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Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive
methods that estimate the sensitivity threshold—the signal intensity corresponding to a
pre-defined sensitivity level (@ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection
tasks. Rather than focus stimulus sampling to estimate a single level of % Yes or %Correct,
the current methods sample psychometric functions more broadly, to concurrently
estimate sensitivity and decision factors, and thereby estimate thresholds that are
independent of decision confounds. Developed for four tasks—(1) simple YN detection,
(2) cued YN detection, which cues the observer’s response state before each trial, (3)
rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the
qYN and gFC methods yield sensitivity thresholds that are independent of the task’s
decision structure (YN or FC) and/or the observer’'s subjective response state. Results
from simulation and psychophysics suggest that 25 trials (and sometimes less) are
sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal
log units), but more trials are needed for FC thresholds. When the same subjects
were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold
estimates exhibited excellent agreement with the method of constant stimuli (MCS), and
with each other. These YN adaptive methods deliver criterion-free thresholds that have
previously been exclusive to FC methods.

Keywords: signal detection, adaptive psychophysics, Yes-No, forced-choice, stimulus placement, rating, cuing,
decision criterion

Introduction

The measurement of detection thresholds, which characterize the sensitivity of sensory systems
simply and concisely, provides the foundation of many perceptual studies. The prevalent methods
for measuring detection thresholds are the Yes-No (YN) and Forced-Choice (FC) tasks. For the
sensory researcher, consideration of whether to use YN or FC tasks has historically focused on the
tradeoff between statistical efficiency and decision criterion dependence.
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It's known that the YN task is more efficient than the FC task;
results from simulations and psychophysics have demonstrated
that, given the same number of trials, YN threshold estimates
exhibit approximately 25-50% the variability (i.e., standard
deviation) of FC threshold estimates (McKee et al., 1985; King-
Smith et al, 1994). The primary statistical advantage of the
YN task is provided by the wider dynamic range of the YN
psychometric function (Leek et al, 2000; Klein, 2001; Leek,
2001; Jakel and Wichmann, 2006). The truncation of the 2IFC
psychometric function results in a broad range of low intensities
at which observers can guess correctly at a 50% rate. Relative
to FC tasks, the YN task also demonstrates practical advantages:
(1) for naive observers presented with low signal intensities, the
YN response is often more comfortable than being “forced-to-
choose” between multiple intervals or alternatives; (2) stimuli
presented in multiple intervals of temporal FC tasks interact
(Yeshurun et al,, 2008); (3) improving the efficiency of FC
methods by increasing the number of alternatives challenges
attention or memory processes (Jakel and Wichmann, 2006).
Despite these factors, the notable disadvantage of the YN
task is the significant contribution of the observer’s decision
criterion (response bias) to detection behavior. In the view
of the psychophysical community, the problem of criterion-
dependence (bias-contamination) of YN thresholds has out-
weighed the YN task’s efficiency, and most laboratories favor the
FC task.

The current study reconsiders the problem of decision
criterion dependence in the YN task. We resolve the issue by
developing adaptive methods that combine elements of Signal
Detection Theory (SDT) and Bayesian adaptive inference to
concurrently estimate sensitivity and decision parameters. For
simple YN detection, and more elaborate YN tasks that cue the
observer’s response state (cued detection) or incorporate a rated
response (rated detection), our new methods deliver threshold
estimates that are independent of decision criteria that vary with
subjective response state or task structure (YN or FC). These
methods maintain the efficiency advantages of the YN task, but
deliver criterion-free thresholds that have been the presumed
domain of FC methods.

Existing Adaptive Methods
In simple YN detection, an observer responds Yes or No to
signify the presence or absence of a target signal. The empirical
psychometric function, Wyn(c), reflects the probability of a
Yes response as a function of signal intensity. In two-interval
forced-choice (2IFC) detection, an observer reports which of two
intervals contains the target signal. The empirical psychometric
function, Wrc(c), reflects the probability of reporting the
correct interval, as a function of signal intensity. In both
tasks, experiments often characterize observers not by their full
psychometric functions, but by a single empirical threshold: the
signal intensity corresponding to a pre-defined performance level
(e.g., signal intensity, ¢, for which Wyn(c) = 50%, or Wrc(c) =
75%).

Adaptive psychophysical methods use an observer’s responses
to focus stimulus presentation to pre-defined regions of the
empirical psychometric function (Treutwein, 1995; Leek, 2001).

Their efficiency for estimating empirical thresholds, using non-
parametric and parametric approaches to stimulus selection and
threshold estimation, has made them indispensable for collecting
psychophysical data in the lab and clinic. Several dozen adaptive
methods have been developed for the FC task (Treutwein, 1995;
Leek, 2001; Lu and Dosher, 2013). Notable FC methods that
apply Bayesian adaptive inference include the QUEST method
(Watson and Pelli, 1983), and the ¥ method (Kontsevich and
Tyler, 1999); the W method concurrently estimates threshold
and steepness of the psychometric function using an adaptive
algorithm that minimizes the expected entropy (uncertainty)
about psychometric parameters.

For the YN task, existing adaptive methods typically target
an empirical threshold—the signal intensity corresponding to a
specific Yes rate in the middle range of the psychometric function
(Kaernbach, 1990; Green, 1993; Linschoten et al., 2001). Because
these methods do not estimate the false alarm rate, they cannot
de-confound the effects of decision criterion on YN empirical
thresholds (Klein, 2001). Thus, FC adaptive methods have been
the primary mode of data collection in the psychophysical
community; their historical advantage is based on the idea
that only FC methods can yield threshold estimates that are
independent of decision criterion (however, see Klein, 2001 and
Yeshurun et al., 2008; for more critical views of the FC task’s
criterion-free assumptions).

An alternative approach is suggested by the sensitivity
threshold, 7y—the signal intensity corresponding to a pre-
defined level of sensitivity (e.g, d = 1). An adaptive
method that estimates sensitivity thresholds would provide a
concise evaluation of detection behavior independently of the
task’s decision structure or the observers subjective response
state (Green and Swets, 1966; Wickens, 2002; Macmillan and
Creelman, 2005). The prospective problem faced by a sensitivity-
based YN method is that, without a priori knowledge of the
false alarm rate (decision criterion), the experimenter does not
know the empirical Yes rate that corresponds to the sensitivity
threshold. Therefore, rather than target a single location on
the psychometric function, an adaptive strategy that estimates
sensitivity thresholds must sample both the psychometric
function’s rising function (to estimate sensitivity) and its lower
asymptote (to estimate decision criteria). Methods that estimate
both sensitivity and decision parameters can distinguish between
observers who respond Yes to low signal intensities due to low
thresholds and those that respond due to high false alarm rates
(liberal decision criteria).

The Current Study
SDT has motivated thousands of perceptual studies in vision and
audition (Swets, 1988), but, to our knowledge, there do not exist
adaptive methods that directly estimate sensory thresholds based
on sensitivity (d). To address this shortcoming, we develop,
test, and validate a family of sensitivity-based Bayesian adaptive
methods, which consists of the (1) quick Yes-No (qYN), (2) quick
Yes-No Cuing (qYNC), (3) quick Yes-No Rating (qYNR), and (4)
quick Forced-Choice (gFC) methods.

After introducing the foundation of these methods—the
application of SDT to describe detection behavior and Bayesian

Frontiers in Psychology | www.frontiersin.org

August 2015 | Volume 6 | Article 1070


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Lesmes et al.

Adaptive methods for estimating d’ thresholds

adaptive inference to estimate SDT parameters—we present
validation results from simulation and psychophysical studies.
Simulations suggest that as few as 25 trials (and sometimes less)
are sufficient to estimate sensitivity thresholds at ' = 1 in YN
tasks, with acceptable precision (s.d. = 0.1-0.15 decimal log
units). In a psychophysical experiment, the method of constant
stimuli (MCS) provided independent validation and the four
methods cross-validated each other. When measured in the same
subjects across different detection tasks, thresholds estimated
at a pre-defined sensitivity level (d" = 1) exhibited excellent
agreement (mean differences <0.5 dB, where 1 dB = 0.1 decimal
log units). By estimating sensitivity thresholds, these methods
resolve the problem that criterion-dependence has presented for
previous YN adaptive methods.

Quick Yes-No (qYN) and Quick
Forced-choice (qFC) Methods

Recent studies have extended Bayesian adaptive methods
beyond the single psychometric function, to estimate more
complex psychophysical models (Kujala and Lukka, 2006; Lesmes
et al., 2006, 2010; Vul et al., 2010; Lu and Dosher, 2013).
First, a psychophysical function is defined and parameterized
by a functional form with a small number of parameters.
This function is translated into performance probability (e.g.,
probability correct or probability yes). On a trial-to-trial basis,
the stimulus selection algorithm evaluates potential stimuli for
their expected improvement of model parameter estimates, based
on the experimental results obtained thus far. These model-based
adaptive methods improve psychophysical testing efficiency and
model parameter estimation by leveraging information acquired
from each trial with a priori knowledge about the model’s general
functional form.

In this study, we combine Bayesian adaptive inference with a
signal detection model framework, which proposes independent
contributions of sensory and decision processes to detection
behavior. An advantage of this approach is a concise description
of simple detection that is easily adapted to more elaborate
detection tasks. For example, in cued detection (Gu and Green,
1994), an observer alternates between liberal and conservative
response states based on instructions. In rated detection,
observers maintain multiple response criteria to respond either
Yes, No, or Not Sure (Watson et al., 1973). For 2IFC detection,
observers compare two stimulus intervals and report which
one contains signal. The proposition that sensitivity is invariant
across detection tasks provides the foundation for testing and
validating novel YN adaptive methods that deliver threshold
estimates that are independent of task (YN or FC) and/or the
observer’s subjective response state (liberal or conservative).

The primary focus of the current study is developing adaptive
methods to estimate sensitivity thresholds for YN tasks, but we
also introduce a novel FC procedure, the quick FC (gFC) method.
The qYN and qFC methods presented here estimate sensitivity
and decision parameters in four detection tasks: (1) simple
YN detection, (2) cued YN detection, (3) rated YN detection,
and (4) 2IFC detection. The components of these adaptive
methods are standard (Watson and Pelli, 1983; Cobo-Lewis,

1997; Kontsevich and Tyler, 1999), but the novel combination
of an SDT framework with Bayesian adaptive inference provides
rapid sensitivity threshold estimates that are free of decision
criterion confounds. A more comprehensive evaluation of
the gFC method, and its performance relative to previously
developed FC adaptive methods, is saved for a companion paper.
In the current study, the gFC will provide a critical demonstration
that sensitivity threshold estimates obtained in a FC task match
those obtained in YN tasks.

Modeling Empirical Psychometric Functions

The Sensitivity Psychometric Function (d”)

To parameterize the d' psychometric function (Figure 1, inset),
we apply a divisive gain-control function of stimulus intensity
(e.g., signal contrast), c:

Be¥
Va+ &’

where o is a normalization constant, y defines the steepness
of the d psychometric function, and B is the saturating
function’s upper asymptote. This functional form is related
to that of the contrast transducer function studied in visual
psychophysics (Sperling and Sondhi, 1968; Foley and Legge,
1981) and neurophysiology (Albrecht and Geisler, 1991; Heeger,
1994; Geisler and Albrecht, 1997), and is supported by extensive
work on observer models (Lu and Dosher, 2008) (In Appendix
A, this parameterization is further justified by comparing its fits
of a large simple detection dataset with other contrast transducer
functions from the literature). Equation (1) can be re-arranged to
yield:

d'(c) = (1)

_ Blc/7)
VBT =1+ (/1)

where 7 is defined to be the sensitivity threshold (signal contrast
corresponding to d = 1). This d’ psychometric function is
translatable on log abcisssa, as signal contrast is transformed
to threshold units: ¢/t. When plotted on log-log axes, this
function is approximately linear over low to medium contrasts
and saturates at high contrasts. To simplify the current methods
(and because it’s practically difficult to reliably distinguish
performance at high sensitivity levels; e.g., d’ > 4), the asymptote
parameter is fixed at 5.0. This simplifying assumption leaves two
free parameters to describe the d' psychometric function: the
threshold, 7, and the steepness parameter, y. (This assumption
is also justified in Appendix A).

d'(c) (2)

Decision Criteria

The d' psychometric function, sensitivity as a function of
stimulus intensity, is related to the empirical psychometric
function, Wy,s(c), which describes the probability of responding
Yes as a function of stimulus intensity, ¢, by a z-score
transformation (Green and Swets, 1966):

d(c) = Z(‘ijes(c)) - Z(\ijes(o))a (3)

where Wy,5(0) is the false alarm rate (Yes rate to null signal). The
sensitivity psychometric function, often known as the contrast
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FIGURE 1 | Psychometric functions for simple YN detection. (A) In
simple detection, the empirical psychometric function (blue) describes the
probability of a Yes response as a function of signal intensity. A z-score
transformation of the empirical psychometric function (Equation 1) yields

signal contrast (%)

020512 5 10 20 50

sensitivity (d’) as a function of signal intensity (inset; red). (B) Three empirical
psychometric functions are defined by the same sensitivity function and three
decision criteria that correspond to response states with false alarm rates of
2.5,10, and 40%.

transducer function, can be defined by a threshold parameter—
intensity at which d’ = 1—and a steepness parameter (contrast
exponent in Equation 2). The inverse relation of Equation
(3) describes how a decision criterion parameter translates the
d’ psychometric function to the empirical YN psychometric
function (Gu and Green, 1994; Klein, 2001):

Uyes(0) =1 -G (A —d'(0), (4)

where G(x) is the standard cumulative Gaussian function, and
A = z(1 — W,,5(0)) is the decision criterion corresponding to the
false alarm rate Wy,;(0). With these assumptions, the empirical
YN psychometric function for simple detection can be described
by three parameters: (1) the threshold of the sensitivity function,
7, (2) the steepness of the sensitivity function, y, and (3) the
decision criterion parameter, A.

The foundation of the SDT model that underlies the gYN
and gFC methods is the proposition that the d' psychometric
function is invariant while decision variables change with the
observer’s response state (i.e., liberal or conservative) or the task’s
decision structure. In the current study, we apply the basic SDT
framework to describe detection behavior across four related
tasks: (1) simple detection; (2) cued detection, in which the
observer alternates between liberal and conservative response
states, based on a pre-trial cue; (3) rated detection, in which
the observer responds Yes, No, or Not Sure, and; (4) and two-
interval forced-choice detection. The SDT model provides a
concise description of detection behavior across tasks, which in
turn allows efficient Bayesian adaptive estimation of sensitivity
and decision parameters.

Simple Detection (The YN Method)

For simple detection (see Figure 2), the empirical psychometric
function describes the probability of responding Yes as a
function of stimulus intensity, ¢. In an SDT formulation of
the psychometric function for simple YN detection (Figure 2C),

the Yes rate is jointly determined by sensitivity for varying
contrasts and a decision criterion. Internal sensory events are
modeled with standard normal distributions (Figures2A,B),
whose displacement as a function of signal strength is determined
by the sensitivity psychometric function (Figure 2C; inset). For a
given signal intensity, the corresponding Yes rate, is computed
by integrating the area under the signal distribution to the
right of the decision criterion. The empirical and sensitivity
psychometric functions are therefore directly related through a
simple z-score transformation. Figures 2A,B demonstrate how
sensitivity and decision parameters produce detection behavior at
two signal intensities. The empirical psychometric function can
be expressed as a function of the d' psychometric function and
decision criterion, A (See Equation 4). The simple gYN method
estimates three parameters: (1) the threshold of the sensitivity
function, t; (2) the steepness of the sensitivity function, y, and
(3) the decision criterion parameter, A, that defines the false alarm
rate.

Cued Detection (The gYNC Method)

Simple detection can be elaborated for a task that cues observers
to alternate between liberal and conservative response states. The
observer, presented with a cue before each trial (e.g., directions
to be lax or strict), sets their criterion to effectively sample one
of two psychometric functions defined by the sensitivity function
and a decision criterion specific to each state:

‘J/yes(c, Max) =1-G ()‘lax - d’(C)) ’ (5)
lijes(cv Astrict) =1 =G ()\strict - d/(C)) . (6)

By definition, the observer is more likely to respond Yes in the
liberal state and therefore, in standard units, Aj; < Agyricr. Due
to these order constraints, rather than directly estimate A, and
Astrict> the gYNC method estimates Agyic; and AA, where:
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FIGURE 2 | Simple detection. (A,B) Distributions of internal corresponding to sensitivity threshold (@’ = 1), the observer responds Yes
representations of signal-present and signal-absent trials. An observer at a higher rate: one standard unit (z-score) above the false alarm rate.
presented only with noise responds Yes at a false alarm rate which (C) Two empirical Yes rates (marked a,b in C) signify stimulus levels
depends on the criterion. Increasing the signal to a strength corresponding to @ =1 and d’ = 0.

)‘lax = Astrict — AA. (7)
The qYNC method thus estimates four parameters: (1) the
threshold of the sensitivity function, t; (2) the steepness of the
sensitivity function, y, and (3) two decision criterion parameters
Asrict> and A\,

Rated Detection (The gYNR Method)

In the simplest version of rated detection, an observer makes
one of three detection responses: Yes, No, or Not Sure.
Figure 4 demonstrate how sensitivity and decision criteria
produce detection behavior in a yes/no rating experiment.
Presented with noise alone, the Yes and No responses depend
on a single criterion and Not Sure responses depend on both
criteria. As signal intensity (and sensitivity) increases, the relative
proportions of the responses change, but sum to 1.0 at each signal
intensity. The Yes and No psychometric functions are monotonic
functions of signal intensity. The correspondence between
psychometric functions measured in cued and rated detection
is apparent when Yes and Not Sure responses are collapsed
(c.f.,, Figure 3E). As in cued detection, multiple response criteria
generate a pair of psychometric functions; unlike cued detection,
which alternates between response states across trials, both
liberal and conservative response states (defined by strict and
lax criteria) are maintained simultaneously on each trial. For
each stimulus intensity ¢, the three response probabilities
are:

\IJ},ES(C, Maxs Astriet) =1 — G ()&strict - d/(c)) ) (8)
Whot_sure(€, Maxs Astrict) = G ()\strict - d/(C)) -G ()‘lax - d/(c)) ,

These equations define three psychometric functions that sum
to 1.0 at each signal intensity level (see Figure4). The two
empirical psychometric functions observed in cued detection
(defined by strict and lax decision criteria) are represented in
rated detection, by (1) Yes response probability as a function of
signal contrast, and (2) collapsing (adding) the Yes and Not Sure
response probabilities as a function of stimulus intensity. Unlike
the gYNC, the stimulus search for the gYNR is one-dimensional
over stimulus intensity and responses are ternary.

Forced-choice Detection (The gFC Method)

For two-interval FC detection, the internal sensory
representations represent the difference distributions of the
sensory activations when the signal is presented either in
the first interval, <signal, noise>, or in the second interval:
<noise, signal>. The assumption that FC detection thresholds
are criterion-free depends on the observer adopting a neutral
criterion (Figure 5A); that is, when the observer is equally
likely to respond Interval 1 and Interval 2 with no signal,
when d" = 0. For the typical two-interval FC psychometric
function (% Correct as a function of signal intensity) this
assumption results in a lower asymptote of 50%: the two-interval
guessing rate (Figure 5F; blue line). With a neutral criterion,
the performance level corresponding to the d = 1 sensitivity
threshold is ~76% correct in each interval (Figure 5C), and the
psychometric function for each interval is the same (blue line;
Figure 5F). Importantly, introduction of an interval bias (non-
neutral criterion) results in different empirical psychometric
functions for each interval (Figure 5F). Consequently, detection
performance in the biased interval is overestimated; given the
same level of sensitivity, %Correct in the biased interval is greater
than that in the anti-biased interval, or intervals with a neutral

)
, criterion. For example, in the biased interval, %Correct at d' = 0
Wio (€, Maxs Astrict) = G (Max — d'(0)) . 10 s higher than the typical guessing rate (50%). Correspondingly,
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FIGURE 3 | Cued detection. (A-D) Detection behavior (Yes rate) generated
by two decision criteria in signal-present and signal-absent conditions in
cued detection. (A) Presented with only noise in the liberal response state,
the observer responds with a false alarm rate represented by the area,
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lower false alarm rate. 1 — ®(Ag¢rict)- (D) Likewise, the observer is less likely to
say Yes when presented with a signal contrast at the sensitivity threshold. (E)
Empirical psychometric functions generated by two decision criteria.
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FIGURE 4 | Rated detection. (A) Presented with noise alone, the observer
responds No with probability, ®(54), Yes with probability = 1 — ®(Agtrict),
and Not Sure with probability, ®(Agzict) — Plray). (B,C) As signal intensity
(and sensitivity) increases, the relative proportions of the responses change,
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but sum to 1.0 at each signal intensity. (D) The Yes, No, and Not Sure
psychometric functions. (E) The correspondence between psychometric
functions measured in cued and rated detection is apparent when Yes and
Not Sure responses are collapsed (c.f., Figure 3E above).
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FIGURE 5 | Forced-choice detection. When presented with noise in
both intervals (¢’ = 0), the probability of responding Interval 2 is
defined by a (A) neutral or (B) non-neutral decision criterion. (C,D)
At higher levels of signal intensity, the probability of responding
Interval 2 is determined by the decision criterion and the integral
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under the signal distributions corresponding to <noise, signal>. (E)
The probability of responding Interval 2 as a function of the relative
intensity in the two intervals (Interval 2 contrast—Interval 1 contrast).
(F) Empirical psychometric functions for observers with three
different interval biases.

the empirical thresholds (e.g., 75% Correct) in the two intervals
are different. An alternative “unwrapped” representation of the
empirical psychometric function (Figure 5E) represents the
probability of responding Interval 2 as a function of the relative
intensity in the two intervals (Interval 2 contrast—Interval 1
contrast).

The typical two-interval forced-choice psychometric function,
Wrrc, defined as % Correct as a function of intensity, is often
usefully re-formulated (Klein, 2001) to describe the probability
of responding Interval 2 as a function of the intensity between
intervals:

rrc — d (Cintervan) — ' (Cintervarz)]
NG )
(11)
where ¢ = (Ciptervalls Cintervalz) describes the stimulus intensities
presented in each interval (see Figure5). The range of the
transformed psychometric function, Wj,eya0, is 0-100%, in
contrast to that of Wypc: 50-100%. It's assumed that the d’
psychometric function for each interval is the same for the
YN task; an additional factor of 1/+/2 converts d’ to empirical
response rate (Green and Swets, 1966; Macmillan and Creelman,
2005). With a neutral criterion (Apc = 0), the probability of
responding Interval 2 when neither interval contains signal is
50%. In this case, the % Correct psychometric functions for each
interval are the same.

\Ilintervalz(z) =1- G(

With a non-neutral decision criterion, the W,7rc psychometric
function does not pass through the 50% response rate for the
null stimulus condition (i.e., when both intervals contain noise).
Because the d’ function is a nonlinear function of intensity,
when is presented on linear axes of relative intensity (as in
Figure 5), it does not look like the cumulative standard normal
function: the function flattens out (or pinches) in regions near
d" = 0. The degree of apparent pinching depends both on
the sensitivity threshold and how rapidly d’ changes in the low
sensitivity region, which is determined by the steepness of the d’
psychometric function.

In addition to two sensitivity parameters, the gFC method
estimates the decision parameter, Arc. The stimulus search is
defined over a single dimension of relative stimulus intensity (see
Figure 5E). Therefore, unlike existing FC adaptive methods, the
qFC method selects both the signal intensity and the interval in
which the signal is presented.

Lapse Errors

The value of the psychometric function described in Equation
(4) (also see Equations 5-11) range from the false alarm rate to
100%; however, lapses in the observer’s behavior (e.g., inattention
or finger errors) prevent measurement of detection behavior
over this full range (Swanson and Birch, 1992; Green, 1995;
Wichmann and Hill, 2001a). In the present case, we assume that
observers make such errors at a rate of ¢ = 2% and that Yes
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or No responses are distributed equally on such trials. With this
lapse rate, the upper asymptote of the empirical psychometric
function is 99%. Therefore, the parameterization of the empirical
psychometric functions is:

W) =¢e+ (1 —&)¥(c). (12)

Including this lapse factor accurately reflects the contribution
of non-sensory factors (inattention, blinks, finger errors) that
produce unexpected responses (at the lowest and highest
stimulus intensities) with some low probability (<5%).

Bayesian Adaptive Parameter Estimation

Following the landmark application of Bayesian adaptive
inference to estimate FC thresholds (QUEST; Watson and Pelli,
1983), King-Smith et al. (1994) applied it to measure YN
thresholds with an assumed false alarm rate. For FC tasks,
more complicated Bayesian adaptive methods that estimate the
threshold and steepness of the psychometric function have
been developed (Cobo-Lewis, 1996; King-Smith and Rose, 1997;
Snoeren and Puts, 1997; Kontsevich and Tyler, 1999; Remus and
Collins, 2007). Relative to QUEST or staircase procedures that
target a single threshold on the psychometric function, these
methods sample multiple foci on the psychometric function. For
example, to estimate the threshold and steepness of the 2AFC
psychometric function, the W method (Kontsevich and Tyler,
1999) samples stimuli from the threshold region (75% Correct),
in addition to two loci (approximately 70 and 90% Correct)
that facilitate estimation of the steepness of the psychometric
function.

The qYN and qFC methods combine the principles of SDT
and Bayesian adaptive inference to rapidly estimate sensitivity
and bias parameters that describe detection behavior in YN and
FC tasks. These methods increase testing efficiency by improving
stimulus sampling, via an adaptive algorithm that improves the
gain of information (i.e., the decrease of entropy) over a multi-
dimensional space of SDT parameters. Before the experiment
begins, a probability density function, defined over sensitivity
and bias parameters, represents prior knowledge of the observer’s
detection behavior. During the experiment, stimulus selection
incorporates a one-step ahead search algorithm, to evaluate the
next trial’s potential outcomes over a space of potential stimuli,
and thereby find stimuli that improve information gained about
SDT parameters. Following each trial, a Bayesian update refines
the SDT parameter estimates given that trial’s outcomes.

Taken together, these features provide efficient stimulus
sampling that leverages information acquired during the
experiment with a priori knowledge about the model’s general
functional form and priors over its parameters. This process
greatly accelerates the gain of information about detection
behavior, via estimates of sensitivity and decision parameters.
As a result, these methods rapidly yield sensitivity threshold
estimates that are free of decision-level confounds.

The gYN and qFC methods share four components that allow
quick, efficient, estimation of the psychometric functions: (1) an
SDT model that characterizes empirical psychometric functions
for detection with sensitivity and decision parameters, (2) an

adaptive algorithm for stimulus selection that uses a one-step-
ahead search to gain information about SDT parameters, (3)
Bayesian inference update of the parameter estimates following
each trial, and (4) a stop rule.

Parameter and Stimulus Spaces

To estimate psychophysical functions using Bayesian adaptive
inference, it's necessary to define a parameter space that
comprises candidate psychophysical functions and select stimuli
that discriminate between candidate functions, based on
updating knowledge. The gYN and gFC methods estimate three
parameters, and the gYNC and gYNR methods estimate four
parameters (see Figures2-5). Cued and rated detection tasks
generate two empirical psychometric functions because they
reflect additional criterion states, but requires only a single
additional decision parameter, relative to simple detection, which
already includes one criterion. With the exception of the gYNC
method, the stimulus search space is one-dimensional over
stimulus intensity; for the gYNC, the stimulus search algorithm
calculates over the stimulus intensity dimension for each cued
response state (liberal or conservative).

Priors

A probability density function, p(0), is defined over the model
parameter space that defines detection behavior. Before any data
are collected (trial t+ = 0) the initial prior distribution, p;=¢(8),
represents foreknowledge of model parameters. The use of priors
is a basic advantage of applying Bayesian methods (Kuss et al.,
2005), which can usefully influence the testing strategy, based on
existing test results and/or demographics (Turpin et al., 2007).
Bayesian inference is used to update the prior pdf (and its
corresponding parameter estimates), given the subject’s responses
to stimuli presented during the experiment. Due to the well-
known difficulty of estimating the steepness of the psychometric
function, its measurement requires a large investment in data
collection. For this reason, the priors embody the most restrictive
information about the steepness parameter, but are much less
strict about decision criterion or psychometric threshold relative
to previous methods. Previous Bayesian methods have applied
strict priors for parameters that define psychometric steepness
(Watson and Pelli, 1983), and/or false alarm rate (King-Smith
etal.,, 1994). Strict priors, which constrain model fits and increase
method precision, leave these methods vulnerable to biases due
to mismatches between the model priors and the underlying
parameters in a particular testing situation (Alcala-Quintana and
Garcia-Pérez, 2004). The great reduction in data collection that
strict priors provide is generally an acceptable tradeoff for these
potential biases.

Bayesian Update
For each adaptive method, a gridded parameter space 0, either
three- (tr, y, A) or four- (T, ¥, Agricx AX) dimensional,
represents the full range of empirical psychometric functions that
potentially describe the observer. The asymptote (8) and lapse
rate (&) parameters are set a priori.

Before the experiment, an initial prior p;—¢(@) that represents
a priori knowledge of the observer’s psychometric functions is
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defined. During the experiment, Bayesian inference is used to
update the prior distribution, p(6), to the posterior distribution,
pt(81s, r), following each trial ¢ based on the observer’s response
r¢ to that trial’s stimulus, s;.

Rather than consider responses as correct vs. incorrect, the
current methods consider the probabilities of responding Yes or
No (qYN and qYNC), Yes, No, or Not Sure (qYNR), or Interval
I or Interval 2 (qFC). Stimulus conditions are defined by the
possible levels of stimulus intensity in qYN, qYNR, and qFC,
and the combination of stimulus intensity and response state in
qYNC. Following standard practice, the probability of responding
r; given stimulus s; is estimated by weighing empirical response
rates by the prior:

pilrils) =Y W (re, se)pe(60). (13)

0

This normalization factor, sometimes called the probability of the
data, is used to estimate the posterior pdf, p;(f|s, r), via Bayes
Rule:
peO)W'(r, 5)

pi@ls, 1) o) (14)
Stimulus Selection
In the current study, we applied a stimulus selection algorithm
that simulates the possible outcomes of the next trial to select
stimuli that maximally (or nearly maximally) improve estimates
of model parameters. Stimulus selection is calculated using a one-
step-ahead search and a criterion of minimum expected entropy
(Cobo-Lewis, 1996; Kontsevich and Tyler, 1999; Kujala and
Lukka, 2006) or equivalently, maximum expected information
gain (Kujala and Lukka, 2006). By simulating the possible
outcomes of the next trial for each possible stimulus, and
evaluating stimuli for their expected effects on the prior (as
it's updated to posterior), stimulus selection avoids the least
informative regions of the stimulus space that lead to inefficiency
in pre-determined sampling schemes.

Before each trial, the next trial is simulated, and the above
analysis (Equations 13 and 14) is completed for all the possible
responses to all the possible experimental stimuli. For the next
trial, the stimulus is the one that minimizes the expectation
of the posterior entropy following the next trial (Cobo-Lewis,
1996; Kontsevich and Tyler, 1999; Kujala and Lukka, 2006).
After calculating the simulated posterior, pj 1 1(0]s, r), for all the
possible responses to each possible stimulus, the entropies of the
simulated posteriors are calculated:

Hip1(s,r) ==Y pip1(0ls.r)log(pe+1(01s. 7). (15)
%

Expected entropy is then calculated as a function of possible
stimuli by weighing posterior entropies by response probabilities:

E[Hi1(5)] = Y Hyy1(s, )pe(rls). (16)

For trial t+ + 1 the stimulus condition providing the lowest
expected entropy is chosen:

Sie1 = argmsinE[Ht_H(s)]. (17)

By presenting the observer with the stimulus condition providing
the minimum expected entropy for p;yi(6), the current
methods obtain the most information about the observer’s
psychometric functions. Although the current application defines
the optimal stimulus relative to minimum expected entropy,
other applications might use other strategies, such as minimum
expected variance.

Re-iteration and Stop Rules

After the observer finishes trial £+ 1, the posterior corresponding
to s¢+1 and the observed response r is saved and used as the prior
distribution for the subsequent trial:

pr+1(0) = p:(Bls, 1) (18)

The qYN and gqFC methods terminate either when the total
number of trials reaches a pre-specified value (as implemented
in this paper) or when the precision of the threshold estimate
reaches a pre-determined level (Alcala-Quintana and Garcia-
Perez, 2005; Tanner, 2008).

Simulation Studies

Demonstration of qYN in Simple Detection

Movie 1 demonstrates the gYN applied to measure the sensitivity
threshold in simple YN detection. The simulated observer (see
Figure 1B) exhibits the contrast threshold = 10.0%, contrast
exponent = 2.0, and decision criterion = 1.28 (false alarm
rate. = 10%). The executable MATLAB programs used to
generate Movie 1 are available for download (http://lobes.osu.
edu/qYN.php). Interested readers can adjust the parameters of
the simulated observer as well as the priors of the QYN parameters
in the simulation program.

In this demonstration, the gYN method’s parameter space is
a three-dimensional grid; the parameter ranges are: 0.1-99% for
the threshold of the sensitivity function, 0.25-12 for its steepness
parameter, and —0.5-3 standard (z) units for decision criterion.
The decision parameters correspond to false alarm rates that
range from <1-75%. The one-dimensional stimulus space ranges
from 0.1 to 99% contrast, with 0.25 dB sampling resolution.

The initial prior was the normalized product of one-
dimensional marginals (Kuss et al., 2005), which are log-
symmetric around the modes of the sensitivity parameters (t =
1%, y = 2) and linear-symmetric for the decision criterion
parameter (in z-space). The prior probabilities are weakly
informative—widely spread over a range of each parameter
values—to avoid the risk of mismatched priors. The priors used in
the current demo represent a compromise that allows flexibility
for estimating a wide range of false alarm rates, without sacrifice
of precision.

The trial sequence in Movie 1 demonstrates how the qgYN
method efficiently samples the dynamic region of the YN
psychometric function: the range of signal contrasts from 5 to
20%. The simulation demonstrates that the sensitivity threshold
estimate, defined by a flat marginal prior before the experiment’s
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start, rapidly takes shape in the region of the true threshold value
(10% contrast). By trial 10, the pdf develops mass near the value
of the true sensitivity threshold. As the experiment evolves, the
refinement of the sensitivity threshold estimate is demonstrated
by change in the width of the confidence intervals, as a function
of trial number. Throughout the experiment, the information
gain function exhibits several local maxima that correspond to
stimulus regions informing sensitivity and decision parameters;
namely, (1) the threshold region, (2) the lowest intensity
stimulus, which informs the decision criterion; and (3, 4) lower
and higher signal intensities that flank the threshold region and
inform the psychometric steepness parameter (Kontsevich and
Tyler, 1999).

Simulation of qYN in Simple Detection

Method

To evaluate the qYN in simple detection, we simulated an
observer in three different response states. With the same
underlying sensitivity parameters (contrast threshold = 10%;
contrast exponent = 2), each response state generated a different
empirical psychometric function (false alarm rates = 2.5, 10, and
40%; see Figure 1B). To evaluate the accuracy and precision of
threshold estimates obtained with the qYN, the simulation was
repeated for 1000 iterations.

The three-dimensional parameter space, which represents all
possible psychometric functions, consists of d’ threshold (t) from
0.0025 to 1.25 (59 samples on a logarithmic scale), d’ slope (y)
from 0.4 to 10 (58 samples on a logarithmic scale), and bias (1)
from —1 to 3 standard deviation (56 samples in linear space).
The prior probability distribution was set to a broadly distributed
hyperbolic secant, centered on initial guess over each parameter.
Possible contrasts are from 0.001 to 0.99 with 120 equally spaced
samples on a logarithmic scale. The true parameters of the
simulated observer were T = 10%, y = 2,and A = 1.

Results

Simulations were used to evaluate the gYN method’s accuracy
and precision for estimating sensitivity thresholds and to
examine the method’s stimulus sampling patterns.

Stimulus sampling

Figure 6 summarizes the pattern of the gYN’s Bayesian stimulus
sampling, by presenting ordinary and cumulative histograms
of the stimuli presented over the aggregate of 1000 simulation
iterations. The qYN’s implicit sampling strategy (Kujala and
Lukka, 2006), which gains information about underlying SDT
model parameters, differs from prior methods that explicitly
target a single location (e.g., the 50% empirical threshold)
on the psychometric function. Instead, the gYN alternates
sampling between several regions that provide information
about sensitivity and decision parameters. Over the first part
of the experiment (~10 trials), stimulus placement focuses on
estimating threshold; the expected information gain function
shows a global maximum near the true threshold. However,
sampling does not solely depend on the sensitivity threshold, but
also on the decision criterion; when observers respond liberally
(high false alarm rate), more stimuli are presented at lower

intensities, to distinguish whether Yes responses at low intensities
signify a low threshold or a liberal response state. By trial 10,
the most liberally responding observer (Figure 6, green line; false
alarm rate = 40%) evokes sampling at predominantly lower
intensities. After the first 10 trials (see Movie 1), the expected
information gain function exhibits local maxima reflecting the
lowest stimulus intensities (to refine false alarm rate estimates),
and contrast levels above and below the threshold (to estimate
psychometric steepness).

In addition to increased sampling of low intensities for
liberally-responding  observers, the stimulus
histograms (Figure 6; middle row) demonstrate correspondence
between the steepest portions of the stimulus sampling
distributions and the dynamic regions of the psychometric
function. The result of this broad sampling strategy is an efficient
resolution of different regions of the psychometric function: both
the lower asymptote (defined primarily by decision parameters)
and the dynamic region (defined by sensitivity parameters). This
sampling pattern is critical for distinguishing between observers
who respond Yes to low intensities due to low thresholds
and those with high false alarm rates. The convergence of
psychometric function estimates is demonstrated by their
decreasing variability with increasing trial number (bottom row).
The shaded regions represent the variability of function estimates
via the interquartile ranges of predicted response probabilities,
as a function of signal contrast. The psychometric function
estimates are generally accurate (but imprecise) in early testing,
and then narrow significantly with increasing trial number.

In most traditional adaptive procedures such as the staircase
and QUEST procedures, stimulus selection focuses on the
region near the estimated threshold. This could result in inter-
trial dependency: successive presentation of a narrow range of
stimulus levels could change observer’s underlying sensitivity and
bias. In contrast, QYN uses a wide range of stimulus levels in
order to estimate both sensitivity and bias. The risk of inter-trial
dependency is minimized.

cumulative

Threshold estimation: accuracy and precision

Figure 7 (first column) presents the accuracy and precision of
sensitivity threshold estimates obtained with the gYN method,
as a function of trial number. Accuracy is characterized by how
threshold estimates deviate from the true threshold value (top
row), and precision is characterized by the standard deviation of
threshold estimates (bottom row). The bias (in dB) in threshold
estimates was calculated as:

)
Tirue )

Figure 7 (top row) demonstrates that threshold estimates rapidly
converge for response states that vary in decision criterion. Over
the range of false alarm rates presently tested, threshold bias
decreases below 0.5 dB by 25 trials, (1dB = 0.10 log units). The
threshold precision is represented by the standard deviation of
threshold estimates (Figure 7, bottom row). Within 25 trials, the
qYN delivers threshold estimates with 0.1 log unit precision, for
false alarm rates of 2.5 and 10%. The lower threshold precision

2hias = 10l0g10 ( (19)
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FIGURE 6 | Stimulus sampling. The aggregate patterns of stimulus
sampling and psychometric function estimates are presented, for stopping
points of 10, 25, 50, and 100 gYN trials, in different columns. To characterize
the qYN’s stimulus sampling, ordinary histograms (upper row), and
cumulative histograms (middle row), are presented as a function of signal

contrast. Within 10 trials, sampling is focused to signal contrasts near the
sensitivity threshold (10%). As testing progresses, most of the stimulus
sampling coincides with the dynamic region of the empirical psychometric
function. The sampling pattern also critically depends on the observer’s
decision criterion.
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FIGURE 7 | Simulation results. Sensitivity threshold estimates —accuracy
and variability. Accuracy (top row) and variability (bottom row) of sensitivity
threshold estimates are presented as a function of trial number for four
tasks—simple, cued, rated, and forced-choice detection (arranged by
column). For each task, three response states (red, blue, green) were
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simulated for an observer with the same sensitivity parameters (contrast
threshold = 10%; contrast exponent = 2; see Figure 10 for more details on
the simulated response states). Across the different criterion states simulated
for each task, the general willingness to respond is signified by color:
conservative (green), intermediate (red), and liberal (blue) response states.
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(~1.5dB) observed with the high false alarm rate (40%) is
a pattern consistent with that exhibited by FC methods with
relatively high guessing rates (King-Smith et al., 1994).

The confounding effects of decision criterion on empirical
Yes rates are apparent in the evolution of sensitivity threshold
estimates (Figure 7; upper left panel). For the most liberally
responding observer, initial threshold estimates undershoot the
true value: during this testing stage the YN method must
distinguish a low threshold from a liberal decision criterion (high
false alarm rate). Thus, threshold estimates are initially low, until
additional data collection identifies the high false alarm rate and
resolves the proper sensitivity threshold. In this way, the gYN
distinguishes between observers with relatively conservative and
liberal response states.

Effects of the prior

Often, the prior probabilities are assumed to be uniform over a
range of values. Alternatively, it is possible to use prior knowledge
to focus more narrowly on likely values of the parameters. In
our simple qYN simulation, the prior distribution was spread
over a broad range of parameter values. It is well known that
a more informative prior distribution could change the starting
point of parameter estimation and make the estimation process
even faster. To illustrate this effect, we conducted another set
of simulations with four different prior settings for contrast
threshold (Figures 8A-D): (1) a weak matched prior (prior
mode = 10%, prior confidence = 1.6), (2) a weak mismatched
prior (mode = 0.9%, confidence = 1.6), (3) a strict matched prior
(mode = 10%, confidence = 11.5), and (4) a strict mismatched

prior (mode = 0.9%, confidence = 11.5). Broadly distributed
priors were set for contrast exponent (mode = 2.0, confidence =
6.1) and decision criterion (mode = 1, confidence = 2.1) in all
simulations. The average estimated contrast threshold from 300
iterations of the simple qYN procedure is shown as a function of
trial number in Figure 8E. Results show that the two simple qYN
procedures with weakly informative priors—either matched or
mismatched—generated essentially the same performance after a
few trials. A strict matched prior can enhance the performance of
the procedure, but there is a risk of getting deteriorated accuracy
when the informative prior is mismatched. It is important to
note that bias caused by a mismatched prior can be overcome
after testing dozens of trials (e.g., 20 trials in this simulation).
In practice, the prior for the QYN procedure can be informed by
prior knowledge or pilot data.

Effects of prior on the steepness parameter are not simulated
in this investigation. The prior used on the steepness parameter
is not strict, especially in the contrast exponent domain. The
analysis of the data collected with the MCS in Appendix A is
instructive, because it demonstrates that (1) fixing the steepness
parameter at 2.0 did not have an appreciable effect on fitting a
large simple detection dataset, and (2) the estimated steepness
parameter ranged from 1.8 to 2.2 across observers, with bootstrap
variability estimates ranging from 0.3 to 0.5 for individual
observers. Based on these results, we feel that setting the range of
the contrast exponent between 1 and 4 is not strict. Furthermore,
because the target performance level of the contrast threshold
is usually placed around the steepest part of the psychometric
function (e.g., d’ = 1), a mismatch of the steepness prior has very

A : B :

o
-
(4]

o
o

Prior probability
5

/:\’_I\

0.2 :
c D

o
o
(%]

o
o
a

Prior probability
o

1
025 1 25 1025
% Contrast

0 _ )
025 1 25 1025 100
% Contrast

100

FIGURE 8 | Simulation results with different initial prior
distributions: (A) a weak- matched prior, (B) a weak-mismatched
prior, (C) a strict-matched prior, and (D) a strict-mismatched
prior. The red dashed line represents the simulated observer’s true
parameter. (E) Estimated contrast threshold as a function of trial
number. The simulation results start with estimates after the simulation
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of the first trial, whereas the left panels represent prior distributions
before the simulation of the first trial. The qYN/QFC methods gain
much information in the first few trials, so that even a single (first) trial
changes the posterior distribution. Note that there is some residual
bias in the estimated contrast threshold even after 300 iterations of
the procedure.
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little effect on threshold estimates. It’s also important to note that
QUEST assumes a fixed steepness parameter.

Parameter space, stimulus space, and computing time

In each trial, the qYN procedure updates the posterior
distribution and selects the most informative stimulus level for
the next trial. Such steps require internal computations of a
huge 59 x 58 x 56 x 120 array. The size of the array affects
the speed of pre- and post-trial computations. To determine
the limitation caused by array size on real psychophysical
experiments, we measured computation time as a function of
array size, determined by the size of the parameter and stimulus
space. The computation time increased linearly with the size of
the array (Figure 9). The red asterisk represents the size of the
array and its computation time used in our simulation. On a
Core 2 Duo laptop, the computation time was around 100 ms.
Considering that the typical inter-trial interval is > 200 ms in
most psychophysical experiments, our choice of parameter and
stimulus space is acceptable in practice. We expect that rapid
advances in computer technology would eliminate the practical
limitation.

Simulations of qYN in Cued, Rated, and
Forced-choice Detection

Method

To complement the results obtained for simple detection,
and demonstrate that sensitivity-based adaptive methods can
yield threshold estimates that are independent of task and the
subject’s decision state, we used simulations to evaluate methods
developed for cued, rated, and FC detection. For each of the
cued, rated, and FC detection tasks, we simulated an observer
with the same sensitivity parameters specified in the previous
qYN simulations (contrast threshold = 10%, contrast exponent =
2), in three different decision states representing distinct criteria.
Figure 10 demonstrates the broad range of simulated detection
behavior, given invariant sensitivity parameters and decision
criteria that vary with task and response state. Demonstration
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FIGURE 9 | Computation time as a function of the size of the
parameter and stimulus space. The red asterisk represents the size and the
corresponding computation time used in our simulation study.

movies of each of the cued, rated, and forced-detection methods
are presented in Movies 2-4 respectively.

The psychometric functions obtained in cued and rated
detection depend on two decision criteria. In cued detection,
a cue directs the observer to operate either under lax or
strict decision criteria that define liberal and conservative
response states. For rated detection, the observer maintains
multiple response states on each trial, and can thus respond
“Not Sure;” in addition to Yes and No. In some rating YN
experiments, researchers have used four or more response
categories. Choosing a large number of response categories,
thus more parameters to be estimated, increases the number
of required trials to obtain reliable measurements as well as
computational resource. Since the primary interest is often on
obtaining sensitivity threshold independent of decision criteria,
qYNR uses rating procedure with only three states. For cued
and rated detection simulations, we used decision parameters
corresponding to the three response states simulated for simple
detection.

For evaluation of the gYNC method applied to cued detection,
the simulated decision states comprised conservative and liberal
response states with corresponding false alarm rates: (i) 2.5
and 10%, (ii) 2.5 and 40%, and (iii) 10 and 40%. The overall
willingness to respond Yes increases across these three decision
states. In rated detection, the decision criteria that define
psychometric functions for Yes, No, and Not sure are directly
related to those in cued detection (see Figure 4). For simulations
of the gYNR method, the same criteria simulated for cued
detection were used; these criteria respectively define Yes and No
response rates to the null stimulus: 2.5 and 90%, 2.5 and 60%, and
10 and 60%.

For FC detection, it's commonly presumed that empirical
thresholds (defined by % Correct) are criterion-free. However,
both naive and experienced observers can exhibit interval or
alternative biases that undermine this assumption (Klein, 2001;
Jakel and Wichmann, 2006). To address this issue, we developed
the quick FC method, which estimates the decision criterion
(interval bias) for two-interval FC detection. This distinguishes
the gFC method from previous methods (QUEST, Watson and
Pelli, 1983; the W method, Kontsevich and Tyler, 1999) that
have exclusively focused on estimating empirical thresholds, and
therefore do not provide clear ways to detect, characterize, and
estimate parameters for biased observers. The gFC method may
be especially useful for application to naive human or animal
observers who may adopt non-neutral decision strategies before
they gain psychophysical experience (Jakel and Wichmann,
2006). Given the same sensitivity parameters simulated in the
YN tasks, we simulated response states with (i) first-interval,
(ii) second-interval, and (iii) neutral interval bias. For general
comparison, we simulated the application of QUEST (Watson
and Pelli, 1983) to measure empirical thresholds (at 75% correct)
for an un-biased observer.

Results

Despite the range of simulated detection behavior (Figure 10),
which varied in decision structure and response states, the
sensitivity threshold estimates obtained with the gYN and gFC

Frontiers in Psychology | www.frontiersin.org

13

August 2015 | Volume 6 | Article 1070


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Lesmes et al.

Adaptive methods for estimating d’ thresholds

A simple B cued G rated
100 100 100
—
e N,
q, 75 No —
w 75 7B =
5 2
8 EEmEaay S
w50 Yes 50 | Yes-Lax 50 g
\8 1 ey 3
a P,
25 25 Yes- 25
Strict i
0 0 - 0
2 51 2 51020 50 2 51 2 51020 50 2 512 51020 50
R forced-choice forced-choice
100 : A — : . 8 - ’ - 100
= = = interval 1
interval 2 )
4 75 ’5?
] 75 —+
o B
50 <
S . S
8 -
25
25 ¢ o NS N
2 51 25102050 -30 -20 -10 0 10 20 30
signal contrast (%) signal contrast (%)
FIGURE 10 | Simulation design for sensitivity-based adaptive conservative and liberal states: (2.5, 10%), (2.5, 40%), (10, 40%). (C)
methods. The simulations of adaptive methods for simple, cued, rated, Psychometric functions in rated detection with three pairs of decision
and forced-choice detection assume sensitivity parameters (threshold = criteria that produce Yes and No response rates of 2.5 and 90% (green),
10% and contrast exponent = 2) are invariant across a range of 2.5 and 60% (red), and 10 and 90% (blue) in signal-absent trials. (D)
detection tasks and response states. (A) Psychometric functions in simple Psychometric function in two-interval forced-choice detection with a bias
detection with false alarm rates of 2.5, 10, and 40%. (B) Psychometric toward responding Interval 2 (red), a bias toward responding interval 1
functions in cued detection with three pairs of false alarm rates for the (green), or no bias (blue).

methods exhibit consistent patterns. Across a range of response
states in simple, rated, cued, and FC detection tasks, the
variability of threshold estimates starts to decrease consistently
by 10-15 trials (Figure 7; bottom row). By trial 25, bias decreases
below 0.5dB and variability below 1.5dB for all response states
(shaded region marks true threshold £0.5dB). As reported in
previous studies, and also seen for the QYN in simple detection,
(1) the convergence of precise threshold estimates is more rapid
in YN tasks, relative to FC tasks, and (2) in YN tasks, threshold
convergence is most rapid for relatively conservative response
states (green). In simple, cued, and rated detection, response
states corresponding to lower guessing rates (Yes rates to null
stimuli) yield threshold estimates with lower variability. In those
cases, only 15-20 trials are needed for sufficient accuracy (bias <
0.5dB) and precision (~1dB) of sensitivity threshold estimates.
The importance of psychometric functions with an expanded
dynamic range is supported by the observation that the precision
of YN threshold estimates with 40% false alarm rate (first column,
lower row, green line) is similar to that observed for FC threshold
estimates (last column, second row).

The stimulus sampling patterns of the qYNC and gqYNR
methods are presented for stopping points of 10, 25, 50, and
100 completed trials in Figure 11. The general pattern is
similar to that demonstrated by the qYN method; namely,
that stimulus sampling is (1) mostly focused to the dynamic
region(s) the psychometric function(s), and (2) increased
at the lowest-intensity stimuli for liberal response states.
This sampling strategy allows the concurrent estimation
of sensitivity and decision parameters in an efficient way.
The behavior of the gFC in FC detection was similar to
the gYN in simple detection when YN false alarm rates
were high (40%). In turn, the gFC demonstrates better
precision (lower variability) than QUEST, over the first 50
trials (see Figure 12; bottom row, far right panel). The gFC
stimulus sampling demonstrates similar patterns to the qYN
methods. The adaptive sampling matches stimulus presentation
to the dynamic regions of the empirical psychometric
function. These simulations suggest that estimating sensitivity
thresholds is a promising approach to efficiently characterize
detection performance. To evaluate how these simulations
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FIGURE 11 | Stimulus sampling patterns for cued and rated
detection. The stimulus sampling patterns of the gYNC and qYNR methods
are presented for stopping points of 10, 25, 50, and 100 completed trials.
The general pattern is similar to that demonstrated by the quick YN method;
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namely, that stimulus sampling is (1) mostly focused to the dynamic region(s)
the psychometric function(s), and (2) increased at the lowest-intensity stimuli
for liberal response states. This sampling strategy allows the concurrent
estimation of sensitivity and decision parameters in an efficient way.

translate to real applications, we conducted a psychophysical
study.

The stimulus sampling patterns of the qFC method is
demonstrated by ordinary and cumulative stimulus histograms
(Figure 12). The gFC method demonstrates a pattern similar
to those demonstrated by the YN adaptive methods; namely,
that the stimulus sampling pattern matches the empirical
psychometric function. For example, fewer stimuli are presented
in the second interval to an observer who is biased against the
second interval (Figure 5). This asymmetry is evident as early as
the 10th trial.

For invariance of sensitivity threshold estimates across
detection tasks, it’s necessary to estimate and account for decision
criteria across different response states. In Figure 13, we present
estimates of response probabilities at d’ 0, for simple,
cued, rated, and FC detection tasks. It's apparent that, unlike
previous adaptive methods developed for YN and FC tasks,
these methods can reliably distinguish a broad range of decision-
level behaviors. For simple and cued detection, 25 trials are
sufficient for the QYN and qYNC methods to distinguish Yes
response rates that correspond to different response states: 2.5,
10, and 40%. For rated detection, the corresponding response

rates are 2.5, 10, and 40 for Yes Responses and 90 and 60%
for No responses. Simulation results for the gFC are presented
for un-biased (red) and interval-biased (green, blue) response
states in FC detection (see Figure 5). When presented with a
blank stimulus in both intervals, the biased observers responded
Interval 2 with probabilities of 70 or 30% (interval bias of +20%).
Similarly to the methods developed for the YN tasks, the gFC can
reliably distinguish response behavior corresponding to biased or
unbiased FC detection.

Psychophysical Study

In a psychophysical study, the gYN and gFC adaptive methods
were evaluated by independent validation with the MCS and
cross-validation between the gYN and gFC methods.

Method

Apparatus

The experiment was conducted on a Windows-compatible
computer running PsychToolbox extensions (Brainard, 1997;
Pelli, 1997). The stimuli were displayed on a Dell 17-inch
color CRT monitor updating at a 120 Hz refresh rate. A special
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FIGURE 12 | Stimulus sampling patterns for forced-choice detection.
The quick FC’s sampling is demonstrated by ordinary and cumulative
stimulus histograms. The gFC method demonstrates a pattern similar those
demonstrated by the YN adaptive methods; namely, that the stimulus

-30-20-10 O 10 20 30

-30-20-10 0 10 20 30

sampling pattern matches the empirical psychometric function. For example,
fewer stimuli are presented in the second interval to an observer who is
biased against the second interval (Figure 5). This asymmetry is evident as
early as the 10th trial.

circuit changed the display to a monochromatic mode, with high
grayscale resolution (14 bits) and luminance levels linearized via
a lookup table (Li et al., 2003). Stimuli were viewed binocularly
with natural pupil at a viewing distance of approximately 72 cm
in dim light.

Participants

Three naive observers (TC, JA, and CH) and one of the
authors (JB) participated in the experiment. All observers had
corrected-to-normal vision and two (JB, CH) were experienced
in psychophysical studies.

Stimuli

The signal stimuli were Gaussian-windowed sinusoidal gratings,
oriented = +45 degrees from vertical, shown at fovea. The
luminance profile of the Gabor stimulus is described by:

L(x, y) = Lo {1.0 + ¢ x sin[27f(x cos 6 + ysin6)]

x e~ /207 }, (20)

where c is the signal contrast, o = 0.42° is the standard deviation
of the Gaussian window, and the background luminance Ly was
set in the middle of the dynamic range of the display (Lyin = 3.1
cd/m?; Liax = 120 cd/m?). The signal stimuli were rendered on a
64 x 64 pixel grid, extending 2.08 x 2.08° of visual angle. External
noise images were constructed using 2 by 2 pixel elements
(0.064 x 0.064°). Each noise element’s contrast level was drawn
independently from a Gaussian distribution with mean of 0 and
standard deviation of 16% contrast. On each trial, noise images
were composed of elements with jointly independent, identically
distributed contrasts.

Design and Procedure

Each observer completed four experimental sessions. Each
session, devoted to a single detection task, consisted of four
adaptive runs (each lasting 100 trials). These trials were inter-
mixed with the MCS, which was used to collect 50 trials at
each of a number of pre-determined signal contrast levels.
In each task, the target signal sequence was the same: a
fixation-cross presented in the center of the screen for 500 ms
was followed by the stimulus sequence. The basic sequence,
which consists of three 8.3 ms frames: a noise frame, a signal
frame, and another (independent) noise frame, is presented in
each task. Each task varied the procedure for presenting this
sequence.

Simple detection

Following stimulus presentation, observers used a key press to
respond Yes if they thought the signal was presented and No
otherwise. No feedback was provided. MCS trials were collected
at eight signal contrast levels: null contrast and seven levels
spaced log-linearly from 8 to 60% contrast (50 trial x 8 signal
contrasts = 400 MCS trials).

Cued detection

Before the fixation cross was presented on each trial, the
observer’s response state was cued by one of two words—Lax or
Strict-displayed for 500 ms at the screen’s center. In practice trials
that preceded the experiment, observers were instructed to be
conservative in responding Yes on the Strict trials and liberal on
the Lax trials. A payoff structure was implemented to reinforce
and maintain the distinction between response states throughout
the session. On the Lax trials, the observers gained eight points
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FIGURE 13 | Estimating Decision Criteria. For invariance of sensitivity
threshold estimates across detection tasks, it's necessary to estimate and
account for decision criteria across different response states. Here we
present estimates of response probabilities at o’ = 0, for simple, cued, rated,
and forced-choice detection tasks. It's apparent that, unlike previous
adaptive methods developed for YN and FC tasks, these methods can
reliably distinguish a broad range of decision-level behaviors. For simple and
cued detection, 25 trials are sufficient for the gYN and gYNC methods to
distinguish Yes response rates that correspond to different response states:
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2.5, 10, and 40%. For rated detection, the corresponding response rates are
2.5, 10, and 40, for Yes Responses and 90 and 60% for No responses.
Simulation results for the gFC are presented for un-biased (red) and
interval-biased (green, blue) response states in forced-choice detection (see
Figure 4). When presented with a blank stimulus in both intervals, the biased
observers responded Interval 2 with probabilities of 70 or 30% (interval bias
of £20%). Similarly to the methods developed for the YN tasks, the gFC can
reliably distinguish response behavior corresponding to biased or unbiased
forced-choice detection.

for hits, while losing two points for false alarms; on the Strict
trials, observers received two points for hits and lost eight points
for false alarms. No trial-by-trial feedback was given. Instead,
during a break every 25 trials, the observer was presented with the
running totals of (1) points won and lost for the previous 25 trials
and (2) points won and lost for the entire session. MCS trials were
collected at eight signal contrast levels for both conservative and
liberal response states (50 trials x 8 signal contrasts x 2 response
states = 800 MCS trials). The same contrast levels were used as in
simple detection.

Rated detection

The stimulus sequence was the same as simple detection, but
observers responded Yes, No, or Not sure, with respect to signal
presence. MCS trials were collected at eight stimulus levels: (50
trials x 8 signal contrasts = 400 MCS trials). The same contrast
levels were used as in simple detection.

EC detection

In contrast to the YN tasks, FC detection presented a stimulus
sequence over two intervals separated by 1s. The target interval
contained the signal sequence and the other contained a blank
frame presented between two noise frames. Observers used a
key press to respond Interval 1 or Interval 2, depending on
which interval contained the signal. No feedback was given. MCS
trials were collected over 11 stimulus conditions. Ten conditions
were defined by five contrast levels (spaced log-linearly), which
were presented in the first or second interval. The last condition
presented the null stimulus (0% contrast) in both intervals: (50
trials x 11 stimulus conditions = 550 trials).

Results

The MCS data were used as baseline to validate the proposition
that an invariant sensitivity function accounts for detection
behavior across different tasks and/or response states. In
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addition, we sought to validate that sensitivity threshold
estimates obtained with the MCS agreed with qYN and gFC
threshold estimates, and that gYN and gFC threshold estimates
agreed with each other.

Independent and Cross-validation: MCS and qYN

Figure 14 presents results obtained with the MCS and four
adaptive methods (qYN, gYNC, qYNR, and gFC) in four different
detection tasks. Each row presents the data from a single
detection task and each column presents data from a single
observer. The cued and rated detection tasks each produce two
empirical psychometric functions. For the FC task (bottom row)
presenting the un-wrapped psychometric function (probability of
responding Interval 2 as a function of relative contrast), rather
than the typical psychometric function (%Correct), helps to de-
clutter the data presentation. In addition to the raw data collected
with the MCS (blue dots), psychometric functions obtained
from MCS model fits (blue lines), and psychometric functions
obtained from gYN and qFC methods are presented (red, green
lines). For each task and observer, the psychometric functions
were calculated from the sensitivity and decision parameters
averaged across the four adaptive runs. The shaded regions

represent the range of psychometric function estimates; that
is, the lowest and highest estimates of response probabilities
obtained across four adaptive runs. A general inspection suggests
excellent agreement between psychometric functions obtained
with the MCS and gYN and gFC methods, although estimation
of sensitivity threshold is the focus of the new adaptive
methods.

The MCS data clearly demonstrate the importance of
characterizing detection behavior using both sensitivity
and decision factors. For example, consider observer JB’s
performance in cued detection (Figure 14, second row-first
column). Given the same stimulus (signal contrast = 11%), the
conservative and liberal response states produced large Yes rate
differences: 10 vs. 40%. Furthermore, the change in decision
criterion produces an approximately two-fold difference between
the 50% Yes thresholds in the two response states (10 vs. 20%
contrast).

MCS data collected across the four detection tasks were
analyzed by testing a basic SDT model comprised of a single
d’ psychometric function and task-specific decision parameters.
In addition to two sensitivity parameters—the threshold, z,
and steepness, y, of the d' function- this model includes
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FIGURE 14 | Psychophysical validation. Data from each detection task
are organized by row and data from each observer is organized by
column. Simple and forced-choice detection tasks define one
psychometric function, and the cued-criterion and rated detection tasks
define two functions. MCS data (blue dots) were fit with an SDT model
that generated empirical psychometric functions (blue lines) from a
task-invariant sensitivity psychometric function and task-specific decision
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parameters. For each observer in each task, the mean SDT parameters
(averaged across 4 runs of 100 trials) were used to generate the mean
psychometric function estimates (red, green lines) obtained from adaptive
methods. The shaded regions (red, green) represent the full range of
psychometric function estimates—the minimum and maximum response
probabilities obtained across the four adaptive runs, as a function of
signal contrast.
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TABLE 1 | Parameter estimates for threshold and steepness of the
d-prime psychometric function obtained with the MCS obtained across
four detection tasks.

Observer Parameters

TmMcs ?mcs
JB 0.153 (0.18) 2.39 (0.38)
CH 0.095 (0.23) 2.06 (0.48)
TC 0.140 (0.19) 2.35(0.34)
J1 0.144 (0.22) 1.84 (0.31)

Bootstrap generated medians and standard deviations (in dB) are presented.

six decision criteria: one each for simple and FC detection,
and two each for cued and rated detection. A bootstrap x>
analysis, which assessed goodness-of-fit (see Appendix B for
details), concluded that this unified SDT model could not be
rejected for any of the observers (p > 0.5). Figure 14 presents
the empirical psychometric functions predicted by the MCS
model fits (blue lines). Table 1 (Appendix B) presents sensitivity
parameter estimates, (tascs, Ymcs), obtained for each observer.
The bootstrap-estimated variability of MCS threshold estimates
was low (<0.2 dB), due to the relatively large dataset per subject
(>2000 trials across four tasks).

To evaluate method agreement, Figure 15 presents difference
scores calculated between sensitivity threshold estimates
obtained with the MCS and the qYN and gFC methods. The
mean and standard deviation of the difference scores are
presented, as a function of trial number in the adaptive run.
In general, threshold estimates obtained with the different
methods show excellent agreement with the MCS. For the
qYNR and qYNC methods, large differences between thresholds
observed with less than 10 trials decrease to <0.5dB within
20 trials. gFC threshold estimates took longer (>30 trials) to
approach MCS estimates. The largest threshold differences were
demonstrated by the qYN method, which exhibited a 0.45dB
difference that persisted up to 100 trials. The apparent increase
of the bias of the estimated thresholds with increasing trials
number is inconsistent with the simulation results (Figure 7).
One possible reason for such discrepancy is that we don’t know
the true thresholds in the psychophysical study. Although we
used the results from the MCS method as the “truth,” the MCS
estimates themselves are associated with variabilities and are
only approximations of the truth.

The thresholds estimates obtained from the qYNR showed
excellent precision, with variability decreasing to 1dB by 15
trials, and to 0.5dB by 50 trials, whereas the other methods
converged more slowly. The variability of gYN and gqYNC
threshold estimates decreased below 1.5 dB by trial 25, with the
qYN showing 1dB precision. By 60 trials, variability of all four
methods reached 1dB precision. The considerable decrease in
threshold variability observed over the earliest epoch of data
collection (<10 trials) suggests that the threshold priors do
not dominate threshold estimates. Like the residual threshold
difference the gYN exhibited with 100 trials, another unfavorable
aspect of gYN behavior is that threshold variability increased
from 50 to 100 trials.

Discussion

For psychophysical validation, we applied a conservative
experimental design. To determine the validity of the SDT model
that underlies the newly developed qYN and gFC methods,
we examined detection behavior using a more deliberate,
classical MCS. We concurrently collected data using the MCS
to establish some estimate of the “ground truth.” The design
was complicated still more by evaluating the task-invariance
of sensitivity thresholds. For that reason, participants in our
study completed >3000 trials with >2000 MCS trials. Out of
the four participants in our experiment, only two had experience
in psychophysical experiments: JB was one of the authors and
CH was a researcher in our lab. The two other participants
(TC and JA) were naive volunteers with no prior experience as
psychophysical subjects before the study. As shown in Figure 14,
our methods did not show any degraded efficiency for naive
participants. In fact, more precise estimates were obtained from
TC than from JB.

These data provided independent evidence that performance
across four detection tasks could be accounted for by a single
sensitivity psychometric function and task-specific decision
criteria. In addition, adaptive methods developed for YN and FC
tasks yielded threshold estimates that agreed with MCS estimates.
This validation was important because many factors prevent
adaptive methods from the idealized performance studied in
simulations. A mismatch between the assumed model or assumed
parameter priors can result in inaccuracy or imprecision of
threshold estimates. These data suggest that the assumption of
steepness priors was reasonable. Similarly, non-stationarity of
behavior can result in method inefficiency. For example, an
observer in a simple detection task may change their decision
criterion over the course of an experiment. The psychophysical
data obtained with the gYNR demonstrated excellent agreement
with simulations. As predicted, sensitivity thresholds obtained
with as few as 15 trials (for the gYNR method), which matched
those obtained with the MCS, demonstrated excellent precision.
Perhaps, relative to other tasks, observers in the rated detection
were able to maintain multiple criteria precisely and reliably.
Given that 10-20 YN trials can be easily completed in 1-2 min,
this method shows great potential for rapid, accurate estimates of
sensitivity thresholds.

General Conclusion and Discussion

The qYN and qFC Methods

The previous development of adaptive methods has focused on
targeting pre-defined %Yes or %Correct performance levels on
the empirical psychometric function. Following the development
of YN and FC staircase procedures,(von Bekesy, 1947; Wetherill,
1963; Wetherill and Levitt, 1965), the QUEST method (Watson
and Pelli, 1983) was the landmark application of Bayesian
adaptive inference to measure FC thresholds. The Bayesian
adaptive approach has since been applied to measure empirical
thresholds in YN and FC tasks (Watson and Pelli, 1983; King-
Smith et al., 1994; King-Smith and Rose, 1997; Snoeren and
Puts, 1997; Alcala-Quintana and Garcia-Perez, 2007; Garcia-
Perez and Alcala-Quintana, 2007). In psychophysics, adaptive
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FIGURE 15 | Method comparison. (A) Mean and (B) standard
deviation of log-ratio difference scores are presented as a function of
trial number in the adaptive run. (A) For method agreement, the
shaded region represents excellent agreement (+£0.5dB) between
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threshold estimates obtained with the MCS and the gYN and gFC
adaptive methods. (B) For method variability, the shaded region
represents standard deviation of difference score estimates that range
from 10 to 0.15 log units.

methods have proved essential in reducing testing times needed
for estimating empirical thresholds in YN and FC tasks.

In the current study, we have developed, tested and validated
four Bayesian adaptive methods that estimate sensitivity
thresholds in YN and FC detection tasks. To our knowledge, these
are the first adaptive methods that apply the SDT framework
to directly estimate sensitivity thresholds. By their previous
focus on empirical thresholds, existing adaptive methods have
not reliably estimated decision parameters in YN and FC
tasks, but Kaernbach’s (1991, 2001) has attempted to mitigate
the contaminating effects of response bias in YN and FC
tasks. Unlike other YN methods, Kaernbach’s (1991) staircase
method incorporated null stimulus presentation into its adaptive
strategy, and adjusted stimulus presentation based on responses
to null stimuli. For the FC task, Kaernbach (2001), attempted
to diminish the contaminating effects of FC response bias by
introducing a Don’t Know response. Though this “unforced-
choice” procedure reduces the impact of response biases, it
does not estimate any decision parameters that define response
bias. Though these methods were the best available approach to
mitigating response bias effects on the measurement of empirical
thresholds, they fell short of accounting for effects of decision
factors on detection behavior. By directly assessing sensitivity
and decision parameters, the YN methods resolve the criterion-
dependence of YN thresholds that has largely prevented its
widespread application in psychophysical laboratories. The gFC
provided a valuable demonstration that sensitivity thresholds
obtained in YN tasks matched those obtained in the FC task,
which is the de-facto standard for laboratory studies. We believe
these novel YN methods present strong alternatives to FC
methods of threshold assessment and hope their availability
increases the application of YN tasks.

These sensitivity-based methods deliver on an attractive
premise of SDT: that detection metrics should not depend
on decision-level factors that include the task’s decision
structure or the observer’s response state. This feature is
particularly important for comparing measures of perceptual
phenomena (e.g., perceptual learning) measured across different
experimental designs (Fine and Jacobs, 2002). Application of
such tools should be useful in paradigms like subliminal
perception, multisensory integration or adaptation, in which it
is critical to distinguish the contribution of decision factors to
perceptual phenomena.

In this study, we focused on developing quick methods
to estimate sensitivity threshold. The objective function used
in these methods is minimizing the entropy of the (joint)
posterior of the parameters of the full psychometric functions.
Given the goal of the methods, the objective function
may not be optimal. Alternative objective functions may
place differential weights on different parameters of the
psychometric function or be based on sensitivity threshold
directly.

Development of fast adaptive procedures has been proved
to be useful for studying clinical populations. For example, an
adaptive procedure for measuring contrast sensitivity function
(Lesmes et al., 2010) has been successfully applied to estimate and
classify contrast sensitivity functions of patients with amblyopia
in very short testing times (Hou et al., 2010). The value of quick
adaptive procedures could also be found in many laboratory
environments. Naive observers in psychophysical experiments
often fail to respond consistently in long experimental sessions.
The short testing time with QYN and qFC would not only reduce
the burden on subjects but also enable more reliable estimates
observers performance.
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Future Directions for Bayesian Adaptive Methods
Recent development of adaptive methods has focused on
methods that estimate more than the empirical threshold of the
FC psychometric function, like its steepness (King-Smith and
Rose, 1997; Snoeren and Puts, 1997; Kontsevich and Tyler, 1999;
Kujala and Lukka, 2006; Remus and Collins, 2007) and its upper
and lower asymptotes (Cobo-Lewis, 1996; Tanner, 2008).

An emerging generation of adaptive methods exploits
computing advances to estimate psychophysical models of
increasing complexity (Kujala and Lukka, 2006; Lesmes et al.,
2010; Vul et al, 2010). Kujala and Lukka (2006) applied
Bayesian adaptive inference to estimate equi-discrimination
elliptical contours. The gYN and gFC methods join the
larger family of quick Methods that we've developed for
rapidly estimating psychological functions. These include the
quick TvC method, which measures external noise functions
(Lesmes et al., 2006), the quick CSF method, which measures
spatial contrast sensitivity functions (Lesmes et al., 2010),
and the quick Surface method, which measures the spatio-
temporal contrast sensitivity surface (Lesmes et al., 2009).
Given their efficiency, these methods demonstrate great potential
for characterizing the perceptual deficits caused by visual
neuropathology. Applied to amblyopia, Hou et al. (2010)
demonstrated that as few as 50 quick CSF trials (<5min) are
needed to characterize the contrast sensitivity function deficits in
amblyopia.

The problem addressed by adaptive methods in psychophysics
is a general one encountered in many scientific and engineering
applications. Given limits in time or other experimental resources
(Kujala, 2010), which is the next best observation to make? The
convergence of solutions to this problem within psychophysics
and across disciplines should help advance the development and
application of efficient empirical methods in psychophysics and
other domains.
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Movie 1 | The g¥YN method applied to estimate the sensitivity threshold in
simple detection. The true YN psychometric function (black line; upper left
panel) and the qYN'’s updating estimate of the psychometric function (red dotted
line) are presented. The trial history (upper middle panel) presents the signal
contrast presented on each trial and the subsequent response. Each dot
represents the contrast of the selected stimulus, as a function of trial number, and
the dot’s color represents whether the observer responded Yes (blue), or No
(black). Shaded regions that correspond to confidence intervals for the sensitivity
threshold estimates (65% in dark red and 95% in light red) as a function of trial
number, are overlaid on the trial history. In the adjacent panel (upper right),
calculation of the stimulus selection algorithm is presented and the true threshold

value is presented for reference (dotted line); expected information gain is
normalized by the maximum of the expected information gain estimate. Therefore,
the selected stimuli correspond to peaked regions of the information gain function.
The Bayesian update of the pdf defined over three qYN parameters (threshold and
steepness of the sensitivity function and decision criterion) is presented. The
one-dimensional marginals for two sensitivity parameters (threshold and
steepness) and one decision parameter are presented (lower panels); the ground
truth for each parameter is presented for reference (dotted lines).

Movie 2 | The gYNC method applied in cued detection. The upper panels
present the true and estimated psychometric functions (left), the trial sequence
(middle), and calculation of the pre-trial stimulus selection algorithm (right). The
lower panels present sensitivity and decision parameter estimates, via the 2-d
marginal pdfs defined over (1) sensitivity parameters (threshold and steepness),
and (2) decision criteria: the strict criterion, and the z-score difference between the
strict and lax criteria. The empirical psychometric functions generated by the
liberal and conservative response states are presented for the true observer (blue)
and for qYNC estimates (red). In the simulated trial sequence, the contrast of the
selected stimulus and the cued response state are presented as a function of trial
number. For each trial, the dot’s position on the abscissa represents the trial
number and the position on the ordinate represents the selected contrast. The
outline color signifies the cued response state (red-strict; green-lax) and the dot’s
filled color signifies the observer’s response (blue-Yes; black-No). The shaded
regions represent the 65% (dark red) and 95% (lighter red) confidence intervals for
sensitivity threshold estimates, as a function of trial number. The peak of the
information gain function for the conservative response state is shifted to higher
signal contrasts, relative to that of the liberal state. In addition, at lower signal
intensities, the stimulus selection function falls off less slowly for the liberal state.
The trial sequence demonstrates the gYNC method systematically samples
different stimulus regions for the liberal and conservative response states. As a
result of this stimulus selection pattern, the quick YNC is able to sample the
dynamic regions of both empirical psychometric functions, and thereby sample a
broader range of detection behavior than is possible in simple detection.

Movie 3 | The gYNR method applied in rated detection. The upper panels
present the true and estimated psychometric functions (left), the trial sequence
(middle), and calculation of the pre-trial stimulus selection algorithm (right). The
lower panels represent sensitivity and decision parameter estimates, via the 2-d
marginal pdfs defined over (1) sensitivity parameters (threshold and steepness),
and (2) decision criteria: the strict criterion, and the z-score difference between the
strict and lax criteria. In the upper left panel, the true empirical psychometric
functions (Yes and No; blue) are presented with updating qYNR estimates (red). In
the trial sequence, the signal contrast selected for each trial is represented by the
dot’s position on the ordinate, and the trial’s outcome (Yes, No, and Not Sure
responses) is represented by dot’s color (red, blue, and green). The shaded
regions represent the 65% (dark red) and 95% (lighter red) confidence intervals for
sensitivity threshold estimates, as a function of trial number.

Movie 4 | The gFC method applied in forced-choice detection. The movie
demonstrates the quick FC method applied in a two-interval forced-choice
detection task. The simulated observer demonstrates a response bias that favors
the first interval (60% Interval 1 vs. 40% Interval 2 for the null stimulus). The upper
panels present the true and estimated psychometric functions (left), the trial
sequence (middle), and the pre-trial calculation of the stimulus selection algorithm
(right). In addition to the %Correct psychometric functions presented for each
interval, we also present the unwrapped psychometric function (inset), which
describes probability of reporting Interval 2 as a function of relative contrast in the
two intervals. In the presented trial sequence, the signal contrast selected for each
trial is represented by the dot’s position on the ordinate, and the trial’s response
(Interval 1 or Interval 2) is represented by the dot’s color (black, blue). The
correctness of responses in the trial sequence can be inferred from dot location
and color as follows: correct responses are marked by blue dots above and black
dots below the 0 position of the abcissa’s relative contrast scale; black dots above
and blue dots below mark incorrect responses. The 1-D marginal pdfs for the
sensitivity and decision parameters are presented in the lower panels. The
stimulus search is calculated over the one-dimensional space of relative signal
contrast. Therefore, unlike previous FC methods, the method selects both the
signal contrast and the interval in which it's presented. This strategy is needed to
estimate the decision criterion (interval bias).
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Appendix A

Justifying the d’ Psychometric Function
(Contrast Transducer Function)
In the spatial vision literature, there have been many approaches
to parameterizing the contrast transducer function (Legge and
Foley, 1980; Wilson, 1980; Foley and Legge, 1981; Smith et al.,
2010). The choice of our parameterization (Equation 1) is based
on a wealth of data from studies on noisy observer models
(see Lu and Dosher, 2008). To further examine the validity
of this function, we collected additional data for a simple
detection task using the MCS. The goal of the MCS sampling
scheme was to sample the dynamic region of the empirical
psychometric function, and at least 2 points each from its lower
and upper asymptotes (Wichmann and Hill, 2001b; Garcia Perez
and Quintana). For each session, 50 trials were collected at each
of eight stimulus levels (400 total per session). Eight observers,
who each completed a range of 1 to 13 sessions, completed a total
of 18,000 trials. The resulting data were fit with the same model
of the empirical psychometric function for simple detection:
Vyes(0) =1 -G (A —d'(0)), (A1)
with different functional forms of the d’ function. In addition to
the function applied in this study:

Blc/T)
VBE=1) + (c/0)?r

dc;t,y,B)= (A2)

and a common power-law model of sensitivity (Foley and Legge,
1981; Kontsevich & Tyler, 1999; Klein, 2001):
d (e o, B) = (c/)’. (A3)

We fit other functional forms from the spatial vision literature:

ﬂC2'4
d(ca, p)= e (A4; Legge and Foley, 1980)
/ (14— 1) |
dca B, y)=—FF""—"7— (A5; Wilson, 1980)

2% — 1)(B + o)

dca B, y)=p01- e(c/ot)y). (A6; Smith et al., 2010)
This list of functions represents the range of approaches to fitting
sensitivity psychometric functions in detection tasks, but is not
exhaustive. Further, to test the validity of the gYN’s simplifying
assumption that fixed the upper asymptote parameter, 8, and the
potential validity of a model with a strict prior on psychometric
steepness, ¥, we also fit the d’ function defined in Equation (1)
under conditions fixing only S(8 = 5) or both Band y (8 = 5
and y = 2).

The result is a total of 7 model conditions: three correspond
to conditions for fitting our preferred function (Equation

A2), under different levels of parameter constraints, and
four correspond to d' functions obtained from the literature
(Equations A3-6). Data from each of 45 testing sessions
(400 trials) were fit independently using %2 minimization (see
Appendix B). To evaluate the goodness-of-fit (r?), the mean and
standard deviations (in %) for the functions defined in Equations
(A2-6) were: [1] 98.4 (1.60), [2] 97.4 (1.76), [3] 98.0 (1.52), [4]
97.7(1.61), and [5] 98.3 (1.59). Furthermore, constraining the fits
of the d’ function used for the gYN reduced the goodness-of-fit
only slightly, for [6] 97.8 (1.54) for fixed B, and [7] 97.0 (2.23) for
fixed B and y.

The equivalent empirical fits provided by different forms
of the sensitivity function suggest that investigators can apply
Bayesian adaptive inference to estimate the functional forms
of the sensitivity function that they prefer. Furthermore, the
equivalent fits provided by the constrained gYN models suggest
that convergence of the gYN can be improved by placing a
strict prior on the parameter defining psychometric steepness.
This interesting possibility requires more investigation and
psychophysical validation.

Appendix B

Fitting the SDT Model to MCS Data

For fitting the MCS model, it was assumed that the upper
asymptote of the sensitivity function was 5.0 and that the
observer’s lapse rate was 1%. Best fits were obtained using x?2
minimization between observed and fitted response probabilities.
The x? score was calculated by:

2 _ (pobserved _Pﬁtted)2
(Pftted x (1 = ppnea)l /1

(A4)

where 7 is the number of trials collected at each stimulus level.
Its been noted that standard y? tables are often inappropriate
for testing goodness-of-fit for psychophysical data (Klein,
2001; Wichmann and Hill, 2001a). Therefore, we generated
bootstrapped x? distributions (Maloney, 1990; Wichmann and
Hill, 2001b) by using the original fitted parameters, Opcs to
generate bootstrapped datasets (across all four tasks) via Monte
Carlo simulations (10,000 iterations). Fitting the same model to
each re-sampled data set provided re-fitted probabilities, which
were used to calculate x2 scores, relative to the original fitted
probabilities:

2
2 (presampled - Pﬁtted)

B [Pfittea x (1 _Pﬁtted)]/n’

(A5)

where n 8+ 16 + 8 4 11 43 stimulus levels used
in the MCS trials. This produced a bootstrapped distribution
of x? differences between fitted and re-sampled probabilities.
The empirically observed chi-score, ngsem » defined by the
initial fitted and observed probabilities, was compared to the
bootstrapped distribution via a percentile test; this comparison
yielded a percentile score (p-value) via the percentage of

2 . s .
resampled scores, .. .. pled’ exceeding the empirical chi-score.
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