 0.001). In sum, while more
participants find the Bayesian solution for tasks with higher base
rates, those participants who do not find the Bayesian solution
make larger mistakes in these tasks.

Similarly to the base rate, the hit rate also has a positive effect
on the numerical estimate, as can be seen Figure 2C. As for
the other analyses (Figures 2A,B), this effect also persists after
all Bayesian responses have been excluded from the regression
analysis (B = 0.35, p < 0.001). Interestingly, in the frequency
condition the influence of the hit rate on the numerical estimate
is significantly weaker. Additional analyses reveal that only in the
probability/percentage condition, higher hit rates are associated
with higher absolute deviations from the Bayesian response
(B = 0.30, p < 0.001), and that this effect persists after excluding
all Bayesian responses from the analysis (B = 0.28, p < 0.001).

In Figure 2D, it can be observed that the false-alarm rate
is strongly negatively related to the numerical estimate in the
percentage condition, but unrelated in the frequency condition.
The partial correlation between the false-alarm rate and the
Bayesian solution (after statistically controlling for the base rate
and the hit rate) is −0.13, implying that participants in the
probability/percentage condition are overreacting to the false-
alarm rate, and participants in the natural frequency condition
are not reacting enough. Note that in none of the 19 problems,
the false-alarm rate was above 50%, and thus the marginal effects
estimates for this area are based on pure extrapolation.
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In sum, the three numbers provided in the task are related
to the Bayesian solution and Bayes’ rule quantifies how the
exact relationships are. Generally speaking, the higher the base
rate, the higher the Bayesian solution; the higher the hit rate,
the higher the Bayesian solution; and the higher the false-
alarm rate, the lower the Bayesian solution. Each of these three
relationships could be found for the numerical estimates as well.
Interestingly, they could also be found even among the non-
Bayesian responses. When establishing these relationships for
one of the three quantitative dimensions through regression
analyses, we controlled for the other two. Note that this statistical
control has its limits, because a regression can only do so through
a linear combination, while Bayes’ rule is not a simple linear
combination. In a way, Bayes’ rule is the normative correct way
how to take all three pieces of information into account, and this
is exactly what we have done in Figure 2A—which nicely shows
that numerical estimates could very well be predicted through the
three numbers provided in the task.

How are the Qualitative Variables Related to
the Numerical Estimates?
To see how the three qualitative variables characterizing a given
task affect the numerical estimates of the participants, we adapted
the data representation of our previous question as follows:
in Figure 3, the three qualitative variables are depicted on
the respective x-axis of the three panels, and the numerical
estimates are plotted on the y-axis. As in our previous figure,
we again display a dot for the mean numerical estimate of
each task in each representation format conditions, and combine
this with marginal effects and their confidence interval from
regression analysis. The marginal effects of each of the qualitative
variables are calculated in a separate regression that only includes
the respective qualitative variable, representation format and

their interaction. We used separate regressions to explore the
differences in responses between tasks, as if the qualitative
variable was the only dimension on which the tasks differed.
Thus, all the differences between the tasks with a specific quality
(e.g., norm deviation = 1) and the tasks without that quality
(e.g., norm deviation = 0) will be reflected in the marginal effect
shown in Figure 3. These marginal effects can thus be seen as an
upper bound of the effect of the qualitative variable (unless these
qualitative variables are confounded with others factors that have
an opposing effect, if this were the case, then ‘controlling’ for these
other factors will increase the observed effects).

Figure 3A shows that the numerical estimates are lower for
norm deviation tasks. This negative effect is (significantly)
larger within the frequency condition compared to the
probability/percentage condition. This pattern can party be
explained by the lower Bayesian solutions for the problems
where norm deviation is 1, and by the larger number of
Bayesian responses in the frequency condition. However, even
when excluding all Bayesian responses, both the main effect
(B= −10.88, p < 0.001) and the interaction (B= 8.99, p= 0.007)
remain significant.

Figure 3B depicts a similar, yet less pronounced pattern for
the variable stakes. Like for norm deviation, this pattern is
partly, but not only, driven by differences in the percentage of
Bayesian responses (when only considering the non-Bayesian
responses: B = −10.3, p = 0.002 for the main effect and
B = 8.3, p = 0.065 for the interaction with representation
format).

Figure 3C visualizes the effect of the variable main focus.
Participants gave significantly higher numerical estimates for
tasks in which the main focus was on the individual case,
compared to tasks where the main focus was on the numbers.
In contrast to the effects depicted in the other two panels,

FIGURE 3 | Graphical exploration of how the qualitative variables
(displayed at the x-axes) affect the numerical estimates
(displayed at the y-axis). To avoid overlap of the dots (see the
caption of Figure 2 for details what they represent), the blue dots
are displayed slightly to the left of the confidence interval for the
marginal effect, and the red dots slightly to the right. In addition, blue
(red) dots that would overlap with other blue (red) dots are moved

slightly further to the left (right). The marginal effects and their
confidence intervals for each of the qualitative variables (A–C) are
calculated in a separate regression that only includes the respective
qualitative variable, representation format and their interaction (SE were
clustered for each participant). We included the four resulting
coefficients and corresponding p-values in each panel (see caption of
Figure 2 for details).
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the effect of main focus is significantly more pronounced
in the probability/percentage condition than in the frequency
condition. This is particularly interesting, as the Bayesian
solutions seem to be unaffected by this variable (r = 0.05), and
thus a main focus on the individual seems to distract participants
from finding the Bayesian solution (and this distraction effect is
stronger in the probability/percentage condition).

How does Representation Format Affect the
Usage of Cognitive Strategies?
In the previous sections we focused, unless otherwise noted, on
all responses and took the numerical estimates as the dependent
variable. We will now restrict the analyses only to those responses
that have been categorized as Bayesian, or that were identical to
either the base rate provided in the task, the hit rate, or the joint
occurrence of D and H. Across both representation formats, any
of these four strategies was used in 52.3% of our 1,773 responses.
The most frequent strategy, across both formats, was the Bayesian
strategy (with 27.7%). The second most often used strategy was
the hit rate, but with 11.1% it was used far less often than in
other studies (e.g., Villejoubert and Mandel, 2002). The third and
fourth most often used strategies were joint occurrence (with
9.2%) and base rate (with 4.3%), respectively.

How did strategy use depend on format? Averaged across all
participants and all 19 tasks, the Bayesian strategy was used in
16.9% of cases for probability/percentage representations, and in
38.5% of cases for natural frequency representations (p < 0.001,
in a logistic regression with standard errors clustered for each
participant). For the base rates, these numbers were 6.4 and
2.3%, respectively (p < 0.001), and for joint occurrence, 12.1 and
6.2%, respectively (p < 0.001). In contrast, format did not exert a
significant effect on responding with the hit rate (10.4 vs. 11.7%,
respectively; p= 0.61) and also not on the usage of the false-alarm
rate (1.2 vs. 2%, respectively; p = 0.23; the false-alarm rate is not
displayed in the Figures and will no longer be considered in the
analyses below).

How do the Quantitative Dimensions Affect the
Usage of Cognitive Strategies?
As in the last figures, Figure 4 combines scatter-plots to represent
the different tasks in both representation format conditions, with
marginal effects and their confidence intervals from regression
analysis. In the panels depicted in the first row (Figures 4A–D),
we explore how the quantitative variables influence participants’
performance in finding the Bayesian solution. Figure 4A shows
that the percentage of participants responding with the Bayesian
solutions does not depend on what the Bayesian solution is.
In Figure 4B, there is a trend indicating that the higher the
base rate, the more participants find the Bayesian solution. The
effect of the hit rate, depicted in Figure 4C, depends on the
representation format. In the probability/percentage condition,
higher hit rates seem to lead to less Bayesian responses, whereas
in the frequency condition, the effect of the hit rate seems to be
smaller and in the opposite direction. A potential explanation
can be found in the other panels of the third column. When
the hit rate is low, participants in the probability/percentage
condition used the base rate and the joint occurrence more

often as a response strategy. In the last panel of the first row
(Figure 4D), it can be seen that the higher the false-alarm rate,
the smaller the percentage of participants who found the Bayesian
solution. In the probability/percentage condition, this can again
be partly explained by a higher reliance on the hit rate and joint
occurrence as a response strategy. In the frequency condition,
however, it is unclear which strategy those participants used who
failed to find the Bayesian solution. Note that in the 19 tasks
we investigated, the highest false-alarm rate was at 50%, which
makes the estimates in the right part of the panel based on pure
extrapolation.

How do the Qualitative Dimensions Affect the
Usage of Cognitive Strategies?
In Figure 5, we explore graphically the effect of the three
qualitative variables, norm deviation, stakes and main focus (in
the three columns) on the response strategies (in the four rows),
again using a combination of scatter-plots and marginal effects
with confidence intervals. For the marginal effects and their
confidence intervals, we calculated a separate logistic regression
for each panel because we did not want to explore the unique
contribution of the quantitative variables, but rather the upper
bound of their explanatory power, under the assumption that they
represent the only difference between the tasks (as in Figure 3).

The panels in the first row depict the effects of the qualitative
variables on the percentage of Bayesian responses. Figure 5A
shows that in the probability/percentage condition, it is harder
for participants to find the Bayesian solution for tasks with
norm deviation, while in the frequency condition the percentage
of Bayesian responses did not seem to depend on whether a
task includes a norm deviation or not. In Figure 5B, it can
be seen that whether a task has high or low stakes does not
significantly affect the percentage of Bayesian responses. For the
sake of completeness, let us mention that when the stakes are high
(compared to low), participants in the probability/percentage
condition seem to respond more often with the base rate
(Figure 5E), less often with the hit rate (Figure 5H), and more
often with the joint occurrence (Figure 5K)—while participants
in the frequency condition remain largely unaffected by the
stakes. A main focus on the individual seems to negatively
affect participants’ performance in finding the Bayesian solution,
especially in the percentage condition (Figure 5C). Instead,
slightly more participants used the base rate as a response
(Figure 5F).

Discussion

In this paper we explored the effects of three quantitative and
three qualitative dimensions characterizing Bayesian inference
tasks on participants’ responses. To accomplish this, we plotted
the responses of 500 participants to 19 different tasks in
several ways. We started broadly with the numerical estimates
participants provided as responses, and afterwards classified
some of their responses as stemming from different response
strategies. We differentiated the tasks both based on the
quantitative variables that define the statistical problem—namely,
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FIGURE 4 | Each of the panels (A–P) visualizes how the quantitative
variable that is displayed at the x-axis affects the usage of the
cognitive strategy that is displayed at the y-axis. The dots represent the
average usage in the different tasks and versions (see caption of Figure 2
for details). The marginal effects and their confidence intervals are based on

logistic regression analysis with strategy use as the dependent variable,
following the same specifications as the regression analyses used for
Figure 2 (see the caption of Figure 2 for details). We also included the four
coefficients and corresponding p-values in each panel (again, see the caption
of Figure 2 for details).

the base rate, hit rate, and false-alarm rate—and on qualitative
variables that describe the context and narrative of the task. In
this explorative analysis, we found that participants seem not to
perceive all Bayesian inference tasks as being equal, and most
of the variables we investigated seem to influence not only the
specific numeric response participants are providing, but—and

of course not independently of the numeric responses—which
strategy they use. In the remainder of this paper, we want to
highlight three main lessons we draw from this exploratory
investigation, and we outline some avenues for future research.

First, the numerical value of the Bayesian solution does
not seem to influence whether participants find it. While their
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FIGURE 5 | Each of the panels (A–L) visualizes how the qualitative
variable that is displayed at the x-axis affects the usage of the
cognitive strategy that is displayed at the y-axis. The dots represent the
average usage in the different tasks and versions (see caption of Figure 2
for details about their color and size). The marginal effects and their

confidence intervals are based on logistic regression analysis with strategy
use as the dependent variable, following the same specifications as the
regression analyses used for Figure 3 (see the caption of this figure for
details). We included four coefficients and corresponding p-values in each
panel (see also the caption of Figure 2 for details).

responses are driven by the different pieces of information
stated in the task (base rate, hit rate, and false-alarm rate),
and by other qualitative variables that can be seen as irrelevant
from a normative point of view, their response strategy seems
to be unaffected by what the Bayesian solution is. For our
set of 19 tasks, about the same proportion of individuals
provides the Bayesian solution, independent of whether it

is as low as 0.03% or as high as 92.3%. However, the
large majority of the participants’ responses (77.9%) were
from a task for which the Bayesian solution was 42.9% or
less.

Second, focusing on the numbers, instead of the individual
case, seems to increase participants’ performance. Interestingly,
this effect was more pronounced in the probability/percentage
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condition and less pronounced in the natural frequency
condition. To better understand the effect of main focus, it is
useful to consider the debate about the underlying mechanism
of the beneficial effect of natural frequencies (Gigerenzer and
Hoffrage, 2007; Brase, 2008; Hill and Brase, 2012; Brase and
Hill, 2015; Johnson and Tubau, 2015). The two prominent
explanations for the beneficial effect of natural frequencies
are that they (a) make the nested set relationship more
explicit, and that they (b) prompt participants to think in
terms of frequencies (instead of “single event probabilities”).
Brase (2008) provided evidence for the second explanation:
participants who interpreted the somewhat ambiguous word
“chances” as frequencies performed better than those participants
who interpreted “chances” as probabilities. In line with this
explanation, a main focus on the numbers might lead participants
to adopt a frequentist point of view, thereby increasing their
performance. In contrast, a main focus on the individual
case might prevent participants from adopting and, in turn,
benefiting from such a viewpoint. This account would also
explain why the effect of main focus was more pronounced
for probability representations, where Bayesian performance
tends to be low and thus leaves more room for the effect
of focusing on the numbers—while for natural frequency
representations a main focus on the numbers had less added
value as most participants were already thinking in terms
of numbers anyway (but the effect of main focus could
still be observed even within the frequency condition, see
Figure 5C).

The practical consequences of the main focus might be
particularly severe, as the tasks with a focus on the individual
case tend to be about a norm deviation and tend to have high
stakes, at least in our sample of tasks. Of course we cannot
make any causal claims here, but our results are consistent
with the following speculation: if a specific problem involves a
norm deviation and if stakes are high, those who formulate a
problem may be led to focus on the individual case, for instance,
to attract the readers’ attention, to appeal to emotions, and
to increase empathy (cf. the identified-victim effect, Small and
Loewenstein, 2003). They may even adopt such a focus with
good intentions, namely to increase the readers’ involvement and
motivation to solve the problem. And even if a task description
is relatively neutral, chances are that the reader may focus on
the individual if the hypothesis involves a norm deviation and
if stakes are high. However, and ironically, such a frame increases
the difficulty of the problem, as our results suggest, andmaymore
than offset any beneficial effect that the increased motivation
and the personal affection might have. It may sound trivial,
but this points to a potential strategy how problems could be
reframed (or how individuals could reframe them in their head)
to boost the accuracy of responses: use natural frequencies rather
than probabilities to communicate the statistical information,
and, on top of this, focus on the numbers rather than on the
individual case. However, as our analysis is only exploratory,
future research would be needed to systematically test such a
reframing strategy, and to disentangle the effect of ‘main focus’
of the task from other effects and to identify potential boundary
conditions.

Third, in the probability/percentage condition, the
quantitative and qualitative task characteristics influenced
participants’ responses to a larger extent than in the natural
frequency condition. This could possibly be explained by the
fact that the percentage of Bayesian responses was higher
in the natural frequency condition (on average there were
38.5% Bayesian responses in the natural frequency condition
and only 16.9% in the probability/percentage condition).
For someone who figured out how to structurally solve the
Bayesian inference tasks (Johnson and Tubau, 2015), there
was no need to find a solution in the particulars of the task
specific context stories or to use a non-Bayesian strategy,
for instance, by taking one of the numbers provided in the
task or by integrating them in some other way. In contrast,
someone who did not understand how the numbers should be
combined could be tempted to look for similarities between
the problem at hand, and problems they have solved before.
In other words, for someone who figured out what the
normative response strategy is, the task content and any
other characteristics were exchangeable decoration—and for
those who did not, such variables could possibly exert an
influence.

Yet, in the natural frequencies condition, many participants
also struggled with the tasks and where hence vulnerable to
task dimensions that are irrelevant from a normative point of
view. Why are Bayesian tasks still hard for some, even when
information is presented in terms of natural frequencies? One
reason could be that outside of the lab, most situations in
which individuals update their beliefs do not feature numerical
information about base rates, hit rates, and false-alarm rates.
For some participants, it might have been the first time that
they encountered such text book problems when they read the
descriptions of the tasks in the context of the experiment. Outside
of the lab, information updating might often rather consist
of evaluating some data/sampling some information, based on
which individuals form their initial beliefs, and then afterward
evaluating some more data, maybe more locally relevant or
more recent, and then revising their beliefs in light on the new
data. Of course, in their statistical structure, such situations are
different from Bayesian inference tasks, but because individuals
have much more experience with other information updating
tasks, they might try to rely on this experience to make sense of
the Bayesian inference tasks. And, outside of the environment of
Bayesian inference tasks, information updating strategies that are
contingent on task specific factors such as the trustworthiness of
the initial data or the new data (Welsh and Navarro, 2012) or the
judgment of the validity of the sample (Fiedler, 2000) might be
ecologically rational.

Overall, we can conclude from these exploratory analyses that
not only the quantitative variables (the numbers given in the
task) but also our qualitative variables (norm deviation, stakes
and main focus) could explain some variance in participants’
responses and in particular in the strategies they use. However,
even though most of the effects of our six predictor variables
on the four strategies that we inspected reached statistical
significance, we hasten to add that such a result is not too hard
to achieve with 1,773 responses and that most of the differences
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between the percentage points of strategy use, contingent on
the levels of our dichotomous predictor variables, was in the
order of five percentage points. Given that most percentages
were close to the lower end of the scale, such differences are,
relatively speaking, quite large, but with respect to the whole
scale of 100%, a difference of 5% points is still a small difference.
Moreover, it is important to consider that this analysis is based
on a post hoc analysis of only 19 tasks, and that these tasks were
not designed to allow for systematic tests of the quantitative
and qualitative dimensions. For instance, as norm deviation is
highly correlated with the base rate and the Bayesian solution
(and not orthogonally manipulated), it is not possible to causally
attribute the observed effect to either the qualitative dimension
(i.e., the norm deviation narrative) or the underlying quantitative
dimensions (i.e., the numbers).

One avenue for future research could hence be to use
constructed scenarios and manipulate some of the variables
used in the present analysis systematically, that is, orthogonally.
A prime example for this approach is Krynski and Tenenbaum’s
(2007) study that we mentioned in Section “Introduction”:
these authors manipulated one aspect of the task while
keeping everything else constant. This would naturally allow for
conclusions that have a much higher internal validity, compared
to the observations we can share and the tentative conclusions
we can formulate based on our exploratory analyses, which were
based on a comparison between tasks that differed on many
aspects simultaneously.

Another avenue would be to go in the opposite direction:
not to use systematic designs, but what Brunswik called a
representative design (see Dhami et al., 2004). Even though we
referred to the present analyses as a first step toward an ecological
analysis of Bayesian inferences, we must acknowledge that it does
not fully deserve this label. For many of the 19 tasks, the base
rates and the statistical properties of the diagnostic test have
been made up rather than measured in a real-world context.
It would hence be interesting to conduct such an analysis and
to study the dimensions that may affect strategy use in larger

pool of Bayesian inference tasks from real-world applications
and with natural inter-correlations between the variables of
interest.

For many study participants, Bayesian inference tasks are
hard, and most responses are not Bayesian. Moreover, the
qualitative task characteristics that we scrutinized in our analyses
should not play a role from a normative point of view, however,
they did influence participants’ responses and they also had an
impact on which cognitive strategy they used. How can one
account for non-normative responses and for the finding that
task characteristics that should be irrelevant from a normative
point of view did play a role? A promising approach to answer
this question may involve making an attempt to put oneself
into participants’ shoes and to ask how they approach the task.
Which mental models (Gentner and Stevens, 1983; Johnson-
Laird, 1983) do they construct? What is their problem space
(Simon and Newell, 1971; Newell and Simon, 1972)? What kinds
of belief updating tasks do they encounter in their environments
and how could their experience with these tasks possibly inform
solutions to this special class of belief updating tasks that come
in the form of textbook problem? As researchers who study how
participants change their beliefs in light of new data, we may
eventually find out that we may need to change our perspective,
research questions, and research paradigms in light of new
experimental findings. Adopting the perspective of individuals
who have to solve Bayesian tasks, and aiming at understanding
what constitutes the environment of comparable tasks from their
perspective seems to be a fruitful avenue for future research.
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