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Models of confirmatory factor analysis (CFA) are frequently applied to examine the
convergent validity of scores obtained from multiple raters or methods in so-called
multitrait-multimethod (MTMM) investigations. Many applications of CFA-MTMM and
similarly structured models result in solutions in which at least one method (or specific)
factor shows non-significant loading or variance estimates. Eid et al. (2008) distinguished
between MTMM measurement designs with interchangeable (randomly selected) vs.
structurally different (fixed) methods and showed that each type of measurement design
implies specific CFA-MTMM measurement models. In the current study, we hypothesized
that some of the problems that are commonly seen in applications of CFA-MTMM models
may be due to a mismatch between the underlying measurement design and fitted
models. Using simulations, we found that models with M method factors (where M is
the total number of methods) and unconstrained loadings led to a higher proportion of
solutions in which at least one method factor became empirically unstable when these
models were fit to data generated from structurally different methods. The simulations
also revealed that commonly used model goodness-of-fit criteria frequently failed to
identify incorrectly specified CFA-MTMM models. We discuss implications of these
findings for other complex CFA models in which similar issues occur, including nested
(bifactor) and latent state-trait models.

Keywords: multitrait-multimethod (MTMM) analysis, confirmatory factor models, method factors, estimation

problems, negative variances, interchangeable versus structurally different methods, bifactor models, latent
state-trait models

Introduction

Multitrait-multimethod (MTMM) analysis (Campbell and Fiske, 1959) is a popular approach for
examining the convergent and discriminant validity of psychological measurements based on
measurement designs in which multiple constructs or traits are assessed by multiple methods
(Widaman, 1985; Millsap, 1995; Dumenci, 2000). The analysis of MTMM data has historically
focused on the interpretation of the so-called MTMM matrix, which contains the correlations
between observed variables in an MTMM design. The MTMM matrix approach was developed
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by Campbell and Fiske (1959) who also proposed heuristics for
the interpretation of MTMM correlations in terms of convergent
and discriminant validity. Over the years, confirmatory factor
analysis (CFA) has become a popular tool for analyzing data
obtained from MTMM designs, given the greater flexibility of
the CFA framework compared to the original MTMM matrix
approach (for detailed discussions of the advantages of the CFA
approach to MTMM analyses, see Eid et al., 2003, 2006 as well as
Marsh and Hocevar, 1988).

Despite the fact that CFA has proven to be a valuable tool
for analyzing MTMM data and is widely used for this purpose,
empirical applications of CFA-MTMM models are not always
free of problems. In fact, CFA-MTMM applications are often
plagued by convergence problems and improper solutions (e.g.,
zero or negative latent variance estimates; e.g., Marsh, 1989;
Marsh and Bailey, 1991; Kenny and Kashy, 1992; Lance et al.,
2002). In the present study, we focused on a specific problem that
is frequently encountered in CFA-MTMM studies: The problem
of one or more method factors collapsing (i.e., showing non-
significant loadings and/or variance estimates). We hypothesized
that this problem may be related to a mismatch between the
measurement design (i.e., the types of methods used in the
study) and the CFA measurement model chosen to analyze
the data. Building on Eid et al.’s (2008) theoretical distinction
between interchangeable and structurally different methods, we
used simulations to examine consequences of applying models
that are designed for interchangeable methods to data generated
by structurally different methods and vice versa.

Our paper is organized as follows. We first provide a review
of Eid et al’s (2008) theoretical framework for distinguishing
measurement designs with interchangeable vs. structurally
different methods and corresponding CFA-MTMM models. We
then show that a number of empirical studies that used CFA-
MTMM or similarly structured models found at least one method
factor to be unstable and explain why this problem may be related
to a mismatch between measurement design and CFA-MTMM
models. Subsequently, we present the results of a simulation
study in which we investigated the potential consequences of
such a mismatch for the estimation of method factors. In our
Discussion section, we highlight implications for MTMM and
other complex CFA models, such as latent state-trait (LST)
models (Steyer et al., 1992) and nested (bi)factor models (e.g.,
Reise, 2012).

Theoretical Framework: Interchangeable vs.
Structurally Different Methods

Eid et al. (2008) distinguished between MTMM measurement
designs with interchangeable methods and MTMM measurement
designs with structurally different methods (as well as the
combination of both types of methods)!. Eid et al. (2008) showed
that from a measurement theoretical perspective, this distinction
has implications for which CFA-MTMM measurement model is
most suitable in a given application. Interchangeable (or random)
methods are methods that are randomly selected from a universe

In the present article, we only consider designs with either interchangeable or
structurally different methods, but not the combination of both. Nonetheless, the
issues discussed in this paper have direct implications for mixed designs as well.

of equivalent methods (e.g., randomly selected students rating
university professors’ teaching abilities).

In contrast, structurally different methods are fixed and non-
interchangeable. As an example, consider self, parent, and sibling
reports chosen as methods to rate individuals’ depression levels.
For each target individual, his or her parents and siblings (as well
as the self-report) are fixed and cannot be replaced by another
draw from a universe of parent or sibling reports. Moreover, self,
parent, and sibling reports each provide potentially unique, non-
overlapping information about the targets such that, for example,
a parent report could not be replaced by the corresponding
sibling report without a potential loss of information.

Eid et al. (2008) as well as Koch et al. (2014) showed
that from a measurement theoretical perspective, each type of
method (interchangeable vs. structurally different) implies a
distinct type of random sampling experiment. In the case of
interchangeable methods, we deal with a two-stage sampling
procedure. In the first step, we select an (ideally) random sample
of targets (e.g., a random sample of teachers for whom we want
to measure teaching quality). In the second step, we (ideally)
randomly select methods (e.g., test items or student raters)
from the universe of available methods for the given targets. In
contrast, with structurally different methods, only the targets are
(ideally) sampled at random, whereas the methods are fixed given
the targets. For example, once we identify a given sample of
professors, their self- and department head reports of teaching
quality are fixed (whereas we could draw a random sample of
students or peers to rate the professors, which could then we
seen as interchangeable methods). The two-stage sampling design
that is employed with interchangeable methods implies a nested
or multilevel structure, whereas an MTMM design with only
structurally different (fixed) methods does not.

According to Eid et al. (2008) the different types of sampling
procedures have logical implications for which type of CFA-
MTMM model should be used to analyze the data. In other
words, interchangeable methods call for a different type of model
than structurally different methods. This parallels the use of
different models for random vs. fixed factors in analysis of
variance.

CFA-MTMM Model for Interchangeable Methods
Eid et al. (2008) showed that given the two-stage sampling
procedure, measurement designs with interchangeable methods
imply a data structure with methods nested within targets.
Nussbeck et al. (2009) presented a single-level CFA-MTMM
model for interchangeable methods, which we used in the present
study. This model is similar in structure compared to LST (Steyer
et al., 1992) and bifactor (e.g., Reise, 2012) models, but with
specific parameter equality constraints as described below.
Nussbeck et al’s (2009) CFA-MTMM model for
interchangeable methods is illustrated in Figure 1A for three
traits (f = 1, 2, 3) measured by three methods (m = 1, 2, 3)
using three indicators (observed variables Y, where i =1, 2, 3
indicates a specific item or scale) per trait-method combination
(TMC) (Note that throughout this paper, we assume that
multiple indicators i are available for each TMC, given the
advantages of multiple-indicator models noted by Marsh and
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FIGURE 1 | CFA-MTMM models for a design with i=1, 2, 3
indicators, t=1, 2, 3 traits, and m =1, 2, 3 methods. (A)
CT-UMcgonstraineds (B) CT-C (M —1). Yy, observed variables; T, Tym,

ory,
\ OT,,Ty
Oy,

O My3,Mi3

O My3,Msy

trait factors; My, trait-specific method factors; €y, measurement error
variables; Aj, Ajm, trait factor loadings; v, vim, method factor
loadings.
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Hocevar, 1988). It can be seen that the model contains a trait
factor T; for each trait and a (trait-specific) method factor My,
for each interchangeable method. Trait and method factors are
uncorrelated by definition. Furthermore, method factors have
means of zero by definition and are assumed to be uncorrelated
with each other, given the assumption of randomly selected
methods. Given these properties and in order to be consistent
with the general literature on CFA-MTMM models, we refer
to this model as the correlated traits-uncorrelated methods
constrained (CT-UM_ynstrained) model.

A special feature of the CT-UMcypstrained model is the
implicit assumption of invariant measurement parameters across
interchangeable methods. For this reason, we denote this model
using the subscript CONSTRAINED. This assumption parallels the
assumption of measurement equivalence (or invariance) often
made in multigroup and longitudinal analyses and means that
the intercepts as well as the trait and method factor loadings are
assumed to be constant across methods for the same indicator
within a given trait f. These formal parameter invariance
constraints reflect the expectation that truly interchangeable
methods should not differ in their relation to the trait factor
(Geiser et al., 2014a). The assumption of invariant loadings and
intercepts is illustrated in Figure 1A in terms of the intercept
and loading parameters carrying indices only for the measured
variable (i) and the trait (¢), but not for the method (m).

In more restricted versions of the model, in addition to
the intercepts and factor loadings, also the measurement error
and method factor variances may be assumed to be invariant
across interchangeable methods. Measurement invariance (MI)
assumptions may be violated (and falsified through model
goodness-of-fit tests) in empirical applications if methods were
not truly selected at random from a pool of interchangeable
methods. Testing for MI thus represents an empirical check
of whether the methods used in a study can be viewed as
interchangeable or whether they should rather be treated as
structurally different (Geiser et al., 2014a)2,

CFA-MTMM Model for Structurally Different Methods
For structurally different methods, Eid et al. (2008)
recommended the use of a modeling approach that contrasts
M — 1 so-called non-reference methods against a reference
method (where M denotes the total number of structurally
different methods used in the study). This approach was
originally presented by Eid (2000) and specifies M — 1 correlated
residual method factors, that is, a method factor for each
non-reference method. No method factor is specified for the
reference method. The reference method is typically selected
based on a researcher’s theory about which method may be most
valid for assessing the construct (e.g., a psychometric intelligence
test would likely be seen as a gold standard measure and as more
valid for measuring intelligence than a self-rating of a person’s

2Note that MI is a necessary but not sufficient condition for the interchangeability
of methods. That is, even if MI can be established, methods may still be
more adequately classified as structurally different. A sufficient condition for
interchangeability is that methods are drawn at random from the same set of
methods. In contrast to MI, however, this latter condition is theoretical rather than
empirically testable.

IQ score), which method may have the most immediate access
to the constructs of interest (e.g., self-reports of certain types
of emotions may be more relevant than other reports, because
emotions may be covert and not easily accessible by external
observers), or which method is most outstanding or special
(e.g., cortisol measurements of stress vs. self- and other ratings).
In cases in which there is little or no theory about the most
valid method, researchers typically choose a method to serve as
reference that is most unique relative to the remaining methods
(e.g., behavioral observations by experts vs. self-, parent, or
teacher-reports of behavior).

In Figure 1B, Eid et al’s (2008) correlated traits-correlated
(methods minus one) or CT-C (M — 1) model is illustrated for a
design with three traits and three structurally different methods.
In this example, without loss of generality, Method 1 (m =
1) serves as reference method. This can be seen from the fact
that there is no method factor for this method. Therefore, the
trait factors Ty are specific to the reference method. We make
this clear by using two indices for the traits in Figure 1B (one
for the trait and one for the reference method [m = 1]).
The indicators of the remaining (non-reference) methods load
onto the reference trait factor and onto (trait-specific) residual
method factors My,. Being defined as residuals with respect
to the traits, the method factors have means of zero and are
uncorrelated with the trait factor pertaining to the same trait [i.e.,
cov (Ty1, Myn) = 0]

Eid et al. (2008) recommended the use of the CT-C (M — 1)
approach for structurally different methods, because this
approach is in line with the sampling procedure implied
by structurally different methods. With structurally different
methods, each type of structurally different method represents
a unique perspective or “fixed effect.” The underlying sampling
procedure implies that structurally different methods are “at the
same level” with the targets and not nested within the targets
(as is the case with interchangeable methods). A meaningful way
to compare structurally different methods is thus to contrast
them against a reference method, as is done in the CT-C (M — 1)
approach (Geiser et al., 2008, 2014b). This parallels what is
commonly done in regression analysis with fixed categorical
predictors, where researchers may use K — 1 dummy code
variables to represent the K levels of a fixed factor.

Empirical Practice and Problems in CFA-MTMM
Analyses

Our key consideration in the present article is that in practical
applications, researchers frequently use different CFA-MTMM
models without explicitly considering the type of measurement
design (interchangeable vs. structurally different methods).
Researchers in the past have applied models that resemble
Nussbeck et al’s (2009) model for interchangeable methods
to data that were either clearly or very likely generated by
structurally different (rather than interchangeable) methods. In
particular, many applications have used a CT-UM model with
unconstrained factor loadings, which we refer to as correlated
traits-uncorrelated methods [CT-UMpconstrained] approach (e.g.,
Marsh and Grayson, 1995). The CT-UMynconstrained model (see
Figure 2A) closely resembles the model in Figure 1A (correlated
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FIGURE 2 | CFA-MTMM models for a design with i = 1, 2, 3 indicators, t = 1, 2, 3 traits, and m = 1, 2, 3 methods. (A) CT-UM_nconstrained- (B) CT-CM. Y,
observed variables; Ty, trait factors; My, trait-specific method factors; e;,,, measurement error variables; A, trait factor loadings; yj,, method factor loadings.
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trait factors and M uncorrelated method factors), but with factor
loadings not set equal for the same indicators across methods.
We use the subscript UNCONSTRAINED to distinguish this model
from Nussbeck et al.’s (2009) CT-UM_opstrained Mmodel.

Furthermore, it is common to use CFA-MTMM models with
M correlated method factors for structurally different methods,
and this practice has recently been advocated by methodological
researchers (Lance et al., 2002). This approach is known as
the correlated traits-correlated methods (CT-CM) approach and
is illustrated in Figure 2B. In the present study, we tested
the hypothesis that some of the commonly seen problems
with the CT-UMyconstrained and CT-CM models occur more
frequently when these models are applied to data generated
from structurally different methods. We suspected that this
problem may in part be obscured by the fact that factor
loadings are typically not constrained in empirical applications
of the CT-UMynconstrained and CT-CM models, leading to
seemingly well-fitting models. That is, we hypothesized that
the CT-UMuynconstrained @nd CT-CM models with unconstrained
loadings as highly parameterized models would fit a wide variety
of data (i.e., from both interchangeable and structurally different
methods) well, yet produce a higher rate of abnormal results.

It is well-known that many applications of the
CT-UMynconstrained and especially CT-CM model in the
past have led to estimation problems such as non-convergence
or improper parameter estimates. This problem has occurred
both in empirical and simulated data with correctly specified
models (Marsh, 1989; Castro-Schilo et al., 2013). A particularly
interesting phenomenon is the fact that a substantial portion
of empirical applications of models similar in structure to the
CT-UMynconstrained and CT-CM models with either MTMM
and other similarly structured data have resulted in one
or more method factors showing non-significant variance
estimates or non-significant loadings for the majority or
even all indicators of these factor(s). We refer to this issue as
the “method factor collapse” problem, as it implies that the
existence of the method factor(s) in question is not empirically
supported.

For example, Maydeu-Olivares and Coffman (2006) applied
the CT-UMynconstrained Mmodel (termed bifactor model by these
authors) to positively worded items (Method 1) and negatively
worded items (Method 2) of a scale for measuring the trait
optimism. Maydeu-Olivares and Coffman (2006) found that three
out of four loadings on the method factor for the negatively
worded items were not significantly different from zero. Chen
et al. (2006) fit a bifactor model to different domains of quality
of life and found that four out of five loadings on their specific
(“method”) factor representing the mental health facet of quality
of life were not statistically significant. In addition, Chen et al.
(2006) reported that the specific factor in question had a negative
and non-significant latent variance estimate and that three out
of five factor loadings on this factor were negative, which was
contrary to the a priori hypotheses made by these authors. This
findingled Chen et al. (2006) to drop the specific factor for mental
health from their model, resulting in a model respecification with
M — 1 (rather than the originally assumed M) specific factors.
Similarly, Chen et al. (2012) found non-significant variances

of the specific factor “Warmth” in two applications of the
bifactor model to the measurement of extraversion, subsequently
dropping this factor from the model. Another example of a
weak specific factor in an empirical application can be found
in Holzinger and Swineford’s (1937) classical article on the
bifactor model. Schermelleh-Engel et al. (2004) noted that the
finding of one of M method (or specific) factors collapsing
is also common in applications of LST models (Steyer et al.,
1992), which are similar in structure to CT-UM and bifactor
models.

The issue of a method or specific factor collapsing can cause
problems in empirical applications, because the meaning and
interpretation of the trait factor changes in this event. The trait
factor no longer represents a general trait, but becomes specific to
the method(s) or facets for which the method or specific factor(s)
collapsed. For example, in Chen et al’s (2006) quality of life
application, the general trait factor after dropping the specific
factor for “mental health” becomes the common true score of the
mental health indicators. It is thus no longer a general quality of
life factor, but instead becomes a specific “mental health” factor.
Hence, the interpretation of the trait factor would be similar to
the interpretation in the CT-C (M — 1) approach, in which this
factor represents the common true score variable of the indicators
pertaining to the reference method. The difference, however, is
that in the method factor collapse case, the “reference method”
is not chosen a priori by the researcher based on theory, but is
data-driven. The post-hoc interpretation of the trait factor is not
the same as the a priori hypothesized or intended interpretation.
Among other issues, this may lead to the question of whether
this empirical result is arbitrary or whether it generalizes across
studies. Although not all applications of CT-UMpconstrained> LST>
or bifactor models show the problem of one or more specific
(method) factors collapsing empirically, in our view, this issue
is nonetheless remarkable and worthy of further study, given
that this problem seems to occur in a significant portion of
applications of models with a CT-UMpconstrained-type structure
and leads to complications in the interpretation of the latent
factors in the models.

In summary, in the present study, we hypothesized that
the problem of one method factor collapsing (or becoming
empirically unstable) in applications of models with M (rather
than M — 1) method factors may be related to the fact
that researchers typically analyze structurally different (fixed)
methods (e.g., different raters or structurally different, non-
interchangeable facets of a construct such as quality of life or
intelligence). Based on Eid et al.’s (2008) measurement theory of
interchangeable vs. structurally different methods, we expected
that the use of M (correlated or uncorrelated) method factors
with unconstrained factor loadings for structurally different
methods would result in generally well-fitting models, but with
a higher rate of empirically unstable method factors. This
hypothesis was based on the fact that according to Eid et al.’s
(2008) framework, models with M (rather than M — 1) method
factors and free loadings overfit data generated by structurally
different methods. We tested our hypotheses in a simulation
study of a simplified (single-trait) MTMM design as described
below.
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Methods

In our simulation, we examined designs with just a single trait,
but three methods and three indicators per TMC. We focused
on this simplified design because (1) it is sufficient to examine
the hypothesized method factor instability issue and (2) models
with a single trait factor and three or more specific method factors
are frequently used in empirical studies [e.g., bifactor models in
intelligence research (Schmiedek and Li, 2004) and LST models
for longitudinal data analysis (Steyer et al.,, 1992)]. Since these
models use only a single trait, there were no correlated traits.
Therefore, for simplicity, we subsequently dropped the trait index
t as well as CT from each model name.

Based on FEid et al’s (2008) MTMM measurement
theory, we generated data using (1) the UM_ongtrained model
(interchangeable methods case) and (2) the C(M — 1) model

(structurally different methods case). The two population
models are shown in Figures 3A,B. Four models were fit to
each set of population data: (1) UMconstrained> (2) C(M — 1),
(3) UMynconstrained> and (4) CM. The four fitted models are
shown in Figures 3A-D. The simulation thus included both
conditions of correctly specified models [UMonstrained data fit
with @ UM onstrained model; C (M — 1) data fit with a C(M — 1)
model] and incorrectly specified models [UMonstrained data fit
with UM constraineds C (M — 1), and CM models; C(M — 1)
data fit with UM_onstraineds UMunconstrained> and CM models].

We included sample size and population parameter
conditions that are likely to be found in empirical applications.
We simulated two sample sizes (250, 1000), nine levels of
consistency (true score variance in an indicator that is explained
by the trait factor; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), and
three levels for indicator reliability (0.6, 0.7, 0.8). In addition,

o3,=1.0

2 _
oy, =1.0

3,=1.0

2 _
oy, =1.0

FIGURE 3 | Single-trait multi-method models used in the simulation.
(A) UMconstrained Mmodel for interchangeable methods. (B) C (M — 1) model
for structurally different methods. (C) UM nconstrained Model, and (D) CM

2
051 1

O M, M;

model. i = 1, 2, 3indicators, and m = 1, 2, 3 methods. T, T, trait factors;
Mm, method factors; €,,, measurement error variables; 1, trait factor
loadings; yjm,, method factor loadings.
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the latent correlation between the two method factors in the
population C (M — 1) model was varied using three different
levels (0.2, 0.5, 0.8; for the UM nstrained model all method factor
correlations are 0 by definition). The size of this simulation was
thus (2x9x3) X 1 +
— ~—
corr(My,M3)

(2 x9x3)
———

Pop. Model: UM onstrained Pop. Model: C(M—1)

X 3 x 4 = 864 cells.
—

——
corr(Mp,M3)

Fit Model

Population Parameters and Sampling

There were two main steps involved in developing the simulation
inputs: (a) specifying model parameters and sampling from
the population, and (b) specifying the models. Population
parameters were defined using the parameter levels shown in
Table 1. Note that a small amount of variability was allowed in
the indicator reliabilities to obtain a more realistic scenario’.
The implied mathematical relations among model parameters,
indicator reliability, consistency, and total observed variance
given in Table 1 were then used to determine the true values
for remaining population parameters. No mean structure was
included in any of the models. After the population parameters
were chosen, the Monte Carlo facility of the Mplus software
(Muthén and Muthén, 1998-2012) was used to randomly draw
1000 samples from each cell of the design assuming complete
multivariate normal data. Each set of sample data was saved to
a separate file.

Model Specification
Again using Mplus, all four models were fit separately to each
of the data files using maximum likelihood estimation. For

3To generate some variability in the reliabilities, we used a symmetric unimodal
distribution centered at 0 and extending to £0.025. Specifically, the distribution
we used is given by (B3 3 — 0.5) 0.05, where f 3 is the beta distribution of the first
kind with both shape parameters equal to 3.

identification, latent trait and latent method factor variances were
fixed to 1.0 in all models [i.e., var (T) = var(M,,) = 1 for
all m] in accordance with the specification of the population
models; all other parameters were freely estimated, except that the
appropriate equality constraints were imposed on the loadings
in the UM onstrained model and that method factor correlations
were only estimated in the C (M — 1) and CM models. In each
analysis, we allowed a maximum of 1000 iterations. Models were
classified as “non-converged” if convergence was not reached
after 1000 iterations. The total number of models analyzed in this
simulation was 864,000.

Criteria for Evaluating the Performance of the
Models

Four simulation outcomes were examined: (1) non-convergence,
(2) improper solutions, (3) goodness of fit, (4) non-significant
method factor loadings and factor collapse. These outcomes
are discussed in detail below. Regression analysis was used to
determine simulation conditions (independent variables) over
which results could be aggregated, while ensuring that the main
results were still accurately represented.

Non-convergence

We recorded the number of replications for which the estimation
process did not converge after 1000 iterations. The percent
convergence was then computed, which is given by

replications converged after

1000 iterations
x 100.

%convergence = —
replications requested

Improper Solutions

We distinguished between two types of improper solutions. The
first type refers to the number of replications with a non-positive
definite (npd) residual covariance matrix, ® (theta). The second
type refers to the number of replications with a npd latent variable
covariance matrix, W (psi). Percentages based on each of these
errors are given by

TABLE 1 | Simulation parameters.

Parameter (abbreviation) Levels

Description

Population model {UMgonstrained: C M — 1)}

Sample size (N) {250, 1000}

Consistency (con) {.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

Non-reference
method correlation {0,0.2,0.5,0.8}

Reliability {0.6,0.7,0.8} + ~ (83,3 — 0.5) 0.05

~{0.6,0.7,0.8}

Trait variance {1.0}
Method variance {1.0}
Indicator variance {1.0}

UMconstrained: Model for interchangeable raters;
C (M —1): Model for structurally different raters.

& conjy, = )L/%n var (Tt)kﬁn var (T) + )//.,277 var (Mm)

corr (M, M3); 0 for UMconstrained, Non-zero for C (M — 1).
YLt Xt [rel (Vim) ]/

rel (Yjm) = )L/.%n var (T¢) + V/‘rz'n var (Mm)var (Yjm)

var (T¢)

var (Mm) for allm

var (Yjy) foralli,m

Index i = 1...n indicates the manifest variable or indicator. Index m = 1 ...l indicates the method. B 3 refers to the beta distribution with shape parameters 3,3. @Consistency for the
first indlicator in the C (M — 1) model is defined as being equal to the reliability for that indicator, which implies no method variance for the reference (“gold standard”) method.
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number of ® errors after 1000 iterations

%0 = x 100,

number of replications requested

number of W errors after 1000 iterations
%Y = il x 100.
number of replications requested

Model Fit

Several fit statistics were examined to determine whether
incorrectly specified models could be reliably identified based
on commonly used model goodness-of-fit criteria. Following Hu
and Bentler (1999) as well as Schermelleh-Engel et al. (2003), the
criteria used for appropriate fit were: a non-significant x? test
statistic (i.e., a x?2 p-value > 0.05), root mean square error of
approximation (RMSEA) < 0.05, comparative fit index (CFI) >
0.95, and standardized root mean square residual (SRMR) <
0.05.

Non-Significant Factor Loadings and Factor Collapse
Non-significant method factor loadings were defined as factor
loadings for which the 95% confidence interval for a given factor
loading contained 0. We defined factor collapse as a condition in
which all factor loadings (three for this simulation) for a given
method factor were jointly non-significant. Our rationale for this
was that in the case in which a method factor does not show
a single significant loading, that factor’s interpretation would
be jeopardized. As discussed previously, the condition of one
method factor collapsing empirically in this manner is frequently
encountered in practical applications.

Results

Non-convergence

The total number of non-converged replications was 90,325
which represented 10.45% of the 864,000 total replications
requested. The convergence rates for correctly specified models
were quite high, over 99% for both the UMgonstrained and
C (M — 1) models. Convergence rates for incorrectly specified
models were also high (above 90%), except for the CM model,
which showed convergence rates of about 65%. Table 2 shows the
rates of non-convergence and improper solutions for each fitted
model.

Improper Solutions

The total number of improper solutions due to npd © matrices
was 76,539, which is approximately 9%. The overall number
of solutions with npd W matrices was much lower (20,491 or
2%). The rate of both ® and W warnings for correctly specified
models was less than 0.5%. Among the misspecified models, the
CM model showed the most ® and ¥ warning messages (rates
between 7.44 and 22.56%). Improper solutions for the other
misspecification conditions were less common (below 3%).

Model Fit

Figure 4 shows the percentage of models that would have been
rejected according to commonly used model fit criteria. The
following observations can be made from Figure 4: (1) Model
fit based on x2, RMSEA, and SRMR was generally indicated to
be good for all correctly specified models (as it should be); (2)

based on the common criterion of 0.95, the CFI would have
often mistakenly “rejected” the correctly specified UM qnstrained
model (43% of the time for a sample size of 250); (3) when
the UMynconstrained 0f CM models were fitted to any set of
population data these models showed acceptable model fit
according to all indices, despite being misspecified; (4) when
using conventional criteria, fit indices typically did not indicate
when a C (M — 1) model was incorrectly fit to data generated
from a UM_onsirained Mmodel; (5) when the UM onsirained model
was fitted to data generated from a C (M — 1) model, the x?2
test and CFI were often indicating this misspecification (this
was the only condition in which incorrectly specified models
could have relatively frequently been correctly rejected based on
model fit criteria); in this condition, the x2 test was the most
reliable indicator of model misfit; the CFI criterion revealed this
misspecification relatively frequently in the smaller sample size
condition (N = 250); the RMSEA criterion resulted in a high rate
of correct rejections only for the high method factor correlation
condition (r = 0.8). Overall, fit indices correctly identified that
the UMconstrained model was incorrectly fit to C(M — 1) data
most often when the population method factor correlation was
high (0.8) in the data-generating C (M — 1) model.

Non-significant Factor Loadings and Factor
Collapse

Figure 5 shows the number of non-significant factor loadings for
both trait and method factors. These factor loadings are shown
in sets on the x-axes, with each set containing three loadings
which correspond to the same method. Sets 1-3 show the trait
factor loadings (1), whereas Sets 4-6 show the method factor
loadings (y): Set 1 contains Ajj-31, Set 2 contains Ajz-32, Set 3
contains A13-33, Set 4 contains y11-31, Set 5 contains y13-32, and
Set 6 contains y;3-33. For each set of loadings, the number of
loadings (0, 1, 2, or 3) for a specific simulation condition that were
not statistically significant at the 0.05 level is reported. Note that
for some model conditions, the total number of reported cases
is lower than for others. This is due to non-converged models
in some of the cells of the simulation design. Also note that the
method factor loadings pertaining to Set 4 are always (trivially)
non-significant in each fitted C (M — 1) model, because these
loadings are all set to zero by definition in this model (the first
method was selected as reference method in this model; there is
no method factor for the reference method). The results shown
represent averages across all levels of reliability and sample size
for that condition.

Figure 5 shows that for the correctly specified UMqpstrained
and C(M — 1) models, all trait and method factor loadings
were consistently statistically significant except under the most
extreme conditions of either very low or very high consistency
in the population model. In these extreme cases, population trait
factor loadings (in the case of very low consistency) or population
method factor loadings (in the case of very high consistency) were
rather small in the population models, lowering the statistical
power to detect such loadings as being significantly different
from zero in a Monte Carlo sample). In the correctly specified
UMconstrained €ase, non-significant loadings occurred only for
trait loadings and only in the lowest consistency condition (0.1),
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TABLE 2 | Results for convergence and improper solutions.

Criteria Population model Fitted model Problematic replications Total replications Percent problematic
NON-CONVERGENCE
Properly specified
UMconstrained UMgonstrained 3 54,000 0.01
CM-1) CM-1) 1,259 162,000 0.78
Misspecified
UMconstrained Cm-1) 51 54,000 0.09
UMconstrained UMunconstrained 1,945 54,000 3.60
UMconstrained cM 19,302 54,000 35.74
CMm-1) UMconstrained 433 162,000 0.27
CM-1) UM nconstrained 12,217 162,000 7.54
CM-1) CM 55,115 162,000 34.02
Total 90,325 864,000 10.45
IMPROPER SOLUTIONS
© errors
Properly specified
UMconstrained UMeconstrained 5 54,000 0.01
CM—-1) CM-1) 709 162,000 0.43
Misspecified
UMconstrained CM-1) 48 54,000 0.09
UMconstrained UMynconstrained 1,606 54,000 2.97
UMconstrained c™M 12,182 54,000 22.56
CM-1) UM¢onstrained 293 162,000 0.18
CM-1) UMunconstrained 12,053 162,000 7.44
CmMm-1) CM 49,643 162,000 30.6
Total 76,539 864,000 8.86
¥ errors
Properly specified
UMconstrained UMconstrained 0 54,000 0.00
CM-1) CM-1) 554 162,000 0.34
Misspecified
UMconstrained CM-1) 2 54,000 0.00
UMconstrained UMynconstrained 0 54,000 0.00
UMconstrained CM 5,717 54,000 10.59
CM-1 UMconstrained 0 162,000 0.00
CM-1 UMunconstrained 0 162,000 0.00
cCM-1) CM 14,218 162,000 8.78
Total 20,491 864,000 2.32

® errors = number of replications with an improper residual covariance matrix. W errors = number of replications with an improper latent variable covariance matrix. Problematic
replications = number of replications for which non-convergence, ® errors, or ¥ errors occurred. Total replications = total number of replications for the given model condition.

in which only 10% of the true score variance were accounted for
by the trait and trait factor loadings were accordingly small. All
method factor loadings were significant in all conditions in the
correctly specified UM onstrained Case.

In the correctly specified C(M — 1) case, the number
of non-significant trait loadings was trivially small. As in
the correctly specified UMonstrained Case, non-significant trait
loadings occurred only in the lowest consistency conditions.
The correctly specified C (M — 1) models had more instances
of non-significant method factor loadings, but only in the

highest consistency condition (0.9), in which 90% of the
true score variance was accounted for by the reference trait
factor and the population method factor loadings for the non-
reference methods were accordingly small. Note that the highest
consistency condition was also the only one that produced some
convergence problems in the correctly specified C (M — 1) cases
in the present simulation.

When the C (M — 1) model was incorrectly fit to UM constrained
population data, all trait and method factor loadings were
significant, except in conditions of low consistency; the statistical
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FIGURE 4 | Percentage of models that were rejected according to different fit criteria.

significance of all method factor loadings was unaffected even
in conditions of very high consistency. When the UM _ngtrained
model was incorrectly fit to C (M — 1) population data, all trait
and method factor loadings were significant, except in the highest
consistency condition; only in this condition were method factor
loadings more frequently found to be non-significant.

The UMunconstrained model fit to UM onstrained population data
produced mostly significant trait and method factor loadings,
except in cases of very low consistency (in which case there
was a high rate of non-significant trait factor loadings) and very
high consistency (in which case there were several instances of
non-significant method factor loadings). When the CM model
was fit to UMcgonstrained population data, a high rate of non-
significant trait and/or method factor loadings resulted. Non-
significant method factor loadings were seen across all levels
of consistency, although with a more frequent occurrence for
the higher consistency conditions. Non-significant trait factor
loadings were mostly observed in conditions of low consistency.

Of particular interest to us were the cases in which either
the UMynconstrained 0f CM models were fit to data generated
based on the C (M — 1) model. For the UMynconstrained model
fit to C(M — 1) population data, we found that trait loadings
were consistently significant, whereas one or more full sets of
method factor loadings were frequently non-significant in the
high method factor correlation (0.8) conditions. In the moderate
method factor correlation (0.5) condition, this issue occurred
only in cases of high consistency. In the low method factor

correlation (0.2) condition, the issue was also positively related
to trait consistency: the higher the consistency, the more non-
significant method factor loadings. At low levels of method factor
correlation in the population C (M — 1) model, the first method
factor set collapsed most often. At medium levels of method
factor correlation, the rate of collapse was roughly equal for all
method factor sets. At high levels of correlation, the second or
third method factor set collapsed most often, whereas the first set
of method factor loadings was more stable.

With regard to the CM model, Figure5 reveals that the
CM model’s convergence problems were similarly high across
all C(M — 1) population conditions. Fitting the CM model to
C(M — 1) data frequently resulted in non-significant method
factor loadings. This was particularly the case for C(M — 1)
population data with a high method factor correlation (0.8). Non-
significant trait loadings were less frequently found in the CM
model, but did occur when consistency values in the population
models were low.

Discussion

Data structures analyzed by psychologists and other social
scientists are often multifaceted. Multifaceted data structures
result, for example, when researchers collect multimethod data
(a single or multiple traits measured by multiple methods
or reporters), longitudinal data (a single or multiple traits
measured at multiple time points), or hierarchically structured
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loadings in Set 4 are zero by definition in the fitted C(M —1)
models, due to the first method being selected as reference
method in this model.

cross-sectional data (e.g., one general ability factor plus multiple
specific factors of intelligence). When analyzing faceted data
structures, researchers often assume that some or all observed
variables are influenced by at least two latent variables. As a
consequence, complex CFA models with general (“trait”) and
specific (“method,” “specific,” or “group”) factors are popular
and widely used to analyze such data structures. Models in
which observed variables load onto multiple latent variables are
not without empirical problems, however, as is evidenced by
numerous methodological and applied studies.

In the present paper, we used simulations to examine a specific
phenomenon that is often observed in empirical applications
of MTMM, LST, or bifactor models: A substantial number of
applications of models with M method or specific factors in
addition to a general trait factor have resulted in one or more
method (specific) factors that are empirically unstable in terms of
anon-significant factor variance or non-significant factor loading

parameter estimates. When one of the method (specific) factors
collapses empirically, the interpretation of the trait factor as
a “general” factor is jeopardized, as the general factor in this
case becomes specific to the indicators that have no method
factor. This post-hoc interpretation is at odds with the a priori
intended interpretation of this factor as a “general factor” in the
UMconstraineds UMunconstrained> and CM models.

One goal of our simulations was to test the hypothesis that
a higher rate of unstable method factors may be a result of a
mismatch between the measurement design and the fitted model.
Specifically, we hypothesized that models with M method (or
specific) factors may show the above-mentioned problem when
they are fit to data generated from a design with structurally
different (rather than interchangeable) methods or facets. Results
from our simulation provided support for our main hypotheses
according to which (1) an incorrect specification of CFA-MTMM
models would be difficult to detect based on commonly used
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model goodness-of-fit criteria and (2) the method factor collapse
issue would occur more frequently when the UMy constrained OF
CM models are fit to C(M — 1) population data. We found
that commonly used model fit criteria frequently failed to reveal
incorrect model specifications. This was true even for the x? test
at a large sample size of N = 1000, at which this test is commonly
regarded as a rather sensitive measure of (mis)fit. The only
situation in which fit indices were relatively helpful in identifying
a model misspecification was when the UM ngtrained model was
incorrectly fit to C(M — 1) data. But even in this case, the
incorrectly specified UM opstrained model was reliably detected by
the x2 test only in the condition of a large (0.8) method factor
correlation in the data-generating C (M — 1) model. In all other
cases, commonly used criteria for adequate model fit would not
have led to a proper rejection of misspecified models.

One (partial) explanation for the frequent failure of fit criteria
to detect misspecified models may be that the UMynconstrained
and CM models in the current design with one trait, three
methods, and three indicators per TMC use more parameters
(i.e., 27 and 30 parameters, respectively) to fit the data than
the UMconstrained and C (M — 1) models, which use only 15 and
25 parameters, respectively. Therefore, the UM pconstrained and
CM models overfit data generated by either the UM yngtrained
or C(M — 1) models. By using more parameters, these models
have more room to fit a range of data structures despite being
misspecified. This may explain why fit criteria were rarely able
to detect such misspecifications in our simulation. This does
not explain, however, why the misspecification of fitting the
UM onstrained model to C (M — 1) data was also difficult to detect
in the present simulation, given that the UM nstrained model had
10 parameters less than the C (M — 1) model in the present study.

Overall, our results show that researchers cannot exclusively
rely on fit indices when judging the adequacy of a CFA-MTMM
model for a given data set. This is in line with findings of other
researchers (e.g., Maydeu-Olivares and Coffman, 2006) who also
reported difficulties in distinguishing between different CFA-
MTMM models based on fit statistics. This issue may be part of
the reason why researchers are often unsure about which CFA-
MTMM model to accept and interpret for a given set of data. It
is important for researchers to realize that CFA-MTMM models,
in particular the UMypconstrained @nd CM models, are highly
parameterized and can therefore fit a wide variety of data well,
even data that was generated by a different process. Researchers
thus cannot conclude from favorable model fit results alone that
the estimated model parameters accurately reflect the MTMM
measurement design.

The second important finding was that, as hypothesized,
the method factor collapse problem did occur more frequently
when data generated from structurally different methods were
fit with the UMypconstrained 0 CM models as compared to
correctly specified models. This issue was particularly severe
in cases of a high correlation between method factors in
the data-generating C (M — 1) model. In our experience, high
method factor correlations are not uncommon in actual MTMM
research, as structurally different methods often share a common
perspective that deviates from the reference method perspective
(e.g., mother and father reports vs. child self-reports as reference

method). These findings thus provide preliminary support for
the hypothesis that the commonly seen problem of one method
(specific) factor collapsing in models with a general trait and
M method (specific) factors may occur more frequently when
methods (or occasions, facets) are not interchangeable (randomly
drawn from a uniform set of methods, occasions, or facets), but
rather structurally different.

A likely technical explanation for the method factor collapse
problem is that both the UM constrained @nd CM models typically
overfit data generated by structurally different methods as
explained above [assuming that structurally different methods
are most appropriately represented by a C(M — 1) data-
generating process, which uses fewer parameters in most
MTMM designs]. Based on our findings, we recommend
that researchers pay careful attention to the measurement
design. Were interchangeable (randomly selected) or structurally
different (fixed) methods used in the study? Researchers should
select models that are appropriate for the measurement design
at hand in line with Fid et al. (2008). It is our impression that
by using this strategy, researchers can avoid many of the issues
related to ambiguous fit results, improper solutions, and the
interpretation of potentially spurious method factors.

It appears that structurally different methods are currently
much more frequently used in empirical MTMM applications
than interchangeable methods. Researchers often apply the
UMunconstrained ©¢ CM models to structurally different methods.
This may explain why collapsing method factors are commonly
encountered in such applications. We recommend that
researchers working with structurally different methods
should consider using the C (M — 1) approach rather than the
UMunconstrained 0 CM approaches. In our view, this may be an
effective way to avoid the method factor collapse problem and
obtain meaningful and easily interpretable results in MTMM
studies.

Implications for Longitudinal and Bifactor
Modeling

Latent State-trait Models

Our findings have implications beyond the MTMM literature,
as similarly structured models are widely used in other research
contexts as well. In longitudinal studies of state vs. trait
components of social science constructs, researchers often apply
LST models. Many LST models have a similar structure to
the UM-type models, with the uncorrelated method factors
replaced by uncorrelated occasion-specific factors. As noted by
Geiser et al. (2015) many LST applications use models with
unconstrained factor loadings across time. Such unconstrained
LST models are thus equivalent in structure to the UMy constrained
model studied in our simulation—a model that fit a wide variety
of data well yet showed the factor collapse problem when fit to
structurally different methods.

Indeed, the problem of one or more occasion-specific
(situation) factors collapsing has been observed in the LST
literature as well (Schermelleh-Engel et al., 2004). According
to our findings, this problem might be partly explained by
the fact that situations may not always be truly selected at
random in LST studies. Structural differences between situations
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can arise, for example, because participants first have to get
used to the assessment procedure, often rendering the first
measurement occasion “structurally different” from subsequent
occasions. For structurally different situations, occasion-specific
factors might collapse more frequently. We recommend that
researchers routinely specify LST models with time-invariant
parameters, leading to a UM onstrained Structure. This structure
is more restrictive than the UMypconstrained Structure, and,
according to our present simulation, can be more easily falsified
by common fit criteria than a UMypconstrained Structure. If
a UM onstrained Structure (measurement invariance) cannot be
rejected based on the chi-square test, then this provides the
researcher with more confidence (albeit not perfect certainty)
that the assumption of random situations may be justified. If
a UMconstrained Structure does not hold, then this may be an
indication that the chosen situations are not interchangeable
and/or that the process is not a simple state variability process,
but potentially involves trait changes as well. For cases in
which an occasion-specific factor collapses in LST models,
Schermelleh-Engel et al. (2004) recommended an approach with
M — 1 occasion-specific factors as a general alternative for LST
applications.

Bifactor Models

Another area of CFA modeling for which our results have
implications are bifactor models, which are very popular in
research contexts that deal with hierarchically structured or
faceted constructs such as intelligence and quality of life. As
noted previously, many applications of bifactor models show
the issue of one of the a priori hypothesized specific factor
collapsing. Virtually all applications of bifactor models that we
know of leave the factor loadings unconstrained, that is, assume
a UMuynconstrained Structure. This is plausible, because the facets
considered in bifactor analyses are often quite diverse. Therefore,
researchers do not have a reason to constrain factor loadings
in accordance with a UM gnstrained Structure. Hence, researchers
often obtain a well-fitting model (because the UMynconstrained
model is rather unrestrictive and fits a wide variety of data
structures well as demonstrated in the current simulation), yet
with partly unstable specific factors. We suspect that the factor
collapse issue in applications of bifactor models may be due
to the fact that the facets analyzed in bifactor analyses should
often be seen as fixed effects rather than as random effects from
a measurement theoretical perspective. For example, different
facets of quality of life are typically not selected at random
from a universe of quality-of-life domains, but are rather fixed.
As another example, reasoning, memory, spatial abilities, and
mental speed as facets of the general trait “intelligence” are
rather fixed as well. The modeling of such “fixed facet” data
might therefore also benefit from considering Eid et al.’s (2008)
MTMM theory of interchangeable vs. structurally different
method designs and corresponding measurement models for
structurally different (“fixed”) methods. We suspect that in
many cases, the use of an approach with M — 1 correlated
specific factors may lead to more readily interpretable results in
applications that to date typically use a bifactor (UM pconstrained)
approach.

Limitations and Future Directions

In the present study, we assumed that we know exactly which type
of CFA-MTMM model is implied by measurement designs with
interchangeable vs. structurally different methods. In practice,
however, we do not know exactly which model is the “true” (data-
generating) model for each process. We realize that some MTMM
theorists and researchers may question our selection of models
chosen to represent interchangeable and/or structurally different
data generating processes. For example, Castro-Schilo et al
(2013) argued that the CM model may be most plausible as the
data-generating model for MTMM data in general. Nonetheless,
we think that our selection of models is at least based on a
well-developed measurement theoretical framework of random
(interchangeable) vs. fixed (structurally different) methods—
whereas other frameworks have not used a measurement theory-
driven selection of models at all.

Another limitation of the present study is that we considered
only designs with a single trait factor. This was done in order to
focus on the specific issue of method factor collapse and to keep
the size of the simulation more manageable. In addition, many
MTMM applications and most applications of LST and bifactor
models use only a single trait, so our findings are informative
for these types of applications. Preliminary simulations of our
group indicate that for designs with more than one trait
factor, goodness-of-fit measures may be somewhat more effective
in identifying certain types of misspecified models, although
the outcomes were still unsatisfactory. In our simulations, we
assumed multivariate normal and complete data. Our findings
may not (or only partly) generalize to more realistic conditions
of non-normal and/or missing data.

Some researchers might question whether there is a problem
at all when a specific factor collapses and argue that this is
simply an empirical result (showing that the indicators that
were hypothesized to measure this specific factor do not contain
specific or method variance, but only “general” trait variance).
We argue that the factor collapse issue does pose problems,
because it results in post-hoc changes in the interpretation of
the general factor that are at odds with the a priori intended
meaning and interpretation of this factor. If one or more specific
factors collapse, the general factor becomes specific to the set of
indicators for which the specific factor(s) collapsed. The trait can
no longer be interpreted as a general factor in the classical sense.
Depending on the substantive application, this may or may not
pose problems.

In future studies, it would be interesting to determine exactly
what mechanisms and conditions result in the method (specific)
factor collapse issue in practical applications. Why does this issue
occur in some, but not all applications of UMypconstrained> LST»
and bifactor models? What determines which method (specific)
factor collapses? (How) should researchers interpret the general
trait factor in cases in which one or more specific factors
collapse—as a general factor, a specific factor, or not at all?
Even though the present simulation provided some evidence
that the factor collapse issue may occur more frequently when
models with M method or specific factors are applied to data
that stem from a structurally different method pool, we still do
not know what exactly determines when (and which) method
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or specific factors collapse in MTMM, LST, or bifactor model
applications. It will be interesting to study what exactly drives this
process and in which way. Future (re)analyses of empirical data,
further simulations, or mathematical-theoretical derivations will
hopefully shed more light on this issue.
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