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Measurement error is omnipresent in psychological data. However, the vast majority

of applications of autoregressive time series analyses in psychology do not take

measurement error into account. Disregarding measurement error when it is present in

the data results in a bias of the autoregressive parameters. We discuss two models

that take measurement error into account: An autoregressive model with a white noise

term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation

study we compare the parameter recovery performance of these models, and compare

this performance for both a Bayesian and frequentist approach. We find that overall,

the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small)

sample sizes, psychological research would benefit from a Bayesian approach in fitting

these models. Finally, we illustrate the effect of disregarding measurement error in an

AR(1) model by means of an empirical application on mood data in women. We find

that, depending on the person, approximately 30–50% of the total variance was due to

measurement error, and that disregarding this measurement error results in a substantial

underestimation of the autoregressive parameters.

Keywords: autoregressive modeling, n = 1, measurement error, Bayesian modeling, idiographic, time series

analysis

1. Introduction

The dynamic modeling of processes at the within-person level is becoming more and more
popular in psychology. The reason for this seems to be the realization that inter-individual
differences, in many cases, are not equal to intra-individual differences. Indeed, studies that
compare interindividual differences and intraindividual differences usually do not harbor the
same results, exemplifying that conclusions based on studies of group averages (including cross-
sectional studies and panel data studies), cannot simply be generalized to individuals (Nezlek and
Gable, 2001; Borsboom et al., 2003; Molenaar, 2004; Rovine and Walls, 2006; Kievit et al., 2011;
Madhyastha et al., 2011; Ferrer et al., 2012; Hamaker, 2012; Wang et al., 2012; Adolf et al., 2015).

The increased interest in analyses at the within-person level, and the increasing availability
of technology for collecting these data, has resulted in an increase in psychological studies that
collect intensive longitudinal data, consisting of many (say 25 or more) repeated measures from
one or more individuals. A popular way to analyze these data currently is by autoregressive time
series (AR) modeling, either by modeling the repeated measures for a single individual using
classical n = 1 AR models, or by using multilevel extensions of these models, with the repeated
measures for each individual modeled at level 1, and individual differences modeled at level 2
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(Cohn and Tronick, 1989; Suls et al., 1998; Nezlek and Gable,
2001; Nezlek and Allen, 2006; Rovine and Walls, 2006; Moberly
and Watkins, 2008; Kuppens et al., 2010; Lodewyckx et al.,
2011; Madhyastha et al., 2011; Wang et al., 2012; De Haan-
Rietdijk et al., 2014). In an AR model of order 1 [i.e., an
AR(1) model], a variable is regressed on a lagged version of
itself, such that the regression parameter reflects the association
between this variable and itself at the previous measurement
occasion (c.f., Hamilton, 1994; Chatfield, 2004). The reason for
the popularity of this model may be the natural interpretation
of the resulting AR parameter as inertia, that is, resistance to
change (Suls et al., 1998). Resistance to change is a concept which
is considered to be relevant to many psychological constructs
and processes, including attention, mood and the development
of mood disorders, and the revision of impressions and opinions
(Geller and Pitz, 1968; Goodwin, 1971; Suls et al., 1998; Kirkham
et al., 2003; Kuppens et al., 2010; Koval et al., 2012).

However, a problem with the regular AR(1) model is that
it does not account for any measurement errors present in
the data. Although AR models incorporate residuals, which are
referred to as “innovations” or “dynamic errors,” these residuals
are to be distinguished from measurement error. Simply put, the
distinction between dynamic errors and measurement errors is
that dynamic errors carry over to next measurement occasions
through the autoregressive relationship, while measurement
errors are specific to one measurement occasion. Therefore, even
though taking measurement errors into account is considered
business as usual in many psychological studies of interindividual
differences, it is largely neglected in AR modeling. Two
exceptions are formed by Wagenmakers (2004) and Gilden
(2001)1, both of which concern studies on reaction time and
accuracy in series of cognitive tasks. Gilden notes that there
is evidence that some variance in reaction time is random
(measurement) error as a result of key-pressing in computer
tasks.Measurement error however is not limited to “accidentally”
pressing the wrong button or crossing the wrong answer, but
is made up of the sum of all the influences of unobserved
factors on the current observation, that do not carry-over to the
next measurement occasion. Disregarding measurement error
distorts the estimation of the effects of interest (Staudenmayer
and Buonaccorsi, 2005). This is quite problematic, considering
that in psychological studies it is often impossible to directly
observe the variable of interest, and it therefore seems likely (and
this seems generally accepted among psychological researchers)
that psychological research in general is prone to having noisy
data.

The aim of this study is therefore three-fold. First, we aim
to emphasize the importance of considering measurement error
in addition to dynamic error in intensive longitudinal studies,
and illustrate the effects of disregarding it in the case of the
n = 1 autoregressive model. Second, we aim to compare two
modeling strategies for incorporating measurement errors: (1)
fitting an autoregressive model that includes a white noise term

1Other exceptions are of course dynamic factor models, and other latent variable

models in which the measurement structure for multiple items is explicitly

modeled. Here we focus on applications in which each construct is measured with

one variable.

(AR+WN), and (2) fitting an autoregressive moving average
(ARMA) model. These modeling strategies are the two most
frequently suggested in the literature (e.g., in mathematical
statistics, control engineering, and econometrics, c.f., Granger
and Morris, 1976; Deistler, 1986; Chanda, 1996; Swamy et al.,
2003; Staudenmayer and Buonaccorsi, 2005; Chong et al., 2006;
Costa and Alpuim, 2010; Patriota et al., 2010). Third, our
aim is to compare the performance of these models for a
frequentist and a Bayesian estimation procedure. Specifically,
for the frequentist procedure we will focus on a Maximum
Likelihood (ML) procedure based on the state-space modeling
framework, which is a convenient modeling framework for
psychological longitudinal modeling, as it readily deals with
missing data, and is easily extended to multivariate settings, or to
include latent variables (Harvey, 1989). The Bayesian alternative
shares these qualities, and has the additional advantage that the
performance of the estimation procedure is not dependent on
large samples (Dunson, 2001; Lee and Wagenmakers, 2005),
while the performance of the frequentist ML procedure depends
on asymptotic approximations, and in general requires large
samples. This is convenient for the modeling of intensive
longitudinal data, given that large amounts of repeated measures
are often difficult to obtain in psychological studies. By means
of a simulation study we will evaluate the parameter recovery
performance of the Bayesian procedure for the ARMA(1,1) and
the AR+WNmodel, and compare it to the ML procedure.

This paper is organized as follows.We start by introducing the
AR(1) model, ARMA(1,1) model, and the AR(1)+WN model,
and discussing their connections. After that, we present the
methods for the simulation study, followed by the results. We
present an empirical application concerning the daily mood of
eight women, in order to further illustrate the consequences of
disregarding measurement error in practice, and we end with a
discussion.

2. Models

In this section we present the AR(1) model, and explain the
difference between the dynamic errors that are incorporated
in the AR(1) model, and measurement errors. After that we
will introduce models that incorporate measurement errors,
namely the autoregressive model with an added white noise term
(AR(1)+WN model), and the autoregressive moving average
(ARMA) model.

2.1. The AR(1) Model
In order to fit an ARmodel, a large number of repeated measures
is taken from one individual. Each observation, or score, yt in the
AR model consists of a stable trait part—the mean of the process
denoted as µ, and a state part ỹt that reflects the divergence from
that mean at each occasion. In an AR model of order 1, the
state of the individual at a specific occasion ỹt depends on the
previous state ỹt−1, and this dependency is modeled with the AR
parameter φ. Specifically, the AR(1) model can be specified as

yt = µ + ỹt

ỹt = φỹt−1 + ǫt (1)
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ǫt ∼ N
(

0, σ 2
ǫ

)

. (2)

For a graphical representation of the model, see Figure 1A.
A positive value for φ indicates that the score at the current
occasion will be similar to that at the previous occasion— and
the higher the positive value for φ, the more similar the scores
will be. Therefore, a positive AR parameter reflects the inertia, or
resistance to change, of a process (Suls et al., 1998). A positive AR
parameter could be expected for many psychological processes,
such as that of mood, attitudes, and (symptoms of) psychological
disorders. A negative φ indicates that if an individual has a high
score at one occasion, the score at the next occasion is likely
to be low, and vice versa. A negative AR parameter may be
expected for instance in processes that concern intake, such as
drinking alcoholic beverages: If an individual drinks a lot at one
occasion, that person may be more likely to cut back on alcohol

A

B

C

FIGURE 1 | (A) Graphical representation of an AR(1) model. (B) Graphical

representation of an AR(1)+WN model. (C) Graphical representation of an

ARMA(1,1) model.

the next occasion, and the following occasion drink a lot again,
and so on Rovine and Walls (2006). An AR parameter close to
zero indicates that a score on the previous occasion does not
predict the score on the next occasion. Throughout this paper
we consider stationary models, which implies that the mean and
variance of y are stable over time, and φ lies in the range from−1
to 1 (Hamilton, 1994). The innovations ǫt reflect that component
of each state score ỹt that is unpredictable from the previous
observation. The innovations ǫt are assumed to be normally
distributed with a mean of zero and variance σ 2

ǫ .

2.2. Dynamic Errors vs. Measurement Errors
The innovations ǫt perturb the system and change its course
over time. Each innovations is the result of all unobserved events
that impact the variable of interest at the current measurement
occasion, of which the impact is carried over through the AR
effect to the next few measurement occasions. Take for example
hourly measurements of concentration: Unobserved events such
as eating a healthy breakfast, a good night sleep the previous
night, or a pleasant commute, may impact concentration in
the morning, resulting in a heightened concentrating at that
measurement occasion. This heightened concentration may then
linger for the next few measurement occasions as a result of an
AR effect. In other words, the innovations ǫt are “passed along”
to future time points via φ, as can be seen from Figure 1A, and
this is why they are also referred to as “dynamic errors.”

Measurement errors, on the other hand, do not carry over
to next measurement occasions, and their effects are therefore
restricted to a single time point. This can also be seen from
Figure 1B: The dynamic errors are passed from yt−1 to yt through
the AR effect while the measurement errors ωt are specific
to each observation. Classical examples of measurement error,
which are moment-specific, are making an error while filling in a
questionnaire, or accidentally pressing a (wrong) button during
an experiment (e.g., Gilden, 2001). However, any unobserved
effect of which the influence is not carried over to the next
measurement occasion may also be considered as measurement
error, rather than dynamic error. The only distinguishing
characteristic of measurement errors and dynamic errors is that
the latter’s influence lingers for multiple measurement occasions.
Therefore, in practice, what unobserved effects will end up as
measurement error, andwhat effects will end up as dynamic error,
will depend largely on the measurement design of the study, such
as on the frequency of the repeated measures that are taken. For
example, some unobserved effects may carry-over from minute
to minute (e.g., having a snack, listening to a song), but not
from day to day—if measurements are then taken every minute,
these unobserved effects will end up in the dynamic error term,
but if measurements are taken daily, such effects will end up
in the measurement error term. As such, the more infrequent
measurements are taken, the more measurement errors one can
expect to be present in the data, relative to the dynamic errors.

In psychological research measurement is complicated, and
likely to be noisy. As such, the contribution of measurement
error variance to the total variance of the measured process may
be considerable. Ignoring this contribution will result in biased
parameter estimates. Staudenmayer and Buonaccorsi (2005) have
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shown that in the case of an AR(1) model, φ will be biased
toward zero. Specifically, the estimated AR coefficient φ̂ will be
equal to (1 − λ) ∗ φ, where φ is the true AR parameter and
λ is the proportion of measurement error variance to the total
variance. Hence, in order to prevent the measurement error from
biasing estimates of φ, it is necessary to take measurement error
into account in the modeling procedure. This approach has two
advantages: First, it leads to less biased estimates of φ, and second,
it allows us to investigate to what extent the measurements are
determined by measurement error.

2.3. Incorporating Measurement Error: The
AR(1)+WN Model
A relatively simple way to incorporate measurement error
in dynamic modeling is to add a noise term to the model,
typically white noise, to represent the measurement error. White
noise is a series of random variables that are identically and
independently distributed (Chatfield, 2004). For the AR model
with measurement error (AR(1)+WN), the white noise ωt is
simply added to each observation yt (see Figure 1B). We assume
that this white noise is normally distributed with a mean of zero
and variance σ 2

ω. This results in the following model specification
for the AR(1)+WNmodel

yt = µ + ỹt + ωt

ỹt = φỹt−1 + ǫt (3)

ǫt ∼ N
(

0, σ 2
ǫ

)

(4)

ωt ∼ N
(

0, σ 2
ω

)

. (5)

Important to note is that when φ is equal to zero, the
measurement error and dynamic error will no longer be
discernible from each other, because they are only discernible
from each other from the merit that the innovations are
passed to future time points through φ, while the measurement
errors are not. In that case, the AR(1)+WN model is no
longer identified, which is problematic for estimating the model
parameters. Further note that when φ is nonzero, the higher
|φ|, the easier it will be to discern measurement error from the
innovations, and as such the model will be easier to identify
empirically, and likely easier to estimate. Hence, in this sense
the (empirical) identification of the AR(1)+WN model may be
seen as dimensional rather than dichotomous, ranging from
unidentified when φ is zero, to maximally empirically identified
when |φ| is one.

2.4. Incorporating Measurement Error: The
ARMA(1,1) Model
Another way to incorporate measurement error into an AR(1)
model that is relatively frequently suggested in the literature
on dynamic modeling with measurement error, is to use an
autoregressive moving average (ARMA) model (see for instance:
Granger and Morris, 1976; Deistler, 1986; Chanda, 1996; Swamy
et al., 2003; Wagenmakers et al., 2004; Staudenmayer and
Buonaccorsi, 2005; Costa and Alpuim, 2010; Patriota et al., 2010).
Granger and Morris (1976) have shown that the AR(p)+WN
model is equivalent to an ARMA(p,p) model, where p stands

for the number of lags included in the model. As a result,
an ARMA(1,1) model can be used as an indirect way to fit
an AR(1) model and take measurement error into account
(Granger and Morris, 1976; Staudenmayer and Buonaccorsi,
2005; Wagenmakers et al., 2004). One advantage of fitting an
ARMA(1,1) model rather than fitting an AR(1)+WN model
directly, is that it can be estimated with a wide range of estimation
procedures, and a wide range of software, including for instance
SPSS. A second important advantage is that the ARMA(1,1) is
identified when the value of φ is equal to zero, so that in practice
it may be easier to estimate than the AR(1)+WNmodel.

An ARMA(1,1) process consists of an AR(1) process, and a
moving average process of order 1 [MA(1)]. In anMA(1) process,
the current state ỹt depends not only on the innovation, ǫ∗t , but
also on the previous innovation ǫ∗t−1, through moving average

parameters θ .2 For example, consider the daily introverted
behavior for a specific person. On a certain day, the person
has a shameful experience, resulting in a strong boost (e.g., an
innovation or perturbation) in introverted behavior. The next
day, this person may display lingering heightened introverted
behavior from the previous day as a result of an AR effect, but
there may also be a delayed response to the perturbation from
yesterday, for instance because the person remembers the events
of the previous day. The strength of the delayed response depends
on the size of θ . The ARMA(1,1) model, which is depicted in
Figure 1C, can be specified as:

yt = µ + ỹt

ỹt = φỹt−1 + θǫ∗t−1 + ǫ∗t (6)

ǫ∗t ∼ N
(

0, σ 2∗
ǫ

)

. (7)

The ARMA(1,1) model is characterized by four parameters, that
is, the mean µ, AR parameter φ, moving average parameter θ ,
and innovation variance σ 2∗

ǫ . The model is stationary when φ lies
between –1 and 1, and is invertible if θ lies between −1 and 1
(Chatfield, 2004; Hamilton, 1994).

If the true underlying model is an AR(1)+WN model, the φ

and µ parameter in an ARMA(1,1) will be equal to those of the
AR(1)+WNmodel. Granger and Morris (1976) have shown that
the innovation variance σ 2

ǫ and measurement error variance σ 2
ω

can be calculated from the estimated θ , φ, and σ 2∗
ǫ as follows (see

also Staudenmayer and Buonaccorsi, 2005),

σ 2
ω = (−φ)−1θσ 2∗

ǫ , (8)

σ 2
ǫ = (1+ θ2)σ 2∗

ǫ − (1+ φ2)σ 2
ω. (9)

It is important to note that while the AR(1)+WN models is
equivalent to an ARMA(1,1) model, an ARMA(1,1) models is
not necessarily equivalent to an AR(1)+WN model. That is,
it is only possible to transform the ARMA(1,1) parameters to
AR(1)+WN model parameters under these restrictions in line
with an underlying AR(1)+WN model (Granger and Morris,
1976; Staudenmayer and Buonaccorsi, 2005):

2We add the ∗ to ǫ, to distinguish the innovations for the ARMA(1,1,) model from

the innovations of the AR(1)+WNmodel.
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1

1+ φ2
>

θ

1+ θ2
(−φ−1) ≥ 0 (10)

3. Simulation Study Methods

We present a simulation study in which we simulate data
according to an AR process with added measurement error.
We fit an AR(1) model to the data in order to illustrate the
effects of ignoring any present measurement error, and compare
the performance of the AR(1) model to the AR(1)+WN, and
ARMA(1,1) model, which both account for measurement error.
Furthermore, we will compare the performance of the Bayesian
and frequentist estimation of these models.

3.1. Frequentist Estimation
For the frequentist estimation of the AR(1) model and the
ARMA(1,1) model a relatively wide range of procedures and
software is available. Potential estimation procedures for fitting
the AR(1)+WN model include specially modified Yule-Walker
equations, and modified Least Squares estimation procedures
(Chanda, 1996; Staudenmayer and Buonaccorsi, 2005; Dedecker
et al., 2011). However, we opt to use the (linear, Gaussian)
state-space model, for which the Kalman Filter (Harvey, 1989;
Kim and Nelson, 1999) is used to estimate the latent states,
while Maximum Likelihood is used to estimate the model
parameters (c.f., Staudenmayer and Buonaccorsi, 2005, for this
approach, but with the measurement error variance considered
as known). This is an especially convenient modeling framework
for psychological longitudinal modeling, as it readily deals with
missing data, and is easily extended to multivariate settings, or to
include latent variables (c.f., Hamilton, 1994; Harvey, 1989; Kim
and Nelson, 1999).

In the state-space model representation, a vector of observed
variables is linked to a vector of latent variables—also referred
to as “state variables”—in the measurement equation, and the
dynamic process of the latent variables is described through a
first-order difference equation in the state equation (Hamilton,
1994; Harvey, 1989; Kim and Nelson, 1999). That is, the
measurement equation is

yt = d + Fỹt + ωt

ωt ∼ MvN (0,6ω) ,
(11)

where yt is anm×1 vector of observed outcome variables, ỹt is an
r×1 vector of latent variables, d is anm×1 vector with intercepts
for the observed variables, F is anm× rmatrix of factor loadings,
and ωt is an m × 1 vector of residuals that are assumed to be
multivariate normally distributed with zero means and m × m
covariance matrix 6ω. The state equation (also referred to as the
transition equation) is specified as

ỹt = c+ Aỹt−1 + ǫt

ǫt ∼ MvN (0,6ǫ) ,
(12)

where c is an r×1 vector of intercepts for the latent variables,A is
an r× rmatrix of structural coefficients, and ǫt is an r× 1 vector
of residuals, which are assumed to be multivariate normally
distributed with zero means and r × r covariance matrix 6ǫ .

The previously discussed AR(1) and AR(1)+WN model are
both already specified in terms of a state-space representation
in Equations (1) through (5) (simplified where possible). For the
state-space model specification for the ARMA(1,1) model vector
d is µ, F is [ 1 0 ]T , ỹt is [ ỹ1t ỹ2t ]

T , 6ω is a zero matrix, c is a zero
vector, A is 2 × 2 matrix

[

φ 0
1 0

]

, and 2 × 2 matrix 6ǫ is equal to

HTH with H equal to [ σ1ǫ∗ θσ1ǫ∗ ], where superscript T indicates
the transpose.

To fit the frequentist state-space models we use R, with R
packages FKF (Kalman Filter; Luethi et al., 2010) combined with
R base package optim (for maximum likelihood optimization;
R Development Core Team, 2012). Within optim we used
optimization method l-bfgs-b, with lower bounds and upper
bounds for φ and θ of −1 and 1, -Inf and Inf for µ, and 0 and
Inf for σ 2

ǫ , σ
2
ω, and σ 2

ν .

3.2. Bayesian Estimation
Bayesian modeling shares a lot of conveniences with the
frequentist state-space modeling framework: For instance, like
frequentist state-space modeling procedures, Bayesian modeling
can deal conveniently with missing data, is flexible in modeling
multivariate processes, and in including latent variables in the
model. Particular to Bayesian modeling is the relative ease in
extending models to a hierarchical or multilevel setting (e.g.,
Lodewyckx et al., 2011; De Haan-Rietdijk et al., 2014). Another
advantage may be the possibility to include prior information
in the analysis, based, for instance, on expert knowledge or
results from previous research (e.g., Rietbergen et al., 2011, 2014).
Finally, the Bayesian estimation procedures are not dependent
on large sample asymptotics like the frequentist procedures,
and may therefore perform better for smaller samples (Dunson,
2001; Lee and Wagenmakers, 2005). Because currently there is
no literature on the Bayesian estimation performance for the
AR(1)+WN model, we will compare the performance of the
Bayesian AR(1), ARMA(1,1), and AR(1)+WN model with the
frequentist modeling equivalents in a simulation study.

In Bayesian estimation the information in the data, provided
through the likelihood, is combined with a prior distribution
using Bayes’ rule (c.f., Gelman et al., 2003; Hoijtink et al., 2008).
The prior distribution is specified such that it contains prior
information the researcher would like to include in the analysis.
Here we prefer to specify uninformative prior distributions that
contain minimal prior information, such that their influence is
minimal. Specifically, we use the following prior specifications
across the three models: A uniform(0, 20) prior on σ 2

ω, σ 2
ǫ , and

σ 2
ν , a uniform(−1, 1) prior on φ and θ , and a normal(0, 0.001)

prior for µ (specified with precision rather than variance). When
the prior distribution and the likelihood are combined using
Bayes’ rule, this results in the posterior probability distribution
or density of the estimated parameters. Summary statistics
based on this distribution can then be used to summarize the
information on the estimated parameters, for instance, the mean
ormedianmay be used to obtain a point estimate for an estimated
parameter, and the posterior standard deviation can be used to
describe the uncertainty around that point estimate.

Although it is possible to obtain the posterior distribution
analytically for some simple models, the Bayesian estimation
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of more complex models is usually done with Markov Chain
Monte Carlo algorithms, such as Gibb’s sampling, which relies on
consecutively samples from the conditional distributions of the
parameters (rather than directly from their joint distribution, c.f.,
Casella and George, 1992); when the procedure has converged,
one effectively samples from the (joint) posterior distribution.
These samples can then be used as an approximation of the
underlying posterior distribution, which in turn can be used to
obtain point estimates for the parameters. A particularly desirable
feature of MCMC procedures is that, based on the samples of the
estimated parameters, it is also possible to calculate new statistics
and obtain their posterior distribution. For instance, based on the
estimated parameters θ , φ, and σ 2∗

ǫ for the ARMA(1,1) model,
we will calculate the innovation variance σ 2

ǫ and measurement
error variance σ 2

ω in each sample, such that we obtain posterior
distributions for these parameters. In our simulations we use the
free open source software JAGS (Plummer, 2003) which employs
a Gibb’s sampling algorithm, in combination with the R package
Rjags (Plummer et al., 2014).

3.3. Simulation Conditions
Throughout the simulation study, we simulated 1000 data sets
per condition according to the AR(1)+WN model specified in
Equations (3–5) using R (R Development Core Team, 2012).
For all conditions, the mean of the model is fixed to 2. The
study consists of three parts. First, we examine the effect of the
proportion of measurement error variance to the total variance, on
parameter recovery. The total variance for the AR(1)+WN is the
sum of the variance for an AR(1) model and the measurement
error variance: σ 2

total
= σ 2

ǫ /(1 − φ2) + σ 2
ω (c.f., Harvey, 1989;

Kim and Nelson, 1999). To vary the proportion of σ 2
ω to the

total variance, φ and σ 2
ǫ are both fixed to 0.5 in this study

while the measurement error variance is varied. Specifically, the
measurement error variance takes on the values 0, 0.1, 0.2, 0.3,
0.5, 0.7, 1, 2, 4, and 12, which results approximately in the
following proportions of measurement error variance to the total
variance: 0, 0.13, 0.23, 0.31, 0.43, 0.51, 0.6, 0.75, 0.86, and 0.95.

Second, we examine the effect of the size of φ on parameter
recovery. We vary φ over the values −0.75, −0.5, −0.25, 0, 0.25,
0.5, and 0.75. The proportion of measurement error variance to
the total variance of the AR(1)+WN process is fixed to 0.3 here,
through varying the innovation variances σ 2

ǫ by approximately
1.2, 1.1, 0.9, 0.5, 0.9, 1.1, and 1.2 respectively.

Third, we examine the effects of sample size. In part 1 and
2 of the study we use a sample size 100 repeated measures. We
based this number roughly on what one may expect for research
in psychology: Typically, what we see in time series applications
in psychology is a range of about 60–120 repeated measures per
person (e.g., see Nezlek and Gable, 2001; Rovine andWalls, 2006;
Madhyastha et al., 2011; Ferrer et al., 2012; Wang et al., 2012;
Adolf et al., 2015). However, in preliminary analyses we found
difficulties in estimating the model with a small sample size,
especially for the frequentist estimation procedure, that pointed
to empirical underidentification (we elaborate on this in the next
section). Therefore, we varied sample size by 100, 200, and 500.
For this part of the study σ 2

ǫ , σ
2
ω, and φ were fixed to 0.5, implying

a proportion of measurement error variance to the total variance
of 0.43.

We judge the performance of each model based on: (a) its bias
in the estimates; (b) the absolute error in the estimates; and (c)
coverage rates for the 95% confidence or credible intervals. It is
not clear whether Bayesian 95% credible intervals should have
exactly 95% coverage rates, however, with uninformative priors
we would expect this to be the case. Moreover, we consider it
informative to see how often the true value lies within the credible
interval across multiple samples (e.g., if this occurs very rarely
this seems problematic for making inferences).

For the coverage rates of the variances estimated with the
frequentist ML procedure, we calculate the confidence intervals
based on a χ2 distribution with n − 1 degrees of freedom as

follows: CI( (n−1)s2

χ2
1−α/2

,
(n−1)s2

χ2
α/2

), where n is the sample size, and s2 is

the estimated variance.

3.4. Expectations
For part 1, we expect that all models will decrease in performance
(i.e., more bias and absolute error, lower coverage rates) as the
proportion of measurement error variance increases, because an
increase in random noise should make it harder to distinguish an
(autoregressive) effect. Furthermore, we expect that the decrease
in performance will be larger for the AR(1) model than for
the ARMA(1,1) and AR(1)+WN model. Specifically, based on
Staudenmayer and Buonaccorsi (2005), we expect a bias in the
estimates of φ in the AR(1) model of approximately 0, −0.07,
−0.12, −0.16, −0.21, −0.26, −0.30, −0.38, −0.43, and −0.47,
given that the proportions of measurement error variance are 0,
0.13, 0.23, 0.31, 0.43, 0.51, 0.6, 0.75, 0.86, and 0.95.

For part 2, we expect that the AR(1)+WN and ARMA(1,1)
models will improve in performance as the value of |φ| increases,
given that σ 2

ω and σ 2
ǫ should be more easily distinguished from

each other as |φ| approaches 1. We are specifically interested
in the performance of the AR(1)+WN model compared to the
ARMA(1,1) model when |φ| is relatively small. Given that the
ARMA(1,1) model is identified regardless of the value of φ, we
expect the ARMA(1,1) model may converge better, and therefore
to perform better when φ is relatively close to zero than the
AR(1)+WNmodel, which is no longer identified when φ is equal
to zero.

For part three, we expect that performance will improve
as sample size increases for the ARMA(1,1) model and the
AR(1)+WN model, both in the frequentist and Bayesian
estimation procedure. Finally, we expect that the Bayesian
procedure will perform better than the frequentist state-space
procedures for smaller sample sizes, given that both modeling
procedures have similar benefits, but the Bayesian estimation
procedure is not dependent on large sample asymptotics
(Dunson, 2001; Lee and Wagenmakers, 2005).

4. Simulation Study Results

In this section we present the results of the simulation study. As
was mentioned before, for a sample size of 100 we found some
convergence issues especially for the frequentist ML procedure.
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Given that convergence is an important precondition for
obtaining reasonable parameter estimates, we start by discussing
the convergence of the Bayesian models and frequentist models
across the different parts of the simulation study. After that, we
discuss the parameter recovery performance for each condition
specific for each of the three parts of the simulation study. We
end with a summarizing conclusion.

4.1. Convergence of the Bayesian Procedures
For the Bayesian procedures we obtained three chains of 40,000
samples each for each replication, half of which was discarded
as burn-in. We judged convergence based on the multivariate
Gelman-Rubin statistic and autocorrelations for all replications,
and we inspected the mixing of the three chains visually a
number of replications (c.f., Gelman and Rubin, 1992; Brooks
and Gelman, 1998). For the AR(1) model the chains mixed
well, the Gelman Rubin statistic was generally equal to one, and
the autocorrelations for the parameters decreased exponentially
across all conditions.

For the ARMA(1,1) the chains generally mixed well, and the
Gelman Rubin statistic was equal to one across all conditions.3

The autocorrelations for the parameters decreased slower than
for the AR(1) model, and decreased most slowly when the
proportion of measurement error variance was higher than 50%
or |φ| was zero.

For the AR(1)+WNmodel, overall the chains mixed well and
the Gelman Rubin Statistic was equal to one formost replications.
For approximately 1–2% of the data sets the Gelman Rubin
statistic was larger than 1.1, indicating possible non-convergence,
with the exception of the condition where φ = 0.75, for
which it was 8%. Closer inspection indicated that these problems
usually originated and were limited to µ. The percentage of non-
convergence is larger for the condition φ = 0.75, most likely
because when φ is strong and positive it is most difficult to
estimate µ because observations may tend to linger longer above
or below the mean. The autocorrelations for the AR(1)+WN
model are higher overall, and slower to decrease than those for
the AR(1) and ARMA(1,1) model across all conditions. More
measurement error and a closer |φ| to zero, was associated with
more slowly decreasing autocorrelations.

4.2. Convergence of the (Frequentist) ML with
State-space Modeling Procedures
For the ML procedure we encountered three types of problems:
(1) negative standard errors for the estimated parameters , (2)
optim failing to initialize (more rarely), and (3) Heywood cases
(negative variances) for the measurement error variance or the
innovation variance. The first and second type of problem could
usually be resolved by providing alternative starting values and
rerunning the model. For a small percentage of data sets, five

3By visually inspecting the chains for µ in the ARMA(1,1) model, we found some

extreme values for some of the Gibb’s samples (visible as large “spikes” in the

chains). To limit these extreme values we adjusted the normal prior for µ to have a

smaller variance (10), however this did not resolve the issue completely. As a result,

the posterior standard deviation for µ was very large, however, the effects on the

point estimates and credible intervals seem limited when we compare these results

for µ to those of the other models.

sets of starting values still did not resolve these issues (for the
number of data sets per condition, see Table A1 in Supplementary
Materials). These data sets are excluded from the parameter
recovery results. When sample size was increased to 200 or
500 repeated measurements, these problems were no longer
encountered.

The third type of problem—Heywood cases—was much more
prevalent, and could generally not be resolved by providing
different starting values. For the AR(1)+WNmodel, for 10–55%
of the replications σ 2

ω, or more rarely σ 2
ǫ , were estimated at the

lower bound of zero. For the ARMA(1,1) model, we similarly
detected Heywood cases for σ 2

ω and σ 2
ǫ (note that σ 2

ω and σ 2
ǫ are

calculated a posteriori based on the estimated φ, θ and σ 2∗
ǫ by

means of Equations 8 and 9). In the case that for the AR(1)+WN
model σ 2

ω or σ 2
ǫ were estimated at the lower bound, usually a

Heywood case would also observed for the ARMA(1,1) model
for that replication. The proportions of Heywood cases for σ 2

ω

and σ 2
ǫ across all conditions are reported in Table A1 in the

Supplementary Materials.
The number of Heywood cases increased when: (1) φ got

closer to zero, such that it is harder to discern measurement
errors from innovations (2) when there was very little
measurement error, such that σ 2

ω was already close to zero, and
(3) There was a lot of measurement error, such that all parameter
estimates were uncertain (large standard errors). This indicates
issues of empirical identification, and as such we expected these
issues to decrease as sample size increases.

The Heywood cases for σ 2
ǫ and σ 2

ω decreased as sample size
increased—however, the issues were not resolved completely: For
n = 200 almost 30% of the data sets still returned a Heywood
case, and for n = 500 almost 13% still returned a Heywood
case. Given that for smaller sample sizes (e.g., less than 500),
which are much more common in psychological studies, the
proportion of replications with Heywood cases was quite large
for many conditions, this seems quite problematic. In practice,
encountering such a result may lead a researcher to erroneously
conclude that there most likely is no considerable measurement
error variance, so that a regular AR(1) model should suffice.

In the following sections, where we discuss the parameter
recovery results, the data sets with Heywood cases for σ 2

ω or σ 2
ǫ

are included in the results, because to exclude so many data sets
would make a fair comparison to the Bayesian procedure (for
which no data sets need to be excluded) problematic. However,
the results with these data sets excluded for the ML AR(1)+WN
model and ARMA(1,1) model are presented and discussed in
Supplementary Materials. Finally note that, in contrast to our
expectations, in the ML procedure the ARMA(1,1) model does
not seem to converge more easily than the AR(1)+WNmodel. In
general it seems that in order to properly estimate and distinguish
the measurement error variance from the innovation variance
using ML, quite large sample sizes are required.

4.3. Parameter Recovery for Different
Proportions of Measurement Error
In general, as the proportion of measurement error increases,
the estimated parameters become increasingly more biased,
the absolute errors become larger, and coverage rates become
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lower, as expected. In Figure 2 we provide plots of the 95%
coverage, absolute errors, and bias for eachmodel, condition, and
parameter. As can be seen from this figure, overall, the Bayesian
AR(1)+WN model outperforms the other procedures in terms
of coverage rates and absolute errors, and for the variance
parameters also in terms of bias. TheML state-space AR(1)+WN
model performs second-best overall, and performs the best for
φ in terms of bias. The Bayesian and frequentist AR(1) and
ARMA(1,1) models perform relatively poorly in all respects.
However, the ARMA(1,1) models result in better coverage rates
for φ than the AR(1) models, so that an ARMA(1,1) model is still
preferred over a simple AR(1) model. Below, we will discuss the
results in more detail, per parameter.

For µ, all models perform similarly well in terms of bias and
absolute error, as can be seen from the top-left panel of Figure 2.
In terms of coverage rates, the Bayesian AR(1) and AR(1)+WN
model outperform the other models for µ, most pronouncedly
when the proportion of measurement error is high.

For φ, the models that perform the best in terms of bias are the
ML AR(1)+WN model, followed by the Bayesian AR(1)+WN
model (see the top-right panel in Figure 2). The bias for φ in
both AR(1) models is in line with our expectations, increasing
from approximately 0 to −0.5 as measurement error increases.
As can be seen from the top-right panel of Figure 2, in terms of
absolute error for φ, the Bayesian AR(1)+WN model performs
the best, followed by the ML AR(1)+WN model. The top-
right panel of Figure 2 shows that the coverage rates for φ

FIGURE 2 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across different proportions of measurement error variance to the total variance.
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based on the 95% CI’s for the Bayesian ARMA(1,1) model are
consistently higher than those for the other models, however,
this is a result of having wider credible intervals, rather than a
result of more precise estimates for φ. The coverage rates for the
Bayesian AR(1)+WN model are most stable across the different
proportions of measurement error variance. The coverage rates
for this Bayesian model are generally higher than 0.954, only
dropping below 0.95 when 75% or more of the total variance is
measurement error variance. In comparison, theMLAR(1)+WN
model starts with a coverage rate of approximately 0.95 for φ

when measurement error is absent, and the coverage decreases
as measurement error increases (with a lowest coverage of 0.55
when 95% of the variance is due to measurement error). The
ML ARMA(1,1) model and the Bayesian and ML AR(1) models
perform the worst, as can be seen from Figure 2. Note that for
the AR(1) models, the coverage rates for φ are already below 90%
when the proportion of measurement error variance is as little
as 0.13.

In the bottom panel of Figure 2 the results for σ 2
ω and σ 2

ǫ are
displayed. When the proportion of error variance is larger than
about 0.3, the Bayesian AR(1)+WN model starts to outperform
the ML AR(1)+WN model in terms of bias for σ 2

ω and σ 2
ǫ .

Further, it can be seen from Figure 2 that for the AR(1)+WN
models, when the proportion of measurement error is small, the
measurement error variance is slightly overestimated, while when
the proportion of measurement error is large, the measurement
error variance is underestimated. The coverage rates are the
highest for the Bayesian AR(1)+WN and ARMA(1,1) model.
Note that for the ARMA(1,1) model σ 2

ω and σ 2
ǫ are calculated

based on the estimated ARMA(1,1) parameters. For the Bayesian
model this was done in each Gibbs sample by means of Equations
(8) and (9), resulting in a posterior distribution for σ 2

ω and σ 2
ǫ .

However, depending on the specific values of the ARMA(1,1)
parameters in each Gibbs sample, σ 2

ω and σ 2
ǫ may become

quite large or even negative. As a result, the posterior standard
deviations and credible intervals for σ 2

ω and σ 2
ǫ in the Bayesian

ARMA(1,1) model can be quite large, including negative and
large positive values. The confidence intervals for the variances
parameters in frequentist procedures are consistently too narrow,
which results in low coverage rates, as can be seen from the
bottom panel of Figure 2. As such, for the two variances, the
Bayesian AR(1)+WN model performs best in terms of coverage
rates, followed by the Bayesian ARMA(1,1) model (which has
higher coverage rates, but much wider intervals), and the ML
AR(1)+WN model. The same pattern holds for the absolute
errors as can be seen in Figure 2.

4.4. Parameter Recovery for Different Values of φ
For this part of the study, the value of φ was varied from −0.75
to−0.5,−0.25, 0, 0.25, 0.5, and 0.75. As can be seen from the top-
left panel of Figure 3, for µ all the models perform very similarly
in terms of bias, absolute errors, and coverage rates. The absolute

4While it may seem undesirable that the Bayesian model has “too high” coverage

rates, indicating too large credible intervals or exaggerated uncertainty about the

estimated parameters, it is important to note that compared to the ML model, the

Bayesian estimates actually have smaller posterior standard deviations than theML

standard errors for φ.

errors and bias increase as φ becomes larger, because when φ is
strong and positive, observations may tend to linger longer above
or below the mean than when φ is weak or negative, making it
harder to estimate µ.

As can be seen from the top-right and bottom panel of
Figure 3, the results for φ and the variance parameters are
symmetric for negative and positive values of φ (or mirrored
in the case of bias). As such, we will discuss these results in
terms of |φ|. For the parameters φ, σ 2

ǫ and σ 2
ω, performance

increases as |φ| increases, except the AR(1) models, for which
it is the opposite. Overall, the Bayesian AR(1)+WN performs
best, followed by respectively the ML AR(1)+WN model, the
Bayesian ARMA(1,1) model, and theMLARMA(1,1) model. The
performance of the latter three models decreases considerably
more as |φ| decreases than that of the Bayesian AR(1)+WN
model, as can be seen from Figure 3.5 For the two variances,
the ML AR(1)+WN model outperforms the Bayesian model in
terms of bias. Finally, we find that when |φ| is relatively close to
one, the measurement error variance is underestimated, however,
when |φ| is relatively small, the measurement error variance was
actually overestimated, as can be seen from the bottom panel of
Figure 3.

4.5. Parameter Recovery for Different Sample
sizes
For this part of the simulation study, the sample size was varied
from 100 to 200 and 500. As shown in Figure 4, as sample size
increases, parameter recovery improves: Bias and absolute errors
decrease, while coverage rates become closer to 0.95. We Further,
the ML AR(1)+WN results become more similar to those of the
Bayesian AR(1)+WN model as sample size increases, although
the Bayesian model still outperforms the ML model in terms of
absolute error and coverage: The Bayesian procedure results in
higher coverage rates, but less wide intervals, that is, in more
precise estimates than the ML procedure for φ. Note that the
performance of the ML and Bayesian ARMA(1,1) models only
near the performance of the AR(1)+WN models as sample size
has increased to 500 observations.

4.6. Conclusion
Overall, the Bayesian AR(1)+WN model performs better than
the other five procedures we considered. We expected that
the ARMA(1,1) models may outperform the AR(1)+WN
models in parameter recovery, because we expected this model
to have less trouble with identification and convergence.
Interestingly, although the Bayesian ARMA(1,1) model seems
to converge more easily than the Bayesian AR(1)+WN model,
the AR(1)+WN model still outperforms the ARMA(1,1) model
in terms of parameter recovery, even when φ is close or equal
to zero. The ML AR(1)+WN model and ARMA(1,1) models
are both unstable for small sample sizes (n = 100), frequently
resulting in Heywood cases for the innovation and measurement
error variances. However, the ML AR(1)+WN model still

5The diverging patterns in the bias and absolute errors for the ML ARMA(1,1)

model is a result of the Heywood cases discussed in Section 4.2; when the Heywood

cases are removed the pattern is similar to the patterns of the other models, as can

be seen in Figures B1,B2 in Supplementary Materials.
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FIGURE 3 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across different values for φ.

performs relatively well for estimating φ compared to the AR(1)
models. For a smaller sample size of 100 observations the
Bayesian procedure outperforms the frequentist ML procedure.
When sample sizes are larger, the discrepancies between the
Bayesian and frequentist AR(1)+WN model decrease, although
the confidence intervals for the variance parameters in the
frequentist procedures are consistently too narrow. As expected,
the AR(1) models severely underestimate |φ|, which is reflected
in large bias and absolute errors, and low coverage rates.
Finally, we note that although the AR(1)+WN models perform
considerably better than the AR(1) models, some bias in φ

still remains, because the innovations and measurement errors
cannot be perfectly discerned from each other. Generally, the
moremeasurement error and the lower |φ|, themore the estimate

of |φ| will be biased, even when measurement error is taken into
account by the model.

5. Empirical Application on Mood Data

To further illustrate the AR(1), ARMA(1,1), and AR(1)+WN
model discussed above, we make use of time series data that was
collected from female first year social science students at Utrecht
University in 2007. Eleven women kept a daily electronic diary
for approximately 3 months (across participants the minimum
was 90 observations, the maximum 107 observations), in which
they filled out how they felt that day on a scale from 1 to
100—1 meaning worst ever, and 100 meaning best ever. Three
of the eleven women were excluded from the current study
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FIGURE 4 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across sample sizes.

because of non-compliance, issues with the electronic devices,
and one woman had very little variation in her scores. For the
remaining women the average number of missing observations
was approximately nine. Values for these missing observations
will be automatically imputed as part of the estimation procedure,
based on the specified model.

We are interested in finding out to what extent current mood
influences mood the following day. As such, we are interested
in fitting an AR(1) model, and specifically in the AR effect
reflected in parameter φ. However, the mood of each person is
not likely to be perfectly measured. For instance, it is possible that
participants accidentally tapped the wrong score when using the
electronic diary stylus to fill in the questionnaire. Furthermore,
the participants evaluate their mood for the day on average, such

that momentary influences around the time of filling out the
diary may have colored their evaluation of the whole day (i.e., a
form of retrospective bias). In fact, anything that is not explicitly
measured and modeled, and of which the influence does not
carry-over to the next day, can be considered measurement error.
As such, it seems likely that there is at least some measurement
error present in the data. Therefore, we fit the AR(1)+WNmodel
to take this measurement error into account, and for illustrative
purposes compare it to an ARMA(1,1) model, and an AR(1)
model (which disregards measurement error). The data and
codes for running the analyses are included in the Supplementary
Materials. We make use of a Bayesian modeling procedure, given
that the results from our simulation study indicate that the
parameter recovery performance of the Bayesian procedure is
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better and more stable for this number of repeated measures.
The priors we use for the models are aimed to be uninformative,
specifically: A uniform(0, 500) prior distribution for all variance
parameters, a uniform(−1, 1) prior distribution for φ and θ ,
and a normal(0, 0.001) prior distribution for µ (specified with a
precision rather than a variance).

We evaluated the convergence of the AR(1), ARMA(1,1), and
AR(1)+WNmodel by visually inspecting the mixing of the three
chains, the Gelman Rubin statistic, and the autocorrelations. For
the AR(1) and AR(1)+WN model the chains mixed well, the
Gelman Rubin statistic was approximately equal to one, and
the autocorrelations for the parameters decreased within 50–100
lags across all participants. For the ARMA(1,1) model this was
the case, except for participants 3 and 8.6 We included the

6For participants 3 and 8 we found that the estimates for φ and θ in the ARMA(1,1)

model were very dispersed, varying across the entire range of −1 to 1, switching

from negative to positive values. A density plot of their samples revealed a

bimodal distribution for φ and θ (with one peak around negative values, and

one for positive values): This seems to be some form of label switching, which is

ARMA(1,1) estimates for these participants in Table 1, but these
should be interpreted with caution.

The parameter estimates of the mean µ, AR parameter φ,
innovation variance σ 2

ǫ , measurement error variance σ 2
ω, and

moving average parameter θ for each person are presented in
Table 1. For most of the eight individuals, the baseline mood is
estimated to be around 60–70, which indicates that on average
they are in moderately good spirits. Further, we see that across
models and persons, the AR parameters are either estimated to be
positive, or nearly zero. Participant 8 has an AR effect near zero
in both the AR(1) model and the AR(1)+WN model, so that for
her, everyday seems to be a “new day”: How she felt the previous
day does not predict her overall mood today. On the other hand,
for participants 2, 4, 5, and 6, the credible intervals for φ include
only positive values across models: how they feel today depends
in part on how they felt yesterday. For the remaining individuals,

indicative of (empirical) under–identification of the ARMA(1,1) model for these

two participants.

TABLE 1 | Parameter estimates for the AR(1), ARMA(1,1), and AR+WN model for the mood of eight women, estimated with Bayesian software.

Pp Model µ (95% CI) φ (95% CI) σ2
ǫ (95% CI) σ2

ω (95% CI) σ2*
ǫ (95% CI) θ (95% CI)

1 AR1 75 (72,79) 0.08 (−0.17,0.32) 166 (122,235) – – –

ARMA 76 (72,81) 0.53 (−0.32,0.90) 21.34 (− 91,180) 125 (− 6,278) 160 (117,227) −0.41 (−0.81,0.29)

ARWN 76 (72,79) 0.39 (−0.23,0.77) 42 (3,160) 112 (16,193) – –

2 AR1 63 (59,68) 0.36 (0.13,0.57) 188 (141,256) – – –

ARMA 63 (58,69) 0.48 (−0.21,0.97) 103 (−740,1087) 69 (− 870,960) 189 (142,257) −0.13 (−0.64,0.49)

ARWN 63 (58,68) 0.52 (0.15,0.84) 101 (20,208) 77 (7,184) – –

3 AR1 63 (61,66) 0.21 (0,0.42) 108 (81,148) – – –

ARMA 64 (61,66) 0.02 (−0.72,0.81) −1 (− 288,251) 109 (− 134,418) 105 (79,144) 0.19 (−0.64,0.95)

ARWN 64 (61,67) 0.40 (−0.01,0.82) 38 (4,112) 64 (6,118) – –

4 AR1 56 (53,58) 0.21 (0.01,0.42) 103 (78,141) – – –

ARMA 54 (40,59) 0.85 (0.35,0.99) 7 (1,47) 75 (44,112) 95 (71,130) −0.68 (−0.87,−0.14)

ARWN 55 (49,59) 0.69 (0.07,0.97) 19 (2,88) 70 (17,111) – –

5 AR1 69 (64,75) 0.48 (0.28,0.67) 174 (131,239) – – –

ARMA 69 (62,77) 0.67 (0.20,0.92) 86 (24,348) 61 (− 139,143) 173 (130,237) −0.26 (−0.58,0.24)

ARWN 69 (62,77) 0.67 (0.37,0.91) 90 (27,190) 66 (6,140) – –

6 AR1 73 (71,74) 0.27 (0.07,0.46) 31 (24,42) – – –

ARMA 73 (71,74) 0.18 (−0.43,0.66) 22 (− 305,349) 8 (− 314,339) 31 (24,42) 0.09 (−0.45,0.61)

ARWN 73 (71,74) 0.33 (0.01,0.62) 21 (4,35) 10 (0.51,30) – –

7 AR1 71 (69,73) 0.08 (−0.13,0.28) 105 (79,144) – – –

ARMA 71 (65,75) 0.48 (−0.77,0.99) 7 (− 132,175) 87 (− 63,248) 104 (78,142) −0.36 (−0.90,0.77)

ARWN 71 (68,74) 0.26 (−0.57,0.92) 23 (1,101) 76 (8,123) – –

8 AR1 73 (71,74) 0.03 (−0.18,0.24) 59 (44,80) – – –

ARMA 73 (71,74) −0.22 (−0.81,0.84) −5 (− 131,102) 67 (− 41,197) 57 (43,78) 0.31 (−0.98,0.95)

ARWN 73 (71,74) −0.03 (−0.65,0.51) 16 (0.35,61) 42 (2,70) – –

Note that the negative values for in the credible interval for σ 2
ǫ and σ 2

ω for the ARMA(1,1) models result, because they are calculated a posterior based on the samples for φ, θ , and

σ 2*
ǫ based on Equations (8) and (9): It is possible that for certain combinations of these parameters σ 2

ǫ and σ 2
ω become negative. For participants 3 and 8 the ARMA(1,1) model did not

converge properly, so that these results should be interpreted with caution.
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1, 3, and 7, the point estimates for φ are also positive, however,
the credible intervals including negative and positive values
for φ.

When we compare the results for the AR(1) model and
the AR(1)+WN model, we find that for all participants except
participant 8, the AR parameter is estimated to be higher in
the AR(1)+WN model: Because the AR(1) model does not take
measurement error into account, the AR parameter is estimated
to be lower than for the AR(1)+WNmodel. The extent to which
the estimate for φ differs across the AR(1) and AR(1)+WN
model, differs from person to person. The larger the estimated
measurement error variance relative to the total variance, the
larger the difference between the estimated φ in the AR(1) and
AR(1)+WN model. For instance, for participants 4 and 6 their
estimates of φ in the AR(1) model are quite similar to each other
(i.e., 0.21 and 0.27), but because the measurement error variance
for participant 4 is estimated to be much larger than that for
participant 6 (i.e., 70 vs. 10), her φ in the AR(1)+WN model φ

is also estimated to be larger (i.e., 0.69 vs. 0.33).
Note that the ARMA(1,1) and AR(1)+WN model should

not necessarily give the same results: Although the AR(1)+WN
model is equivalent to the ARMA(1,1) model, the reverse is not
the case. In other words, it is possible that the ARMA(1,1) model
captures a different pattern of variation in the data than the
AR(1)+WN model, giving different results. However, when we
compare the results for the ARMA(1,1) and AR(1)+WN model,
we do find fairly similar results for most of the participants (with
exception of participants 3 and 8, who had convergence issues
for the ARMA(1,1) model), especially for participants 2 and
5. However, a clearly notable difference is that the ARMA(1,1)
model has less precise estimates than the AR(1)+WN model, as
can be seen from the relatively wide credible intervals for the φ

parameters in Table 1.
Finally, we note that when we calculate the estimated

proportion of measurement error variance relative to the total
variance based on the AR(1)+WN model for each participant,
we find a range of 0.34–0.50 (i.e., 0.36, 0.47, 0.48, 0.50, 0.46, 0.42,
0.46, and 0.34 respectively). This implies that across these eight
women, between one third to half of the observed variance is
estimated to be due to measurement error.

6. Discussion

In this paper we demonstrate that it is important to take
measurement error into account in AR modeling. We illustrated
the consequences of disregarding measurement error present in
the data both in a simulation study, and an empirical example
based on a replicated time series design. Further, we compared
the parameter recovery performance for the Bayesian and
frequentist AR(1)+WN and ARMA(1,1) models that account for
measurement error. Ignoring measurement error present in the
data is known to result in biased estimates toward zero of the AR
effects in AR(1) models, with the extent of the bias depending
on the proportion of measurement error variance and the size
of φ (Staudenmayer and Buonaccorsi, 2005). Our simulations
also demonstrated this bias, and showed large absolute errors
and importantly, very poor coverage rates for the AR effect when

measurement error is disregarded, regardless of sample size. For
research in psychology, for which it is very difficult or perhaps
impossible to measure error-free, it seems imperative to consider
this potentially large source of variance in our (AR) time series
models. In our empirical application for instance, between one
third to half of the variance in the data is estimated to be due to
measurement error.

Comparing the parameter recovery for the models that
incorporate measurement error—the Bayesian and ML
ARMA(1,1) model and AR(1)+WN model—revealed that
the Bayesian AR(1)+WN model performed best in terms of
parameter recovery. It proved relatively tricky to properly
estimate the ML ARMA(1,1) and AR(1)+WN model, even for
larger sample sizes of 500 repeated measures: These models are
prone to Heywood cases in the measurement error variance and
to a lesser extent in the innovation variance. This was especially
common (up to 55% of the replications) when AR effect was
closer to zero, or the amount of measurement error was large. In
practice, hitting such a lower bound for the measurement error
variance may erroneously suggest to researchers that the model
is overly complex, and that there is no notable measurement
error present in the data, which is problematic.

Note that while 100 observations may be small for estimation
purposes, it is quite a large number of repeated measures to
collect in practice. In psychological research using intensive
longitudinal data, we usually see no more than about 120
observations per person (to illustrate, 120 observations would
arise from about 4 months of daily measurements, or for more
intense 2 weeks regime, measuring someone 9 times a day).
Fortunately, the Bayesian AR(1)+WN model provides a good
option even for such small sample sizes. Still, the models that
incorporate measurement error need more observations to give
as precise estimates as the basic AR(1)model, which has relatively
small credible/confidence intervals (although this is precision
around a wrong estimate when there actually is measurement
error present in the data). Therefore, it seems good practice to
take potential measurement error into account in the design
of the study, thus collecting more repeated measures in order
to compensate for any potential measurement error that has
to be filtered out later. Expectedly, and as is shown in the
simulation study, this becomes especially important when the
proportion of measurement error variance is relatively large,
or when the AR effects are (expected to be) relatively small.
One option to improve the estimates may be to use (weakly)
informative prior specifications based on previous research, or
expert knowledge. However, prior information on the model
parameters may currently prove difficult to obtain, given that
studies that estimate measurement error or take it into account
are very rare, and that the model parameters differ from person
to person, and from variable to variable. Another option could be
to extend the AR+WN model to a multilevel model, assuming a
common distribution for the parameters of multiple individuals,
and allowing the model parameters to vary across persons. By
making use of this hierarchical structure that can take similarities
between persons into account, a relatively low number of time
points may be compensated for to some extent by a large number
of participants, whichmay be easier to obtain (for examples of the
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multilevel AR(1) model, see Rovine and Walls, 2006; Lodewyckx
et al., 2011; De Haan-Rietdijk et al., 2014).

The reader may wonder how one may determine if there
is, or isn’t, measurement error present in the data. One way
to do this is to use information criteria to compare the AR(1)
model with the ARMA(1,1) or AR(1)+WN model. Although
a thorough study of model selection is beyond the scope of
the current paper, we provide some preliminary evaluations
of the model selection performance of the AIC, BIC, and
DIC, in Supplementary Materials. We find that these criteria
frequently incorrectly selects the simpler AR(1) model over
the (true) AR(1)+WN model and ARMA(1,1) model, so that
these criteria seem inappropriate for selecting between the
AR(1) and the ARMA(1,1) model or the AR(1)+WN model
in this context. Selecting between an AR(1)+WN model and
an ARMA(1,1) model will also be problematic using standard
information criteria, because the AR(1)+WN model may be
considered a restricted (simpler) version of the ARMA(1,1)
model (see Equation 8), while they have the same number
of parameters, and thus the same penalty for complexity for
many fit criteria. In that sense, when they have equal fit,
the AR(1)+WN model may be preferred because it is the
simpler model, but if this is not the case, it becomes more
complicated to choose between the two. Directions for future
research therefore are to establish information criteria for
selecting between the AR(1)+WN model and the AR(1) and
ARMA(1,1) model, perhaps using information criteria or Bayes
factors developed for restricted parameters (c.f., Dudley and
Haughton, 1997; Klugkist andHoijtink, 2007; Kuiper et al., 2012).
Although model selection using information criteria may prove
complicated, it is important to note that the estimates for φ in the
AR(1)+WN models seem to be reasonably accurate, even when
there is no measurement error present in the data. Combined
with the intuition that most psychological measurements
will contain at least some measurement error, fitting the
model that incorporates measurement error seems a relatively
“safe bet.”

Another interesting topic for future work is howmeasurement
error affects estimates of the effects variables have on each
other over time, that is, the cross-lagged effects. This may
be especially relevant for individual network models of
psychological processes (Schmittmann et al., 2013). For example,

in a network model for an individual diagnosed with a depressive
disorder, the depression symptoms constitute the nodes in the
network, and the AR and cross-lagged effects between the
symptoms constitute the connections in this network (Borsboom
and Cramer, 2013; Bringmann et al., 2013). It would be
interesting to investigate to what extent measurement error in
each variable affects the resulting network.

Finally, while incorporating measurement error into time
series models is likely to decrease distortions as a result of
ignoring measurement error to the parameter estimates, we
emphasize that it is not a cure-all. Even in the models that
incorporate measurement errors, the AR parameters may be
slightly under- or over-estimated, because measurement error
variance and innovation variance are not completely discernible
from each other. The more measurement error present in the

data, the more difficult it will be to pick up any effects. Therefore,
there is still a strong argument for preventing measurement
errors in the first place. One option to potentially improve
the measurements is to use multiple indicators to measure
the relevant construct. However, in a intensive longitudinal
data setting, using multiple items for each variable would
strongly increase the burden on the participant, who would
have to repeatedly fill out all these questions. What remains are
classical ways of preventing measurement error: Improving the
respective measurement instruments, the circumstances under
which participants are measured, and explicitly measuring and
modeling potential sources of measurement error. Still, any
remaining measurement error that could not be prevented,
should be taken into account in the respective model. That is,
prevention is better than cure—but a cure is better than ignoring
the issue.
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