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When conversing and collaborating in everyday situations, people naturally and
interactively align their behaviors with each other across various communication
channels, including speech, gesture, posture, and gaze. Having access to a partner’s
referential gaze behavior has been shown to be particularly important in achieving
collaborative outcomes, but the process in which people’s gaze behaviors unfold over
the course of an interaction and become tightly coordinated is not well understood. In
this paper, we present work to develop a deeper and more nuanced understanding
of coordinated referential gaze in collaborating dyads. We recruited 13 dyads to
participate in a collaborative sandwich-making task and used dual mobile eye tracking
to synchronously record each participant’s gaze behavior. We used a relatively new
analysis technique—epistemic network analysis—to jointly model the gaze behaviors of
both conversational participants. In this analysis, network nodes represent gaze targets
for each participant, and edge strengths convey the likelihood of simultaneous gaze
to the connected target nodes during a given time-slice. We divided collaborative task
sequences into discrete phases to examine how the networks of shared gaze evolved
over longer time windows. We conducted three separate analyses of the data to reveal
(1) properties and patterns of how gaze coordination unfolds throughout an interaction
sequence, (2) optimal time lags of gaze alignment within a dyad at different phases of the
interaction, and (3) differences in gaze coordination patterns for interaction sequences
that lead to breakdowns and repairs. In addition to contributing to the growing body
of knowledge on the coordination of gaze behaviors in joint activities, this work has
implications for the design of future technologies that engage in situated interactions
with human users.

Keywords: referential gaze, epistemic network analysis, conversational repair, social signals, gaze tracking

1. Introduction

The key to successful communication is coordination, which in conversations enables participants
to manage speaking turns (Sacks et al., 1974) and to draw each other’s attention toward objects of
mutual interest using actions such as pointing, placing, gesturing, and gazing (Clark, 2003; Clark
and Krych, 2004). Through the course of an interaction, interlocutors mimic each other’s syntactic
structures (Branigan et al., 2000) and accents (Giles et al., 1991), and their bodies even begin to
sway in synchrony (Condon and Osgton, 1971; Shockley et al., 2003). These acts of coordination
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are critical to ensuring that joint activities, including conversation
and collaboration, flow easily and intelligibly (Clark, 1996;
Garrod and Pickering, 2004).

Of particular importance to successful interaction is the
coordination of gaze and attention across a shared visual space
(Clark and Brennan, 1991; Schober, 1993; Clark, 1996; Brown-
Schmidt et al., 2005). Gaze coordination has been succinctly
defined as a coupling of gaze patterns (Richardson et al., 2009).
This coupling does not result from interlocutors explicitly aiming
to synchronize their gaze movements, but instead gaze patterns
become aligned over time due the need for coordination in
joint activities. Mechanisms of gaze coordination, including
mutual gaze and joint attention, serve as primary instruments of
prelinguistic learning between infants and caregivers (Baldwin,
1995) and play a crucial role throughout life in coordinating
conversations (Bavelas et al., 2002). Beyond coordination, gaze
contributes to a larger number of important processes in
everyday human interaction, including conveying attitudes and
social roles (Argyle and Cook, 1976).

Although a large number of studies over the past several
decades has investigated gaze behavior and the crucial role it
plays in communication, how tightly coordinated gaze behaviors
unfold over the course of an interaction is not well understood.
For example, previous work has examined the timings of when
people look toward referents—objects to which they or their
interlocutors verbally refer (Tanenhaus et al., 1995; Griffin,
2004; Meyer et al., 2004). However, these investigations are
generally one-sided, looking at each person’s gaze in isolation,
and do not capture the intricate coordinative patterns in which
partners’ referential gaze behaviors interact. Previous work has
also investigated gaze alignment, exploring the extent to which
conversational partners gaze toward the same targets at various
time offsets (Richardson and Dale, 2005; Bard et al., 2009).
However, existing research still lacks a more nuanced description
of how gaze alignment changes over the different phases of the
interaction.

In this paper, we present work to develop a deeper
understanding of coordinated referential gaze in collaborating
dyads. We are particularly interested in how the gaze behaviors
of two collaborating participants unfold throughout a reference-
action sequence in which one participant makes a verbal reference
to an object in the shared workspace that the other participant
is expected to act upon in some way. We collected data
from 13 dyads outfitted with mobile eye-tracking glasses in a
sandwich-making task; one participant (the instructor) made
verbal references to visible ingredients they would like added
to their sandwich while the other participant (the worker)
was responsible for assembling those ingredients into the
final sandwich (Figure 2). We chose this task to represent
collaborative interactions that contain a large number of
reference-action sequences. Because these behavior sequences are
common and frequent across many kinds of interactions, we
believe that the results of the analyses discussed in this work
will generalize beyond the specific sandwich-making task to any
interactions that involve reference-action sequences.

Due to the highly dynamic and interdependent nature of
the data we collected, we utilized a relatively new analysis

technique—epistemic network analysis (ENA)—to analyze and
visualize the gaze targets of both participants as a complex
and dynamic network of relationships. Our overall analysis was
shaped by three research questions: (1) How do a collaborating
dyad’s gaze behaviors unfold over the course of a reference-action
sequence? (2) How does the alignment of gaze behaviors shift
throughout the different phases of a reference-action sequence?
(3) How do coordinated gaze behaviors differ in sequences which
include breakdowns and/or repairs?

To answer these three research questions, we conducted three
separate analyses of the dyadic gaze data using ENA. In the
first analysis, we used ENA to characterize different phases
of a reference-action sequence, discovering clear differences
in gaze behavior at each phase. This analysis also revealed a
consistent pattern of gaze behavior that progresses in an orderly
and predictable fashion throughout a reference-action sequence.
In the second analysis, we explored the progression of gaze
alignment between the interacting participants throughout a
reference-action sequence. In general, we discovered a common
rise and fall in the amount of aligned gaze throughout a sequence,
as well as a back and forth pattern of which participant’s gaze
“led” the other’s. In the third analysis, we explored the difference
in gaze behaviors arising during sequences with repairs—verbal
clarifications made in response to confusion or requests for
clarification—vs. sequences without such repairs. ENA revealed
detectably different patterns of gaze behavior for these two types
of sequences, even at very early phases of the sequences before
any verbal repair occurs.

In the next section, we review the relevant background on
shared gaze in collaborative interactions. We also review cross-
recurrence analysis, a common analytical tool used in prior
work to analyze two-party gaze behaviors, in order to motivate
our introduction of a newer approach. In the following section,
we present network analysis, specifically epistemic network
analysis (ENA), as an alternative to cross-recurrence analysis
with a number of desirable properties for studying shared
gaze in dyads. We then describe the data collection in the
sandwich-making task, followed by the three analyses conducted
in ENA. We conclude the paper with a discussion of the
patterns of coordinated gaze uncovered in our analyses and
their implications for interactive technologies and future research
within this space.

2. Background

Previous research has revealed a significant amount of detail
about the eye movements of speakers and listeners in isolation.
In general, people look toward the things they are speaking
about (Griffin, 2004; Meyer et al., 2004), toward the things they
hear verbally referenced (Tanenhaus et al., 1995), and toward
the things they anticipate will soon be referenced (Altmann and
Kamide, 2004). For example, when speakers are asked to describe
a simple scene, they fixate the objects in the order in which
they mention them and roughly 800–1000 ms before naming
them (Meyer et al., 1998; Griffin and Bock, 2000). Although
fixation times are heavilymodulated by context, research suggests
that listeners will fixate an object roughly 500–1000 ms after
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the onset of the spoken reference, which includes the 100–
200 ms needed to plan and execute an eye movement (Fischer,
1998). When listeners view a scene containing referents for
what they are hearing, their eye movements show that they can
recognize a word before hearing all of it (Allopenna et al., 1998)
and use visual information to disambiguate syntactic structures
(Tanenhaus et al., 1995).

When collaborating over a shared workspace, conversational
partners use each others’ gaze to indicate attention toward and
understanding of verbal references to objects in the shared
environment (Gergle and Clark, 2011). Partners show increased
shared gaze toward referents while they speak about those objects
(Bard et al., 2009). Referencing is often a multimodal process,
with objects being evoked through a speaker’s actions, movement,
or other pragmatic contextual cues such as gestures or head
nods (Gergle and Clark, 2011). Speakers often under-specify
their referents, relying on the listener to seek clarification if
more information is needed to uniquely identify a particular
referent (Campana et al., 2001). Previous research has shown
that speakers look toward their addressees in order to check
their understanding of references to new entities (Nakano et al.,
2003) and that addressees rely on the speaker’s gaze as a cue for
disambiguating references, often before the reference could be
disambiguated linguistically (Hanna and Brennan, 2007). This
use of gaze has the effect of minimizing the joint effort of the
participants in an interaction by reducing the time speakers must
spend specifying referents.

Most previous research on gaze in interaction makes
a simplifying assumption of pseudounilaterality—the implicit
assumption that a behavioral variable is unilaterally determined
by the actions of the participant expressing that behavior
(Duncan et al., 1984). This assumption results in erroneously
interpreting data on a participant’s actions as representing
the unilateral conduct of that participant, overlooking the

partner’s contribution to those data. A primary cause of
pseudounilaterality is the use of simple-rate variables—generated
by counting or by timing the occurrence of an action during an
interaction and dividing that number by some broader count
or timing. These variables do not contain information on the
sequences in which actions occur in interaction.

Mobile dual eye-tracking is a relatively recent approach to
capturing gaze behaviors that allows researchers to overcome
problems of pseudounilaterality and develop more nuanced
and ecologically valid accounts of how interlocutors coordinate
their gaze during natural, situated conversations (Clark and
Gergle, 2011). They have provided great opportunities for
researchers to better understand the role of gaze as a coordination
mechanism in conversation. Dual eye-tracking methods can be
used to better understand the role gaze plays as a conversational
resource during reference—how people specify the person,
object, or entity that they are talking about (Clark and Gergle,
2012).

Cross-recurrence analysis is a commonly used technique for
analyzing gaze data captured from participant dyads, as it permits
the visualization and quantification of recurrent patterns of
states between two time series, such as the gaze patterns of two
conversational participants (Zbilut et al., 1998) (Figure 1). This
analysis approach can reveal the temporal dynamics of a dataset
without making assumptions about its statistical nature. The
horizontal and vertical axes of a cross-recurrence plot specify the
gaze of each of the two partners in interaction. Each diagonal on
the plot (lower-left to upper-right) corresponds to an alignment
of the participants’ gaze with a particular time lag between
them. A point is plotted on the diagonal whenever the gaze
is recurrent—their eyes are fixating at the same object at the
given time. The longest diagonal, from bottom-left to top-right
of the plot, represents the gaze alignment at a lag of 0. Diagonals
above and below that line represent alignments with positive and

FIGURE 1 | Cross-recurrence plots adapted from work by Richardson
and Dale (2005). Horizontal and vertical axes specify the gaze of a speaker
and a listener. Diagonal slices (lower-left to upper-right) correspond to an
alignment of the participants’ gaze with a particular time lag between them. A

point is plotted on the diagonal whenever the gaze is recurrent. These plots
visually compare a “good” listener (well aligned with the speaker’s gaze) to a
“bad” listener (not as well aligned). They also show the poor alignment of
random gaze with a speaker’s gaze.
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negative offsets, shifting one of the participants’ time-series gaze
data in relation to the other participant.

Previous research utilizing cross-recurrence analysis has
successfully expanded knowledge on gaze coordination. For
example, research has shown that a listener’s eye movements
most closely match a speaker’s eye movements at a delay of 2 s
(Richardson and Dale, 2005) (Figure 1). In fact, the more closely
a listener’s eye movements are coupled with a speaker’s, the better
the listener does on a comprehension test. These results were
later extended to find that eye movement coupling is sensitive
to the knowledge that participants bring to their conversations
(Richardson et al., 2007). The presence of the visual scene and
beliefs about its perception by others also influence language
use and gaze coordination in remote collaborations (Richardson
et al., 2009). Gaze is not always well aligned; when speakers’
referring expressions ignore listeners’ needs, dyads show poor
coordination of visual attention (Bard et al., 2009). Dyads whose
members more effectively produce referring expressions better
coordinate their attention better and in a way linked to the
elaboration of the referring expressions.

Although cross-recurrence analysis has yielded some success
in studying gaze coordination, it is best suited for examining
data from short time windows and one pair at a time. Cross-
recurrence plots do not support aggregating data from numerous
dyads over long time spans in order to abstract away individual
differences and discover generalizable patterns of interaction.
These plots can also be difficult to interpret visually and
lack the sophistication to represent the complex, dynamic
relationships that characterize coordinated gaze over a shared
physical workspace. In the next section, we present a particular
instantiation of network analysis—epistemic network analysis—
as an alternative analytical tool that overcomes these issues.

3. Epistemic Network Analysis

Studying gaze coordination and the temporal unfolding of
collaborative gaze behaviors is difficult due to the highly dynamic
and interdependent nature of the data. In order to explore
this type of data, we were inspired to use an approach that is
similar to social network analysis, which provides a robust set of
analytical tools to represent networks of relationships, including
complex and dynamic relationships (Wasserman, 1994; Brandes
and Erlebach, 2005). However, social network analysis was
developed to investigate relationships between people rather than
relationships within discourse, gaze behaviors, or other indicators
of cognitive processes.

Epistemic network analysis (ENA) is a relatively new analysis
technique that is based in part on social network analytic models.
ENA extends social network analysis by focusing on the patterns
of relations among discourse elements, including the things
people say and do. ENA networks are characterized by a relatively
small number of nodes in contrast with the very large networks
that techniques from social network analysis were designed to
analyze, which often have hundreds, thousands, or even millions
of nodes. In ENA networks, the weights of the connections
between nodes (i.e., the association structures between elements)
are particularly important, as are the dynamic changes in the

weights and in the relative weighting of the links between
different nodes.

ENA was designed to highlight connections among “actors,”
e.g., people, ideas, concepts, events, and behaviors, in a system.
It was originally developed to measure relationships between
elements of professional expertise by quantifying the co-
occurrences of those elements in discourse and has been used for
that purpose in a number of contexts (Rupp et al., 2009; Shaffer
et al., 2009; Rupp et al., 2010; Orrill and Shaffer, 2012). However,
ENA is a promising method to effectively analyze datasets that
capture the co-occurrence of any behaviors or actions in social
interactions over time.

The data within ENA are represented in a dynamic network
model that quantifies changes in the strength and composition
of epistemic frames over time. An epistemic frame is composed
of individual frame elements, fi, where i represents a particular
coded element in a specified window of time. For our purposes,
“coded elements” of the epistemic frame are annotated gaze
targets for each participant in the interaction, and these elements
are represented as nodes in a network. For any dyad, p, in any
given reference-action sequence, s, each segment of interaction
discourse, Dp,s, provides evidence of which epistemic frame
elements (gaze targets) were active (being gazed toward). For this
work, each segment of interaction represents 50 ms of time in the
interaction.

Each segment of coded data is represented as a vector of
1 or 0 s representing the presence or absence, respectively, of
each of the codes. Links, or relations, between epistemic frame
elements are defined as co-occurrences of codes within the same
segment. To calculate these links, each coded vector is converted
into an adjacency matrix, Ap,s, for dyad p. For our purposes, co-
occurrence of two codes is equivalent to the recurrence of gaze to
the gaze targets represented by the codes. For any two gaze codes,
the strength of their association in a network is computed based
on the frequency of their co-occurrence in the data.

Ap,s
i,j = 1 if fi and fj are both in Dp,s

Each coded segment’s adjacency matrix, Ap,s
i,j is then converted

into an adjacency vector and summed into a single cumulative
adjacency vector for each dyad p for each unit of analysis.

Up,s =
∑

Ap,s

For each dyad, p, and each reference-action sequence, s, the
cumulative adjacency vector, Up,s, is used to define the location
of the segments in a high dimensional vector space defined by
the intersections of each of the codes. Cumulative adjacency
vectors are then normalized to a unit hypersphere to control for
the variation in vector length, representing frequencies of co-
occurring code pairs, by dividing each value by the square root
of the sum of squares of the vector.

nUp,s = Up,s/

√∑
(Up,s)2

A singular value decomposition (SVD) is then performed to
explore the structure of the code co-occurrences in the dataset.
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The normalized cumulative adjacency vectors are first projected
into a high dimensional space such that similar patterns of
co-occurrences between coded elements would be positioned
proximately. The SVD analysis then decomposes the structure of
the data in this high dimensional space into a set of uncorrelated
components, fewer in number than the number of dimensions
that still account for as much of the variance in the data as
possible, such that each accumulated adjacency vector, i, has a
set of coordinates, Pi, on the reduced set of dimensions. The
resulting networks are then visualized by locating the original
frame elements, i.e., the network nodes, using an optimization
routine that minimizes ∑

(Pi − Ci)2

where Pi is the projection of the point under SVD, and Ci is
the centroid of the network graph under the node positioning
being tested. This operation produces a distribution of nodes
in the network graph determined by the loading vectors that
contain them in the space of adjacency vectors. Links are then
constructed between the positioned network nodes according to
the adjacency matrix.

The mean network for a group of networks can be calculated
by computing the mean values of each edge weight in the
networks. We can also conduct t-tests between groups of
networks to determine if one group’s networks (group A) are
statistically different from a second group’s networks (group B).
The t-test operates on the distribution of the centroids of each
group on one dimension. For example, we can determine if
group A is statistically different from group B on the x-axis by
calculating the means of each group’s centroid projected to the
x-axis and then conducting a t-test with a standard alpha level
of 0.05.

4. Method

In order to gain a better understanding of how gaze coordination
unfolds over reference-action sequences in dyadic collaborations,

we conducted a data collection study in which pairs of
participants engaged in a collaborative sandwich-making task. In
this section, we present the collection of the data, followed by
a number of analyses and visualizations conducted on that data
using ENA.

4.1. Data Collection
We recruited 13 previously unacquainted dyads of participants
from the University of Wisconsin–Madison campus. This
data collection study was approved by the Education and
Social/Behavioral Science Institutional Review Board (IRB) of the
University of Wisconsin–Madison and all participants granted
their written informed consent at the beginning of the study
procedure. Participants sat across from each other at a table on
which were laid out a number of potential sandwich ingredients
and two slices of bread (Figure 2). One participant was assigned
the role of instructor, and the other was assigned the role of
worker. The instructor acted as a customer at a deli counter,
using verbal instructions to tell the worker what ingredients they
wanted on their sandwich, and the worker carried out the actions
of moving the desired ingredients to the bread.

Each dyad carried out the sandwich-making task twice so
that each participant would have a turn as both instructor and
worker, resulting in 26 dyadic interactions. The experimenter told
the instructor to request any 15 ingredients for their sandwich
from among 23 ingredients laid out on the table. The choice of
ingredients was left to the instructor; no list was provided by the
experimenter. The instructor was asked to only request a single
ingredient at a time and to refrain from pointing to or touching
the ingredients directly. Upon completion of the first sandwich,
an experimenter entered the study room to reset the ingredients
back to their original locations on the table, and the participants
switched roles for the second sandwich.

During the study, both participants wore mobile eye-tracking
glasses developed by SMI1. These eye-trackers perform binocular
dark-pupil tracking with a sampling rate of 30 Hz and gaze
1http://www.smivision.com/en/gaze-and-eye-tracking-systems.

A

C

B

FIGURE 2 | (A) The setup of the data collection experiment in the sandwich-making task. (B) A view from one participant’s eye-tracking glasses, showing their scan
path throughout a reference-action sequence. (C) A timeline view of the gaze fixations to ingredients, the partner, and the bread shown in the scan path in (B).
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position accuracy of 0.5◦. Each set of glasses contains a forward-
facing high-definition camera that was used to record both audio
and video (24 fps). The gaze trackers were time-synchronized
with each other so that the gaze data from both participants could
be correlated.

Following data collection, the proprietary BeGaze software
created by SMI was used to automatically segment the gaze
data into fixations—periods of time when the eyes were at rest
on a single target—and saccades—periods of time when the
eyes were engaged in rapid movement. Fixation identification
minimizes the complexity of eye-tracking data while retaining its
most essential characteristics for the purposes of understanding
cognitive and visual processing behavior (Salvucci and Goldberg,
2000). BeGaze uses a dispersion-based (spatial) algorithm to
compute fixations, emphasizing the spread distance of fixation
points under the assumption that fixation points generally occur
near one another. Eye fixations and saccades are computed in
relation to a forward-facing camera located in the bridge of
the eye-tracking glasses worn by the user. Thus, these fixations
and saccades are defined within the coordinate frame of the
user’s head, and user head movements do not interfere with the
detection of eye movements.

Gaze fixations are characterized by their duration and
coordinates within the forward-facing camera view. Area-
of-interest (AOI) analysis, which maps fixations to labeled
target areas (AOIs) is a common method for adding semantic
information to raw gaze fixations (Salvucci and Goldberg, 2000).
In this work, all fixations were manually labeled for the target
of the fixation. These labeled AOIs serve as the input data for
ENA, rather than the raw gaze fixations. Possible target AOIs
included the sandwich ingredients, the slices of bread, and the
conversational partner’s face and body. Around 80% of gaze
fixations were mapped to these AOIs (79.47% for instructors,
81.65% for workers), and the remainder of gaze fixations were
found to be directed elsewhere in space (e.g., to a spot on the
table without a sandwich ingredient). Speech was also transcribed
for each participant. Instructor requests for specific objects were
tagged with the ID of the referenced object, and worker speech
was labeled when it was either confirming a request or asking for
clarification.

To make successful reference utterances, the speaker needs
some form of feedback from the addressee. Despite the
best efforts of speakers, there will inevitably be instances of
breakdowns—misunderstandings or miscommunication—that
can either impede ongoing progress of the interaction or lead to
breakdowns in the future (Zahn, 1984). To correct breakdowns,
humans engage in repair, a process that allows speakers to correct
misunderstandings and helps ensure that the listener has the
correct understanding of the relayed information (Zahn, 1984;
Hirst et al., 1994). In the current data collection, if an instructor
provided extra clarification for an initially inadequate reference,
possibly prompted by the worker’s request for clarification, that
sequence was marked as containing a repair.

Following data collection, each interaction was divided into
a set of reference-action sequences, such as a verbal request for
bacon followed by the action of moving the bacon to the bread.
Each sequence was further divided into five discrete phases:

pre-reference, the time before any verbal reference has been
made; reference, the time during the verbal request for a specific
sandwich ingredient; post-reference, the time directly after the
verbal reference and up until the worker’s action; action, the
time during the worker’s action of moving the ingredient to the
target bread; and post-action, the time immediately following this
action.

We note that these phases are defined according to verbal
and physical actions, not according to gaze behaviors, which are
analyzed within each of these phases. The pre-reference phase
(average length= 1.90 s) ends at the onset of the verbal reference.
The reference phase (average length = 1.32 s) ends with the end
of the utterance of the verbal reference. The end of the post-
reference phase (average length = 0.78 s) is marked by the start
of the physical action, which involves picking up the referent,
particularly the moment it is first touched. The action phase
(average length = 1.68 s) ends with the end of the physical
action, which involves moving the ingredient to the bread and
is marked by the moment it is let go. Finally, the end of any
feedback provided by the instructor or the beginning of some
preparatory utterance for the next reference, e.g., “so, uh, next
I’ll have...,” marked the end of the post-action phase (average
length= 0.81 s).

4.2. Analysis
As a first step of our analysis, we calculated common descriptive
statistics for the gaze data. Unsurprisingly, we found very little
mutual gaze during the reference-action sequences (0.92%) and
a fairly large amount of simultaneous shared gaze toward the
same target (31.16%). Instructors produced their verbal reference
utterance on average 1.31 s after first fixating on it, although
they made on average 1.93 fixations to the reference object before
verbalizing it. Workers fixated on the reference object on average
1.65s after the verbal reference. Previous research has found that
referential gaze in speech typically precedes the corresponding
linguistic reference by approximately 800–1000ms, and people
look at what they hear after about 2000ms (Meyer et al., 1998;
Griffin and Bock, 2000). Our data seems to yield statistics close
to these findings, and the slightly longer time offset between the
gaze fixation and verbal reference among instructors may be due
to occasionally having to search for an object, rather than having
one already in mind at the beginning of the interaction.

4.2.1. Analysis 1
We analyzed the entirety of our collected data using ENA
(Figure 3). For our first analysis, we considered each dyad
(n = 26; 13 dyads × two interactions each) and phase
(n = 5; pre-reference, reference, post-reference, action, or post-
action) as the units of analysis. Each point in the central plot
of Figure 3 represents the centroid of a network for a single
dyad’s interaction in one of the five phases, collapsed across
all reference-action sequences that occurred in the interaction.
Solid squares represent the centroid of the mean network for all
dyads in each of the five phases. These mean network centroids
are surrounded by squares representing the confidence interval
along both dimensions. A clear separation between each of the
five phases can be observed, indicating that the patterns of gaze
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coordination are significantly different in each of the five phases.
We can also observe a clear cyclical pattern through the two-
dimensional ENA space as we progress through each of the five
phases in the reference-action sequence.

Figure 3 also plots the full mean networks for each of the five
phases. As mentioned previously, nodes represent gaze targets,
and edge weights represent the relative amount of recurrent
gaze to those targets. There are four gaze target nodes for each
participant: (1) the reference object for the sequence, (2) the
interaction partner, (3) the action target (the bread to which
ingredients are moved), and (4) all other objects. In these
networks, edges only connect instructor and worker gaze target
nodes, as simultaneous gaze within one person toward different
targets is not possible. The naming conventions and meanings of
all network nodes are explained in Table 1.

By examining the placement of nodes in the mean networks,
we can develop an intuitive sense of the meaning of each axis in
ENA space. As can be observed in the mean networks shown
in Figure 3, ENA keeps the node positions identical across all
plots for a given analysis. Nodes placed at extreme edges of
the space, far from the center, are the most informative for
intuitively labeling axes. In this respect, three nodes stand out:
W.Gaze_Other,W.Gaze_Reference, andW.Gaze_Target. We can
therefore recognize that networks with centroids located high
on the y-axis are most characterized by strong connections to
W.Gaze_Other. In other words, these networks include more
worker gaze toward non-referents. In general, moving from high
to low along the y-axis seems to indicate a shift from worker
gaze toward non-referents to worker gaze toward the referent.
Similarly, moving from right to left along the x-axis seems to
indicate a shift from worker gaze toward sandwich ingredients
(referents or non-referents) to worker gaze toward the target
bread.

In each of the mean networks plotted in Figure 3 for
each of the five phases, the key differences to note are the
shifting edge strengths between nodes. In the pre-reference
phase, we can observe that the network—which has a centroid
high along the y-axis in the central plot of Figure 3—has
particularly strong connections between W.Gaze_Other and
I.Gaze_Other and betweenW.Gaze_Other and I.Gaze_Reference.

TABLE 1 | ENA network node names and meanings.

I.Gaze_Reference Instructor gazing at reference ingredient
Analysis 1, 2,
3

I.Gaze_Other Instructor gazing at non-reference ingredient
I.Gaze_Target Instructor gazing at target bread
I.Gaze_Person Instructor gazing at the worker

W.Gaze_Reference Worker gazing at reference ingredient
Analysis 1, 3 W.Gaze_Other Worker gazing at non-reference ingredient

W.Gaze_Target Worker gazing at target bread
W.Gaze_Person Worker gazing at the instructor

Analysis 2
W.Same Worker gazing at same object as instructor
W.Different Worker gazing at different object than

instructor

Naming convention and meanings of all network nodes used throughout the different
analyses.

These connections tell us that the pre-reference phase is
characterized mostly by the worker looking toward non-referents
while the instructor scans the objects, including the object that
they will verbally indicate as the referent in the next phase of
the sequence. In the reference phase, we can observe a growing
connection between W.Gaze_Reference and I.Gaze_Reference,
pulling the network centroids lower along the y-axis. In the
post-reference phase, this connection is now strongest, and
connections with W.Gaze_Other (the worker gazing to non-
referents) have become much weaker, pulling these network
centroids yet lower along the y-axis.

In the action phase, a strong connection between
W.Gaze_Target and I.Gaze_Target appears, signaling
simultaneous gaze toward the target, which, in this case, is
the bread toward which the selected sandwich ingredient
is being moved, pulling the network centroids left along
the x-axis. Finally, the post-action phase retains the strong
connection between W.Gaze_Target and I.Gaze_Target,
with a new strong connection between W.Gaze_Target and
I.Gaze_Other, indicating that the instructor has started to
scan other objects in anticipation of the next reference-
action sequence while the worker finishes gazing toward the
target.

Our first analysis gives us an overall picture of the unfolding
gaze patterns in dyadic collaborations throughout a reference-
action sequence. We found the clear separation of shared gaze
networks between each of the five phases in the reference-action
sequence and the orderly cyclical pattern throughout the two-
dimensional ENA space to be particularly striking. We highlight
that, although the phases themselves are defined in terms of the
temporal location of the reference speech and movement action,
ENA is acting only upon the gaze data. Thus, patterns of shared
gaze are uniquely different across the different phases of the
sequence, e.g., before a verbal reference, during the reference,
immediately after that reference, and so on. Furthermore, these
patterns change and mutate in an orderly way through the
abstract space defined by ENA. Theoretically, a mapping from the
gaze networks back to the phases can be built. Given a segment
of gaze, the phase of the reference-action sequence it came from
could be predicted by computing the ENA network for that
segment and plotting it in this space.

To validate and demonstrate the promise of the ENA analysis
for prediction, we carried out a simple test that involved
computing the ENA network as described above, but leaving
out data from one of the 13 dyads, which resulted in an ENA
space very similar to that shown in Figure 3. From the left-out
dyad, 200ms and 1000ms segments of gaze data were randomly
selected. Each of these segments were then modeled as adjacency
vectors and projected into the ENA space constructed from data
from the other 12 dyads. The predicted phase for each of the
projected segments was labeled according to the nearest centroid
of phase segments in the ENA space. Table 2 illustrates the
results from this analysis in the form of a confusion matrix.
Rows are the actual phase that each segment of data is from,
and columns are the predicted phase. As can be seen in the
table, prediction appears to be fairly accurate except for some
confusion in the shorter phases of reference and action. In realistic
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TABLE 2 | Predicting phase from segments of gaze data.

Predicted phase (200ms segments) Predicted phase (1000ms segments)

Pre-reference Reference Post-reference Action Post-action Pre-reference Reference Post-reference Action post-action

A
ct
ua

lp
ha

se

Pre-reference 117 3 10 60 16 31 3 1 2 4

Reference 50 5 76 38 3 10 2 18 4 0

Post-reference 6 0 31 6 0 0 2 7 0 0

Action 7 1 46 52 54 2 0 10 7 13

Post-action 7 0 0 33 61 0 0 0 2 18

To demonstrate how ENA analysis can be used for prediction, segments of gaze data were projected into the ENA space, and their phase was predicted according to the nearest
centroid of phase networks. Rows are the actual phase that each segment of data is from, and columns are the predicted phase. Cells are colored in a gradient from dark green to
white according to the quantity of segments in each cell. Prediction appears to be fairly accurate except for some confusion in the shorter phases of reference and action.

FIGURE 4 | Percentage of gaze alignment between the instructor and worker at each of the five phases, plotted at offset lags from −2 to 2 s. Positive
lags indicate instructor lead, while negative lags put the worker ahead of the instructor.

prediction scenarios, prediction accuracy can be improved by
using more sophisticated methods than the one employed here
for demonstrative purposes, such as dynamically updating phase
predictions as segments of gaze data are collected over time
or assigning confidence weights to predictions based on their
distance from phase centroids.

4.2.2. Analysis 2
In the second analysis, we were interested in finding the optimal
lag of gaze alignment within each of the five phases. In other
words, which participant’s gaze leads that of the other, and by
how much, in each phase? For this analysis, two new ENA
codes were created: same, which is active if the worker and
instructor are gazing at the same target (person, reference, target,
or other), and different, which is active otherwise. For each phase
of the reference-action sequence, across all dyads, we shifted the
instructor’s gaze from−2000 to 2000ms in 50ms increments and
computed the value for each of the new codes. To find the optimal
overlap, we divided the sum of the same code by the total number
of increments in order to find a measure of “alignment” at each
time lag. These alignments for each of the five phases are plotted
in Figure 4.

The peak of the line graph for each of the five phases
represents the optimal time lag at that phase. These lags, as well
as the amount of gaze alignment that occurs at those lags, are
summarized in Table 3. Positive lags put the instructor ahead
of the worker, indicating that the instructor is “driving” the
gaze patterns, while negative lags indicate that the worker is
driving the gaze patterns. As can be observed, the pre-reference
phase is characterized by neither participant driving the gaze
patterns (t = 0 s) and a relatively low amount of gaze alignment
(alignment = 22.5%). However, during the reference phase, the
instructor starts to lead the gaze patterns (t = 700 ms), and the
alignment increases (alignment = 27.6%). In the post-reference
phase, the worker begins leading (t = −300 ms), and the dyad is
most aligned (alignment = 36.1%). The action phase involves
a slight lead by the worker (t = −50 ms) and slight drop in
alignment (alignment = 34.6%). In the post-action phase, the
instructor is once again leading (t = 300 ms), and the alignment
has dropped further (alignment = 27.0%).

We next shifted the gaze streams in each phase of the
reference-action sequence by that phase’s optimal time lag
(Table 3) and conducted an analysis in ENA by modeling from
the instructor’s perspective (Figure 5). Four nodes represent the
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possible gaze targets for the instructor as before, but there are
only two nodes for the worker: W.Same, signifying whether
the worker is looking at the same target as the instructor, and
W.Different, indicating a different target than the instructor.

By examining the placement of nodes in the mean networks
shown in Figure 5, we can again develop an intuitive sense of the
meaning of each axis in this new ENA space. Along the x-axis,
we can observe I.Gaze_Reference far to the left and I.Gaze_Target
far to the right, indicating as a progression from referent-directed

TABLE 3 | Optimal lag and alignment percentage.

Pre-reference Reference Post-reference Action Post-action

Optimal
Lag (ms)

0 700 −300 −50 300

Alignment
(%)

22.5 27.6 36.1 34.6 27.0

Optimal time lags identified in Analysis 2 and the percentage of alignment at each offset.

gaze to target-directed gaze in this dimension, as the phases move
from left to right along the x-axis.

For the y-axis, I.Gaze_Person is the lowest node, but the
mean networks throughout the five phases in Figure 5 show only
a few strong connections with I.Gaze_Person, indicating that
the instructor’s gaze is not directed toward the worker. Instead,
connections with W.Same get stronger as the phases move from
pre-reference to reference to post-reference and then weaker again
as they move to action and post-action. Strong connections with
W.Same pull the network centroids lower along the y-axis in
the central plot of Figure 5, suggesting an interpretation that
this axis signifies “alignment.” We can observe a rise and fall of
alignment in the phases as their corresponding networks fall and
rise respectively along the y-axis. This observation matches what
we see in Table 3 where the alignment percentages rise and fall
throughout the five phases.

4.2.3. Analysis 3
In our third and final analysis, we were interested in the
differences between phases of reference-action sequences that

FIGURE 5 | Centroids and mean networks from the ENA that used
gaze data from each phase that was shifted by the optimal lag for
that phase. The data is modeled from the perspective of the instructor.
Four nodes represent the possible gaze targets for the instructor as
before, but there are only two nodes for the worker, signifying whether
the worker is looking at the same target or a different target. W_Different

and W_Same are largely vertically separated. Networks that are low on
the y-axis have strong connections to W_Same, while networks high on
the axis have strong connections to W_Different. Thus, the y-axis can be
interpreted as signifying “alignment,” and we can observe a rise and fall
of alignment in the phases as their corresponding networks fall and rise
respectively in the ENA space.
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included a repair—in which the instructor had to provide a
clarification to their first verbal reference, possibly at the explicit
verbal request of the worker—from phases that did not include
such repairs. The purpose of this analysis was to answer the
following questions. Do the patterns of coordinated gaze in
ENA look different during typical sequences vs. those involving
repair?More importantly, can the gaze patterns from early phases
(pre-reference, reference, and post-reference) be used to predict
breakdowns later in the sequence, e.g., before the worker or the
instructor offers repair or during repair?

For this analysis, we included “repair” (n = 2; repair or no-
repair) as another unit of analysis in addition to the “dyad” and
“phase” units we had before. As can be observed in Figure 6,
gaze networks are significantly different between repair and no-
repair along the y-axis for each of the first three phases in the
reference-action sequence. The centroids of the mean networks
(solid squares) for these phases are separated along the y-axis, and
there is little vertical overlap in their confidence intervals. These
phases, which occur before or during any possible repair, are thus
potentially distinguishable along this dimension.

For the pre-reference phase, networks with repair are
significantly higher on the y-axis than networks without repair,
(meanno−repair = −0.46, meanrepair = −0.36, t = −2.17, p =
0.036, Cohen’s d = −0.25). Based on an inspection of the mean
networks on the left side of Figure 6, this difference appears to be
mostly due to the stronger connection between I.Gaze_Reference
and W.Gaze_Target in the sequences with repair, which pulls
the network centroids higher along the y-axis. This connection
denotes a situation in which the worker is looking toward the
target bread while the instructor is looking toward the referent.
Here, the worker may still be cognitively engaged in the previous
reference-action sequence, i.e., still looking toward the bread after
moving the previous reference object there, while the instructor
is already preparing their reference utterance for the current
reference-action sequence, leading to an eventual breakdown in
the interaction.

On the other hand, networks with repair are lower on
the y-axis than networks without repair for the reference
(meanno−repair = 0.057, meanrepair = −0.15, t = 2.12, p = 0.04,
Cohen’s d = 0.37) and post-reference (meanno−repair = 0.42,
meanrepair = 0.18, t = 2.79, p = 0.008, Cohen’s d = 0.45)
phases. These differences appear to be mostly due to stronger
connections with W.Gaze_Other (situated very low on the y-
axis) in the sequences with repairs, as shown in Figure 6. In
other words, the worker is gazing more toward non-referents
in these sequences. Also, the networks coming from sequences
without repairs appear to have stronger connections between
I.Gaze_Reference andW.Gaze_Reference, pulling these networks
higher along the y-axis. This observation implies that, when both
the instructor and worker are fixated on the reference object,
repairs are less likely to happen.

This analysis revealed that the pattern of coordinated gaze
identified in Analysis 1 shows both similarities and differences
during sequences involving a repair. More interestingly, the gaze
behaviors from phases early in the sequence, particularly the
pre-reference and reference phases, are visibly different when
a repair occurs later in the sequence than when a repair does

not occur later in the sequence. Thus, the need for repair can
theoretically be anticipated in advance by observing the pattern
of gaze behaviors early in a reference-action sequence.

5. Discussion

The overall goal of our analyses was to develop a more detailed
and nuanced understanding of coordinated referential gaze
patterns arising in physical dyadic collaborations. In particular,
we sought answers to three research questions: (1) How do a
collaborating dyad’s gaze behaviors unfold over the course of a
reference-action sequence? (2) How does the alignment of gaze
behaviors shift throughout the different phases of a reference-
action sequence? (3) How do coordinated gaze behaviors differ
in sequences that include breakdowns and/or repairs? Due to
the highly complex, dynamic, and interdependent nature of
coordinated two-party gaze behavior, we turned to a relatively
new analysis technique in order to explore these questions.
Epistemic network analysis is ideally suited for analyzing datasets
that capture the co-occurrence of social cues, including the gaze
behaviors of multiple participants.

Each of the three analyses we conducted revealed important
properties and patterns of coordinated referential gaze behavior
in relation to the three research questions. In the first analysis,
ENA was able to characterize and separate the five phases
of a reference-action sequence (pre-reference, reference, post-
reference, action, and post-action). We observed clear and
significant differences in shared gaze behavior across these
phases. This analysis also revealed a consistent cyclical pattern
of gaze behavior that progresses in an orderly and predictable
fashion through the two-dimensional abstract space created by
ENA. An important implication of this analysis is that the
tracked gaze of a collaborating dyad could be used in situ to
track their progression through a reference-action sequence. By
continuously applying ENA to segments of shared gaze behavior,
these segments could potentially be classified according to their
location within the ENA space as visualized in Figure 3.

In the second analysis, we explored the degree of alignment
between the gaze behaviors of interacting participants
throughout a reference-action sequence. We discovered a
general rise and fall in alignment throughout a sequence, as well
as a back and forth pattern of which participant was leading
the interaction in terms of their gaze behavior. The worker’s
gaze follows the instructor’s gaze during the beginning and end
of the sequence when the instructor is leading the interaction
by producing the verbal reference or preparing for the next
sequence. In contrast, the instructor’s gaze follows the worker’s
gaze during the middle of the sequence (post-reference and
action phases) when the instructor appears to monitor the
worker’s behaviors as the worker attempts to fixate on the
reference object and act on it appropriately.

In the third analysis, we explored the differences in gaze
behavior between sequences with and without repairs. ENA
revealed similar, but characteristically different, patterns of
gaze behavior for these two types of sequences. An important
implication of this analysis is that, by tracking the shared gaze
of a collaborative dyad, repairs can potentially be anticipated
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well in advance of their realization. By detecting when the
sequence has entered the repair cycle, steps could be taken
to quickly resolve any ambiguity or errors and move the
interaction back to the non-repair cycle characterizing successful
interactions.

There are a number of potential applications that could benefit
from the properties and patterns of coordinated gaze discovered
in this work. In particular, embodied artificial agents—including
social robots and virtual characters—could utilize this knowledge
to better align their gaze with human interlocutors and improve
coordination in collaborative interactions. This application
would require a shift from the descriptive analyses that we
carried out in the current work to the development of
synthesizing models that generate coordinative gaze behaviors.
By synthesizing gaze behaviors appropriately in coordination
with the detected gaze of a human interlocutor, the agent could
attempt to produce gaze behaviors that follow the same cyclical
pattern of natural humanlike gaze coordination as observed in
Analysis 1.

The analyses presented in this paper yield insights that could
be directly used to build computational models that generate
appropriate gaze cues seen in natural conversations. For example,
one such computational model could take the form of a state
machine where states are represented by possible gaze targets
(reference object, target object, conversational partner, etc.),
and transitions in this state machine would be triggered either
probabilistically (e.g., a high probability of gazing toward the
referent during the reference phase) or directly by events (e.g.,
gazing toward the target object in reaction to the conversational
partner’s gaze toward it). These probabilities and event triggers
would be updated from phase to phase according to the cyclical
pattern of phases involved in a reference-action sequence as
discovered in Analysis 1.

Analyses 2 and 3 similarly have specific implications for
modeling and generating gaze behaviors for embodied artificial
agents. Analysis 2 sheds light on the role of gaze in “mixed
initiative” conversations (Novick et al., 1996). Specifically, the
analysis suggests that the agent should shift between leading
with its gaze (producing gaze behaviors to which the user is
expected to respond) and following the user’s gaze (gazing in
response to the detected gaze behaviors of the user), as the
interaction progresses through the phases of a reference-action
sequence. Similarly, following the results of Analysis 3, an agent
could recognize misunderstandings by the user before a repair
is explicitly and verbally requested, potentially resulting in a
more seamless interaction. Furthermore, the agent could make
efforts to entirely avoid the patterns of gaze behavior that are
characteristic of sequences involving disruptive breakdowns and
repairs.

5.1. Future Work
The current work contributes to a growing body of knowledge on
the coordination of gaze behaviors in joint activities and points
toward a number of opportunities for more exploration within
this space. For example, future work may explore other types of
interactions, such as conversational or competitive interactions.
Another avenue of future research is exploring the tangible

implications of observed differences in gaze coordination for the
overall success of the interaction. These differences could take
the form of deviations from the observed cyclical pattern of
Analysis 1 or from the alignments of Analysis 2. For example,
there may be differences in participants’ comprehension or
task success, as was found in cross-recurrence analyses by
Richardson and Dale (2005). Future work should also seek
to uncover the ways in which gaze coordination can break
down, and how breakdowns manifest themselves in ENA
beyond our basic consideration of repairs in Analysis 3. This
work may include the development of verbal and nonverbal
strategies for bringing the interaction back on track when
a diversion in the desired pattern of gaze coordination is
observed.

Future work should also further investigate the temporal
aspects of the gaze behaviors observed in reference-action
sequences. The current work divides a reference-action sequence
into an ordered sequence of five phases, but the gaze fixations
within these phases are aggregated, and the low-level ordering
of fixations is lost. While scanpath analysis is commonly used
for analyzing temporal characteristics of gaze, scanpaths that
result from this analysis only represent the gaze behaviors
of individuals. Our analysis attempted to extract generalizable
patterns of gaze behavior by aggregating data across multiple
dyads and abstracting away the variability in gaze that results
from individual differences and changing contextual factors.
However, future work with ENA has the potential to extend
our findings by retaining the information on the order of gaze
fixations by moving from the bi-directional network graphs
used in the current work to uni-directional network graphs
and splitting each network node into a “sending” node and a
“receiving” node. In this representation, a connection from, e.g.,
a partner-fixation (sending) node to a target-fixation (receiving)
node would indicate a gaze fixation toward the target after a gaze
fixation toward a person.

6. Conclusions

In this paper, we presented work to develop a deeper
understanding of coordinated referential gaze in collaborating
dyads. The behavioral context for our analyses was the reference-
action sequence, a pattern of interaction in which one member
of the dyad makes a verbal reference to an object in the
shared workspace that the other member is expected to act
upon in some way. We chose a dyadic sandwich-making task
to study collaborative interactions that contain a large number
of such sequences. A series of analyses of data collected in
this task revealed how gaze coordination unfolded throughout
an interaction sequence, how the gaze behaviors of individuals
aligned at different phases of the interaction, and what gaze
patterns indicated breakdowns and repairs in the interaction.
We argue that our characterization of these patterns will
generalize beyond this specific task to any interactions that
involve reference-action sequences, as these sequences are
commonly observed across many kinds of interactions. In
addition to contributing to the growing body of knowledge on the
coordination of gaze behaviors in joint activities, this work offers
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a number of design implications for technologies that engage in
dyadic interactions with people.

We used epistemic network analysis for the investigation
presented in this paper and demonstrated the promise of ENA
as a general tool that could be used for analyses that target not
only gaze, but also gestures, language use, facial expressions,
cognitive states, and so on. The use of this powerful analytical
tool in different settings and in explorations of a variety of social
behaviors can significantly expand our knowledge on the nuances
of the coordination that naturally arises in successful joint human
activities. Additionally, these explorations will enable us to design
future technologies that utilize the newfound knowledge in order
to more effectively coordinate and collaborate with human users.
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