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In the last 15 years, many articles have studied brain connectivity in Mild Cognitive

Impairment patients with fMRI techniques, seemingly using different connectivity

statistical models in each investigation to identify complex connectivity structures so

as to recognize typical behavior in this type of patient. This diversity in statistical

approaches may cause problems in results comparison. This paper seeks to describe

how researchers approached the study of brain connectivity in MCI patients using fMRI

techniques from 2002 to 2014.The focus is on the statistical analysis proposed by each

research group in reference to the limitations and possibilities of those techniques to

identify some recommendations to improve the study of functional connectivity. The

included articles came from a search ofWeb of Science and PsycINFO using the following

keywords: fMRI, MCI, and functional connectivity. Eighty-one papers were found, but

two of them were discarded because of the lack of statistical analysis. Accordingly, 79

articles were included in this review. We summarized some parts of the articles, including

the goal of every investigation, the cognitive paradigm and methods used, brain regions

involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity

estimation model used in each investigation. The present analysis allowed us to confirm

the remarkable variability of the statistical analysis methods found. Additionally, the study

of brain connectivity in this type of population is not providing, at the moment, any

significant information or results related to clinical aspects relevant for prediction and

treatment. We propose to follow guidelines for publishing fMRI data that would be a

good solution to the problem of study replication. The latter aspect could be important

for future publications because a higher homogeneity would benefit the comparison

between publications and the generalization of results.

Keywords: mild cognitive impairment, fMRI, connectivity, statistical analysis, review

Introduction

In recent years, numerous papers have been published on brain connectivity, a key element to
understand brain functioning (for example, Cole et al., 2010; Bai et al., 2011; Binnewijzend et al.,
2012; Zanto et al., 2014). Brain connectivity has raised great interest in the field of quantitative and
computational neuroscience. Computational neuroscience is devoted to identifying new tools for
analysis, mathematical, and statistical modeling, and computational resources to deal with brain
signal data in any modality.
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Currently, several approaches and techniques have been used
to quantify the different types of brain connectivity. In the
present paper, we focused on those derived from functional
Magnetic Resonance Imaging (fMRI): structural connectivity,
functional connectivity, and effective connectivity. The reason
for this selection lies in the fact that most of the existing
papers focused on those three concepts of connectivity. Structural
or anatomical connectivity is defined as the set of physical
connections between neuronal units. The physical model of
anatomic connections is relatively stable in short time periods,
but hardly stable in the long term due to the morphological
modifications caused by brain plasticity (Symms et al., 2004). In
fact, structuralMRI has become the accepted standard for routine
examination of the brain, offering exquisite anatomical detail and
high sensitivity to pathological changes (Symms et al., 2004). On
the other hand, functional connectivity is essentially a statistical
concept that studies remote neuronal network relationships that
show a certain interrelation (Friston et al., 2014). Fluctuations
in the blood oxygenation level-dependent (BOLD) signal in
functional connectivity may present a valuable data resource
for delineating the human neural functional architecture (Cole
et al., 2010). On the basis of biological considerations, functional
imaging can be regarded as the method that provides dynamic
physiological information, whereas structural imaging provides
static anatomical information (Symms et al., 2004). Lastly,
effective connectivity addresses the direct influence of a brain
region on the physiological activity registered in other brain
regions (Friston, 1994; Friston et al., 2003). Anatomical imaging
is obtained through the study of brain hydrogen and oxygen, and
through the diamagnetic changes produced during a task that
compromises some cognitive cost, even in a resting state (for
more information, see Ogawa et al., 1990; Logothetis et al., 2001;
Buxton, 2002; Huettel et al., 2009).

In recent years, there has been a growing interest in studying
connectivity through the resting states. Resting-state functional
MRI is an imaging method that reflects synaptic activity
through changes in blood fluctuations and the oxyhemoglobin:
deoxyhemoglobin ratio (Schölvinck et al., 2010; Binnewijzend
et al., 2012). In this type of study, the participants may not move
at all while they remain with their eyes closed without thinking
about anything in particular for a specific period of time. This
method permits the investigation of spontaneous activity, and
the analysis of the spatiotemporal coherence of fMRI activity
reveals several distinct domains of correlated activity in the brain
(Schölvinck et al., 2010). The resting state allows us to minimize
the amount of noise of the images obtained, given that the
participants conduct no activity whatsoever and no stimulus is
presented.

A strong debate has emerged of late about the best way to
model functional connectivity network estimations, given the
crucial role of the statistical model (Gates et al., 2010). The
different options in terms of connectivity analysis techniques
became clear when the authors mentioned and described four
different approaches for connectivity mapping. These approaches
were Structural Equation Modeling (SEM) which seemed to
appear the most straightforward application, and also the
most common, in connectivity estimations. In SEM, covariance

patterns of contemporaneous BOLD time series illustrate brain
functional connectivity via directed pathways (McIntosh and
Gonzalez-Lima, 1994). Another approach was the Dynamic
Causal Modeling (DCM) that uses deterministic differential
equations to assess how regions relate and estimate external
modulation of connections (Friston et al., 2003). The next
approach was the vector autoregression (VAR), which estimates
the influence that data from ROIs at previous time points have
on a given ROI’s BOLD activity. Finally, the authors presented
an improved version of the unified SEM approach of Kim et al.
(2007) to model contemporaneous and sequential relationships
among ROIs (Gates et al., 2010), but they recorded the statistical
analysis of this type of data.

Other methods of functional connectivity analysis that is
important to mention are Granger Causality and the studies
of dimensionality. Granger causality is a statistical method for
assessing directional influences between simultaneously time
series (Zhou et al., 2009). These directions and magnitudes of
Granger causality are interpretable in terms of the directions and
magnitudes of synaptic transmissions between different neurons
and brain areas (Brovelli et al., 2004). On the other hand, the
studies of dimensionality allow us to reduce the amount of data
to analyze and thus facilitate its later analysis. It is typical to have
a large amount of voxels available to conduct the analyses of this
type of data. For this reason, the approaches that allowed us to
reduce the amount of data while remaining independent between
them, as in the case of Independent Component Analysis
(ICA), which is the most typical method in this category, are
very frequent in this context. In fact, reduction techniques are
fundamental to establish reasonable statistical models because
the use of ROIs seems logical and sensible.

Therefore, as an especially relevant aspect, we will focus on
the different approaches to the study of functional connectivity,
which will be itemized below. The images obtained in the
study of functional connectivity (functional Magnetic Resonance
Imaging—fMRI) allowed us to anatomically and functionally
locate the different cognitive processes based on the increase in
blood flow and neuronal activity (Bandettini et al., 1997).

Different possibilities exist when choosing the focus of the
study of functional brain connectivity. Authors often opt for
a particular sampling population. In some cases, the authors
intended to study the connectivity of individuals suffering from
a specific pathology, mostly to check whether and how that
condition is reflected in connectivity. In the last decade, the
population of adults suffering from Mild Cognitive Impairment
(MCI) has been often chosen from among these subjects. We
recognize MCI as the mild but defined deterioration in relation
to the previous cognitive performance, confirmed by an observer
and clinically quantified by neuropsychological tests (Flicker
et al., 1991; Mueller et al., 2005). MCI has been studied on
numerous occasions as the decline in cognitive functions between
normal aging and Alzheimer’s or other types of dementia
(Dickerson et al., 2005). It has also been proven that MCI
patients have a higher risk of Alzheimer’s than those with no such
cognitive alterations (Machulda et al., 2003; Han et al., 2011).
MCI patients form a remarkably heterogenic group due to the
diverse symptomatology they can present (Celone et al., 2006).
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Additionally, there are different levels of deterioration in MCI,
which presents: participants in an early stage of illness could
clearly show different connectivity patterns from those in an
advanced stage (Machulda et al., 2003).

Brain connectivity inMCI patients has been widely researched
recently. The complexity in designing a study on this topic
lies not only in the heterogeneity of the disorder, but also in
the difficulty of choosing the most valid statistical approach to
analyze the fMRI data. This consideration is very important in
classical approaches of clinical studies based on the comparison
between groups and performance analysis, but it is more relevant
if we defend the hypothesis that one particular connectivity
structure can show more profound characteristics of MCI
patients. Therefore, this current stage where statistical models
that estimate connectivity networks are varied and, sometimes,
incomparable, make it extraordinarily difficult to know the
complexity of connectivity networks in detail. This specificity
is not exclusive of the MCI-diagnosed population, but it has
a particular relevance in this case due to the relevance of this
disease and to its future increased presence because of increased
life expectancy.

The choice of MCI to study functional brain connectivity is
determined by the fact that it is one of the few pathologies to
show brain changes at a structural level, which usually occurs
in neurodegenerative disorders. For example, the decrease in the
size of the hippocampus and the high atrophy in the medial
temporal lobe, as well as the loss of the volume of gray matter in
the frontal and parietal regions, are structural changes present in
this disorder (Mueller et al., 2012). This distinctive feature makes
MCI of great interest, given that we intend to study whether there
is functional correspondence in such structural changes and what
type it is.

In addition, from a clinical perspective, the study of MCI
patients revealed a special interest of certain very important
aspects. In the first place, the crucial goal is to determine
those variables which would be appropriate predictors of a
negative course of the pathology. Thus, it is essential to know
that certain elements might indicate that one person with
an MCI diagnosis could change from one domain (memory
deficits) to multiple domains (language, working memory, etc.)
or even develop irreversible dementia. Identifying whether
the interaction between tasks, especially those connected to
mnemonic performance, and connectivity networks in fMRI
might be an option to predict the prognosis (Sandry and
Sumowski, 2014). Likewise, a long tradition exists in the study
of the effects of Cognitive Reserve (CR), according to the
definition by Jones et al. (2011) in the prediction of MCI severity
and evolution. Apart from the difficulty of implementing this
latent variable (Lojo-Seoane et al., 2012, 2014), it is true that
the analysis of possible links between CR and the connectivity
network, especially in the Default Mode Network (DMN),
should provide some evidence on the matter. The DMN is an
extensively known connectivity network involving several brain
areas, is remarkably affected in these patients and is also widely
studied. Finally, due to the fact that it is a disease related to
elderly populations, it seems necessary to determine whether
estimated connectivity networks in different tasks might be an

indication of risk or frailty in elderly people. This needs to
be kept in mind for risk prediction (Sumowski et al., 2014).
We must keep in mind the most clinical and applied aspects
of the study of connectivity in fMRI paradigms, as it should
provide further and deeper evidence on the course of the
pathology.

Methodological characteristics and differences between fMRI
studies were reported recently by Carp (2012). He explained the
flexibility of the 241 articles consulted in terms of methodological
details, such as the experimental design, data acquisition, and
data analysis. The author noted too many differences in analytic
procedures between articles. Finally, he concluded that this high
level of analytic flexibility could be a risk factor for bias in
scientific research (Carp, 2012), and he advised the use of the
guidelines provided by Poldrack et al. (2008) for reporting fMRI
data.

As mentioned above, there is a great diversity of statistical
approaches for the study of the connectivity models in
the MCI population, which makes it difficult to extract
conclusions based on different authors. As a consequence of
the above described situation, the aim of this paper was to
facilitate an in-depth analysis of the mechanisms for statistical
modeling used to estimate connectivity in MCI. We will also
extract some considerations on the use of some modeling
techniques or others in order to assess their advantages and
disadvantages.

Additionally, we will try to analyze whether this type of study
has provided some evidence on the possibility that connectivity
networks in fMRI allow us to further know the role of specific
clinical variables in the course of MCI.

Materials and Methods

Article Search
The databases used to conduct the article search were PsycINFO
and Web of Science. In order to be included in the present
study, the articles were required to comply with the following
criteria: (a) be original works whose goal was to study functional
connectivity through fMRI in persons with MCI and (b) had
to explain the type of analysis of functional brain connectivity
applied, as well as the results obtained from it. For these
reasons, the key words used to conduct the search were
fMRI, MCI, and Functional Connectivity. After a preliminary
search with the aforementioned key words, we located 81
articles, two of which were discarded because they did not
include a detailed analysis of the sample’s functional brain
connectivity. Then, all the selected articles contain connectivity
models and statistical analysis information. Meta-analyses and
reviews with those keywords were selected, but its information
appears only in the descriptive sections of this document to
avoid repeating information in the other sections. Thus, 79
articles were included in the present paper (identified with
∗ in the bibliography) which contained more than one type
of approach to the analysis of functional brain connectivity.
For consistency, the search was replicated by two independent
researchers. They obtained 100% agreement on the selected
articles.
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Article Assessment
For each paper selected, we analyzed specific sections in relation
to the study of MCI with fMRI. Only the information given
in the articles was assessed (no author was contacted to obtain
further information). The necessary elements to comprehend the
followed procedure in each case were selected for the functional
connectivity analysis. For each paper, we assessed the goal of
the research, the type of task the participants were required
to do (including resting state and all types of tasks), the brain
areas involved, the use of regions of interest (ROI) analysis,
the connectivity estimation model used, and the data analysis
techniques applied. In the results section, we summarized the
main results for each section. Those results can be seen in detail
for each study included in Table 1.

Sample Characterization
Numerous journals have published articles analyzing the
functional brain connectivity of MCI patients. Neurobiology of
Aging, Journal of Alzheimer’s Disease, NeuroImage, and Human
Brain Mapping are the journals with the highest number of
studies published included in the present paper.

Table 2 summarizes the journals from articles were taken for
analysis.

Journals such as the American Journal of Neuroradiology,
Frontiers in Psychology, Journal ofMagnetic Resonance Imaging,
or European Journal of Radiology have published one article
included in the present paper. All journals with one paper
selected are included in the Others category.

The articles selected were published between 2002 and 2014,
although most of them were published between 2007 and 2013.
No articles were found before 2002 with the selected keywords.
The exact number of articles by year of publication appears in
Figure 1.

Results

The goal of the majority of the papers included was to
compare the functional brain connectivity of MCI patients to
the functional brain connectivity of Alzheimer’s patients or
that of adults with no cognitive deterioration. Accordingly, the
different studies set forth different types of tasks—-detailed in the
following section—in order to study the different connectivity
patterns in one or several brain regions—which will also be
explained below. In some cases, these regions were defined
previously in the aims, and in others, they were mentioned
afterwards according to the results obtained.

In some cases, the researchers intended to study the properties
of fMRI imaging in relation to its reliability or the reproducibility
of the data. Other studies compared fMRI to other types of
brain connectivity data, such as PET imaging (Positron Emission
Tomography). Lastly, the goal of some authors was to find or
suggest possible biomarkers for the detection of MCI in the
early stages of the disorder, which would entail a remarkable
breakthrough in treatments and therapeutic interventions for
these patients. It is important to note that some studies covered
more than one of the goals discussed above, such as the
study of brain functioning and, at the same time, presented

the possibility of finding biomarkers for the early detection of
AD.

Table 3 summarizes the main goals defined in the selected
papers.

The tasks chosen by the research teams to study the functional
connectivity of MCI patients varied. Many studies opted for
memory tasks, mainly semantic or episodic memory, although
in some cases, they also used working memory, associative
memory, or even emotional memory. Most of the studies with
memory tasks presented experiments with different phases in
which the data obtained in the information codification phase
was distinguished from the data obtained in the recovery phase.
In some cases, information fixation phases were also present, as
well as neutral or basal phases. This situation reflects the need to
evaluate this type of patient in memory domains related to this
pathology. It is important to keep in mind that MCI diagnoses
always involve the presence of subjective complaints of memory
mistakes and, therefore, the generation of cognitive tasks and
paradigms is strongly related to common components ofmemory
models.

However, most of the authors decided to apply a resting state
paradigm in their studies. As it was explained previously, resting
state allows investigating spontaneous activity, and permitting to
minimize the noise of the images obtained.

Other types of tasks included problem solving, empathy tasks,
sound differentiation, and visual-spatial attention tests. Most of
these tasks were visual, although we could find some listening or
verbal tasks. We also found papers that combined different types
of tasks, or in which more than one task was conducted. More
specifically, the resting state was the task most frequently asked of
participants, followed by face encoding and face-name matching
tasks. The frequencies of such tasks can be seen in Table 3.

The brain regions in which functional connectivity was
studied varied. Some researchers suggested studying the whole
encephalon, while others preferred to focus research on some
specific areas.

The studies frequently focused on the brain regions of
the Medial Temporal Lobe (MTL), because MCI patients
often present alterations in this connectivity network. Within
this lobe, the hippocampus and the regions adjacent to
it appeared in almost every paper analyzed. According to
the mentioned presence of disease at the DMN in these
patients, we found many papers remarking on the changes
in connectivity patterns in different areas within the DMN
network.

Table 3 shows the brain areas that appeared most frequently
in the papers analyzed, disregarding review, or meta-analysis
articles, which were excluded in this table because most of the
articles in those reviews and meta-analysis were included in our
review and we sought to avoid repeated information.

The analysis of the Regions of Interest (ROIs) appears
frequently in the papers selected. The most frequently selected
ROI is the hippocampus, although often we can also find
other regions of the Medial Temporal Lobe (MTL), as
well as those areas included within the DMN, such as the
ventro- or dorsomedial prefrontal cortex, the retrosplenial and
posterior cingulated cortexes, the inferior parietal lobe, and the
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TABLE 1 | Detailed results of selected articles in the survey.

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Li et al., 2002 COSLOF index

Two-sample t-test

Low COSLOF index may reflect dysfunctions in functional synchrony in MCI and AD

COSLOF index can make out AD, MCI, and controls. Possible biomarker for decline

Machulda et al., 2003 Correlations

ROC curve analysis

More activation in codification areas by adults with preserved cognition than MCI

Absence of statistical differences between MCI and AD

Dickerson et al., 2004 Boxcar function

Image contrasts

More impaired hippocampus participants activate a bigger parahippocampal area

than less impaired

Greicius et al., 2004 ICA

Best-fit component

Two-sample t-test

DMN, hippocampus

DMN connectivity changes could be a biomarker for cognitive impairment

Johnson et al., 2004 GLM

Temporal autocorrelation with Regression Algorithm

REA

One-sample and two-sample t-test

Temporal lobe (R)

Importance of Hippocampus activity in fMRI MCI

Dickerson et al., 2005 Boxcar functions

ANOVA

Partial Correlations

Pearson Coefficient Correlations

Hippocampus

Increased hippocampus activation in associative memory tasks could be a biomarker

for future MCI or AD

Rombouts et al., 2005 MEA

Regression estimation parameters

DMN, Frontal Anterior

Initial phase of DMN activation/deactivation seems to be a possible biomarker

Bokde et al., 2006 LinealCorrelation Coefficient

Fisher’s Z transformation

The presence of Alzheimer’s neuropathology in MCI affects functional connectivity

from right fusiform gyrus to visual areas and medial frontal areas

Compensatory processes in parietal lobe

Celone et al., 2006 ICA

One-sample and two-sample t-test

Hippocampus, neocortical areas

Parietal and Medial areas, DMN

Non-linear trajectory in AD prodromal course

Johnson et al., 2006 High-pass filtering (128)

Temporal autocorrelations

REA

One-sample and two-sample t-test

Temporal Inferior lobe

Efficiency decrease in learning temporal ventral system

Krishnan et al., 2006 GLM

Two-sample t-test

REA

Correlations

Frontal lobe, MTL

More extended activation, possible compensatory mechanism

Hämäläinen et al., 2007 One-sample and Two-sample t-test

Correlation

SVC at detected peak coordinates

Compensatory mechanisms in MCI

Cuneus, sulcus intra-parietal, and intra-occipital

Cingulate

Kircher et al., 2007 High-pass filtering (1/128)

GLM

One-sample and two-sample t-test

MTL anterior, Hippocampus

MCI patients need more sources to solve the task

Sperling, 2007 Review Hippocampus and Prefrontal cortex are critical for successful memory

MCI have a phase of increased connectivity, compensatory mechanisms

Teipel et al., 2007 FEA

GLM

Pearson Coefficient Correlation

Functional connectivity divergence between ventral and dorsal visual systems in MCI

and AD, related with neuronal density

(Continued)
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TABLE 1 | Continued

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Vannini et al., 2007 t contrasts

Boxcar function

Orthogonal predictors

MCI converters to AD have functional connectivity alterations but not performance

alterations

Parietal lobe

Wang et al., 2007 Correlations

Fisher’s Z transformation

One-sample and two-sample t-test

Seed-reference correlations

Connectivity between frontal and parietal

Connectivity between prefrontal and other areas

Disconnections between anterior and posterior brain areas, but increased

connectivity inside lobes

Bai et al., 2008 Kendall’s concordance coefficient (W) MCI compensation mechanisms in limbic system

Inferior Parietal lobe (R), Fusiformgyrus (R), Putamen

Bokde et al., 2008 GLM

MEA

Random Field Theory correction

One-sample t-test

Frontal lobe

Heterogeneity of MCI

Dickerson and Sperling,

2008

Review Varied results. Heterogeneity in MCI connectivity patterns

fMRI seems optimum for diagnostic, symptoms severity and memory abilities

Kaufmann et al., 2008 FEM

REA

Inhibitory control deficit

Compensatory mechanisms

Miller et al., 2008 REA Hippocampus fMRI images could be a biomarker for cognitive decline

Hyper-activation as a compensatory mechanism

Trivedi et al., 2008 FDR in multiple comparisons Frontal Inferior cortex (L)

Parahippocampalgyrus, Frontal Medial cortex

Zhou et al., 2008 ICA Cingulate Posterior cortex, Hippocampus

Directly related with cognitive impairment

Clément and Belleville,

2009

Overlap Ratios

Jaccard coefficients

Less activation in 2nd session than 1st

No MCI repercussion in fMRI reliability, but more secure in group analysis than

individual

Jauhiainen et al., 2009 Mann–Whitney Coefficient (U)

Spearman Correlation

Entorhinal cortex seems better than Hippocampus for clinical classification (MCI/AD)

Machulda et al., 2009 One Sample t-test Activation in aMCI and naMCI than cognitive preserved

No statistical significative differences between aMCI and naMCI, but aMCI seems to

have less activation on multimodal association cortical areas

Mandzia et al., 2009 Two-sample t-test

Correlation

Prefrontal Inferior

Complex relationship between activation in impaired areas and task performance

Difficulties because of MCI heterogeneity

Pihlajamäki and

Sperling, 2009

High-pass filtering (140.0)

Temporal series with autocorrelation correction

Posteromedial lobe

Deactivation pattern progressively impairing while the memory impairment goes on

APOE e4 carriers are more impaired than non-carriers

Poettrich et al., 2009 ANOVA

One-sample and two-sample t-test

GLM

Alteration in neural mechanisms of long term memory retrieval, episodic, semantic,

and autobiographical

Solé-Padullés et al.,

2009

ANOVA

X2

Partial Correlations

Two-sample t-test

GLM

Inverse effect between Cognitive Reserve and functional connectivity in MCI and AD

Adults with preserved cognition: high CR, high efficiency (less activation)

MCI and AD: low CR, low efficiency (more activation)

(Continued)
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TABLE 1 | Continued

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Woodard et al., 2009 AUC

SEA

ANOVA

Parietal Posterior lobe, Temporal Lobe

Association name task seems to be an optimum task for cognitive decline as a

biomarker

Agosta et al., 2010 Regression

t-test

ANCOVA

SVC

Decreased hippocampal volume seems to be compensated by cortex increased

connectivity

Functional correlates of AD and MCI in MTL and DMN

Frings et al., 2010 GLM

REA

ANCOVA and ANOVA

t contrasts

SVC for multiple comparisons

Precuneus and Cingulate Posterior cortex connectivity showed alterations

Finding alterations in those areas seemed a good predictor for future decline

Gold et al., 2010 Deconvolution Analysis

GLM

One-sample t-test

Neocortical alterations

Fusiform Medial gyrus, MTL

Kochan et al., 2010 GLM

One-sample t-test

REA

ANOVA

d’ Performance measure

Activation differences between low and high MCI load

Precuneus, Anterior cortex (low)

Precuneus, Cingulate Posterior and Medial (high)

Qi et al., 2010 ICA

PCA

Fisher’s Z transformation

Frontal Superior gyrus, Prefrontal Medial cortex, Parietal Inferior lobe, Medial

Temporal gyrus

Cingulate Posterior cortex, Parietal Inferior lobe

Sala-Llonch et al., 2010 Tensorial ICA

Dimensionality vectors

Pearson Coefficient Correlation

Gaussian/gamma Mixture Model

Two visual Networks were identified

MCI presented visual connectivity changes, especially in dorsal way, with

compensatory mechanisms

Yassa et al., 2010 Behavioral vectors

Deconvolution Analysis

GLM

ANOVA

Hippocampus (CA3 region)

CA3 hippocampus region seemed to be the base of neural deficits in episodic

memory tasks of amnesic MCI

Changes in CA3 activation patterns as a possible biomarker for future decline

Bai et al., 2011 Correlation

Fisher’s Z transformation

Changes in hippocampus subregional networks could be an early indicator for

disfunction

De Rover et al., 2011 Two-sample t-test

SVC

FDR in multiple comparisons

REA

Hippocampus

Confirmed importance of MTL in visuospatial tasks

Hampstead et al., 2011 REA

GLM

Correlation-purged GCA

Monte Carlo simulation

Frontal Medial, Parietal, Occipital cortex changes after training

Connectivity in the whole brain, in general

Han et al., 2011 ALFF &fALFF DMN shows significant differences in LFO in MCI

Lenzi et al., 2011 tcontrasts MCI in early stages develop compensatory mechanisms. Absence of those

mechanisms in advanced MCI

Petrella et al., 2011 ICA

GOF

GOF mean in MCI converters (Cingulate Posterior, Precuneus, Parietal inferior lobe)

(Continued)
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TABLE 1 | Continued

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Protzner et al., 2011 ICA

PLSA

More brain regions than usual must be activated to solve the task

Wang et al., 2011 Correlations

Fisher’s Z transformation

One-sample and two-sample t-test

REA

Monte Carlo correction

Hippocampus-cortex connectivity system is altered in MCI

Hippocampus connectivity shows differences 3 years after, illustrating the impairment

process and evolution

Baglio et al., 2012 One Sample t-test

ANOVA

Multiple regression

Temporal areas connectivity

Compensatory mechanism in frontal regions could supplement the decay of part of

neural circuit

Binnewijzend et al.,

2012

ICA

Laplace approximation

Dual regression approach between subjects

DMN, Parietal Lateral cortex

MCI is between AD and controls in the results

Clément and Belleville,

2012

REA

ANCOVA

One-sample and two-sample t-test

Hyper-activation in most impaired areas as a compensatory mechanism

Han et al., 2012 Fisher’s Z transformation

FDR in multiples comparisons

Partial correlations

Correlation between episodic memory and processing speed

Frontal Orbital and Central (R), Putamen (L), Caudate (R), Temporal Superior (L),

Cingulate Posterior (R)

Fusiform (L), Frontal Inferior (R), Pre-central (L)

Jin et al., 2012 Spatial ICA

MDL dimensionality estimation

PCA

One-sample and two-sample t-test

Parietal Posterior cortex, MTL, Prefrontal Lateral cortex, Medial Temporal gyrus

Parietal Inferior lobe, Prefrontal Medial cortex, Cingulate Medial cortex

fMRI restings tate as an important biomarker for cognitive impairment

Liu et al., 2012 SWA

Node Analysis

Topological abnormalities in MCI and AD connectivity patterns in all brain networks

Mueller et al., 2012 Review MCI: alterations in brain activity during visual processing and working memory

Temporal Medial lobe, Hippocampus

Temporal Medial lobe, Cingulate Posterior cortex, Parietal lobe

Increased activation in Hippocampus seemed a predictor of cognitive decline

Hippocampus volume could be a predictor for MCI converters to AD

Staffen et al., 2012 Contrast images between conditions

One-sample and Two-sample t-test

Fisher’s Z transformation

Correlation

Temporal lobe, Temporal gyrus, Temporal superior sulcus, Cuneus (L), Cingulate

Anterior cortex, Frontal gyrus

Wang et al., 2012 GLM

Correlations

Fisher’s Z transformation

One-sample and two-sample t-test

Monte Carlo simulation

Cingulate Posterior cortex alterations are very present in MCI

Alterations in connectivity between Cingulate Posterior cortex and other regions of

DMN

Wee et al., 2012 Deformation fields estimation

Frequency-band division

Pearson Coefficient Correlation

One-sample t-test

fMRI and DTI techniques provide valuable information

Both techniques are complementary

Zhang et al., 2012 Regional Homogeneity

ANOVA

Two-sample t-test

DMN

DMN, especially Cingulate Posterior cortex, has an important role in memoristic

network

(Continued)
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TABLE 1 | Continued

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Alichniewicz et al., 2013 Two samples t-test

Boxcar functions

Regression GLM

ANOVA

Inhibition functions of anti-saccadic movements

The alteration of anti-saccadic movements might reflect early AD

Browndyke et al., 2013 Meta-analysis Variations in applied paradigms make it difficult to extract inferences from the results

of the review

Parahippocampal gyrus, Entorhinal volume

Abnormal connectivity pattern in DMN

Prefrontal lobe

Clément et al., 2013 GLM

REA

ANOVA

MCI high cognition: more activation (compensatory mechanism)

MCI low cognition: less activation

Faraco et al., 2013 FEM contrasts

MEA

Markov Chain Monte Carlo sampling

Important role of Lateral Temporal lobe in MCI detection. Possible biomarker of MCI

Graewe et al., 2012 d’ Performance mesure

GLM

ANOVA

LDA

REA

Aberrant pattern activation in Fusiform face area and Occipital face area. Possible

biomarkers for cognitive decline

Hahn et al., 2013 ICA

PCA

Fisher’s Z transformation

One-sample t-test

ANOVA

Intrinsic brain networks are impaired in MCI and AD

Structural connectivity is reduced in MCI. They convert to AD in 3 years

Parra et al., 2013 Standard GLM

High-pass filtering

Serial Correlation with autoregression

REA

Two-sample t-test

ANOVA

SVC

Absence of improved performance in emotional memory task in MCI and AD

MTL, Frontal lobe

Smith et al., 2013 Deconvolution Analysis

GLM

AUC calculation

Exercise intervention seems to increase the capacities of MCI patients and adults with

preserved cognition capacities

More efficiency in neural networks

Wang et al., 2013 ICA

GLM

ANCOVA and ANOVA

X2

DMN involved in episodic memory processing

DMN alterations as a possible biomarker for MCI converters to AD

Yao et al., 2013 Pearson Correlation Coefficient

Fisher’s Z transformation

Two-sample t-test

DMN, Amygdala

Zamboni et al., 2013 GLM Prefrontal medial cortex and Temporal anterior lobe seem to be related with

self-awareness, especially in AD

Zhou et al., 2013 Gaussian Random Field Theory

Spearman and Pearson Correlation Coefficient

DMN

Significant correlation between fMRI data and fALFF

MCI compensation mechanisms

Vascular, functional and pathological measures: optimum to predict AD conversion

(Continued)
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TABLE 1 | Continued

Authors (Year) Connectivity estimation model/ statistical

analysis

Survey/conclusions

Dunn et al., 2014 Pearson Correlation Coefficient

Fisher’s Z transformation

Bivariate Regression

Two-sample t-test

Dunn and Clark Statistic (Zi )

Disconnection between hippocampus and cingulate posterior cortex in amnesic MCI

Non amnesic MCI can integrate DMN information

Haller et al., 2014 Tensorial ICA

GLM

ANOVA

FEM

Posterior displacement of working-memory brain activation patterns after caffeine

administration

Compensatory mechanism to counterbalance a frontal lobe disfunction

Liang et al., 2014 Correlation-purged GCA Connectivity alterations independently from gray matter atrophy

Hippocampus (R), Fronto-Parietal Control Network

Hippocampus (L), Frontal (R)

Puente et al., 2014 Two-sample t-test

ANCOVA

Orbitofrontal cortex, Parietal Posterior cortex

Wee et al., 2014 Pearson Correlation Coefficient

Sparse regression with and without group constraint

via li-norm regularization

A novel approach to infer functional connectivity networks is proposed

New approach seems capable in construction functional connectivity network that

yields improved classification compared with Pearson Correlation Coefficient

Yao et al., 2014 Pearson Correlation Coefficient

Fisher’s Z transformation

One sample and Paired t-test

Monte Carlo Simulation

Amygdala connectivity

Changes in Amygdala connectivity could be a potential marker of preclinical MCI

Zanto et al., 2014 t-test

Test-retest analysis

ANOVA

Intraclass correlation coefficient

Reliability in cortex activations

Reliability in subcortical regions activation

A delayed recognition task with minimum 30 trials per condition would produce better

reliability in regions susceptible to change in MCI

Zhou et al., 2014 ANOVA and ANCOVA

X2

ALFF

Changes in ALFF in diabetes patients in Frontal lobe, Temporal lobe, Hippocampus,

Amygdala and Precuneus during resting-state

Less pronounced alterations in MCI without Diabetes

Zhu et al., 2014 DICCCOL

t contrasts

Correlation-based feature selection

Connectome signatures showed high accuracy in MCI and control classification and

differentiation

Connectome scale seemed a possible biomarker

FDR, False Discovery Rate; GCA, Granger Causality Analysis; MEA, Mixed Effects Analysis; ICA, Independent Component Analysis; GOF, Goodness of fit; SVC, Small Volume Correction;

GLM, General Lineal Model; REA, Random Effects Analysis; SWA, Small World Analysis; ALFF, Amplitude of Low Frequency Fluctuations; fALFF, fractional Amplitude of Low Frequency

Fluctuations; MDL, Minimum Description Length; AUC, Area Under the Curve; FEM, Fixed Effects Model; LDA, Linear Discriminant Analysis; PLSA, Partial Least Squares Analysis; SEA,

Spatial Extent Analysis; COSLOF, Cross-correlation coefficients of spontaneous low frequency; DICCCOL, Dense Individualized and Common Connectivity-based Cortical Landmarks;

PCA, Principal Component Analysis

hippocampus (including the entorhinal and parahippocampal
cortexes) (Buckner et al., 2008).

Table 3 shows the number of articles that opted for the
analysis of ROIs defined prior to the data collection (Hypothesis
Driven); it also shows those that conducted it after an early
analysis based on the detection of activated areas (Data Driven).
Additionally, it shows those that did not use this type of
approach. Review or meta-analysis articles were disregarded.
It can be seen that most of the authors chose to conduct
the analysis of ROIs, especially the analysis of regions defined
prior to the data collection (Hypothesis Driven). However, the
Data Driven choice was also made by many research teams.
Nevertheless, this description does not contribute to the choice
of the statistical model. Due to the diversity in statistical

resources employed, it was difficult to identify comparable
results.

Connectivity Estimation Model and Data Analysis
As mentioned early in this paper, the authors made numerous
proposals to analyze fMRI, and they used a wide variety of
models to estimate functional connectivity. In order to organize
the different types of analyses and approaches, we decided to
put forward a descriptive classification of the different types
of models and to do so in four large groups: (i) Classic
parametric strategies; (ii) Approaches based on the general linear
model; (iii) Studies based on models pertaining to the study
of dimensionality; and finally (iv) techniques based on fitting
specific models. This classification was generated with the unique
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TABLE 2 | Summary of Journals in the survey.

Journal Title Number of articles

Neurobiology of Aging 8

Journal of Alzheimer’s Disease 8

Human Brain Mapping 7

NeuroImage 7

Neuropsychologia 4

Neurology 3

Dementia and Geriatric Cognitive Disorders 3

Psychiatry Research 3

Brain 3

Cortex: a journal devoted to the study of the nervous

system and behavior

3

Alzheimer’s and Dementia: the Journal of the

Alzheimer Association

2

Journal of Neurology, Neurosurgery and Psychiatry 2

Journal of the International Neuropsychological

Society

2

PloS One 2

Radiology 2

Other 20

proposal of arranging the different approaches and techniques
used through a significantly recognizable group. Then, we tried
to facilitate the ordering of statistical models that were often used
in this field.

The classic parametric strategies were the most used by
researchers in this field. Within this group, the authors chose
a large number of different analyses, among which we found,
for example, correlations, partial and semi-partial correlations,
Kendall’s coefficient of concordance, t tests, ANOVA, and
ANCOVA, the Random Effects Model, the Mixed Effects
Model, Dunn and Clarck’s Zj statistic, serial correlations and
Fisher’s transformation of scores into z values. The benefit
of these approaches lies in the facility to recognize and
replicate them in most cases. The negative aspects reside
in the difficulty to accomplish the statistical assumptions of
every technique, especially the population normality of the
distributions analyzed and the homoscedasticity assumption. In
addition, when these techniques are employed in the generation
of descriptive models (with limited possibility of inference)
the objective remains far from what is required, which is
nothing but a complex connectivity model. In addition, it is
unusual to find these approaches in independence and self-
correlation registers, which further hinders an optimal statistical
approach.

We also found approaches to the general linear model with
different analyses such as regressions and the discriminating
analysis. Along these lines we found different choices from
the simplest models [regression models with Ordinary Least
Squares estimations (OLS)] to more complex ones based on
Structural Equation Models or, occasionally, Path Analysis
Models. Regarding the previous paragraph, data on the viability
of linear and non-linear (frequently linearized) models is usually
unavailable as regards model assumptions or the conditions

of application. Most of these models are located within
the domain of parametric statistical models, which leads to
the same situation we described above. We noticed a scant
description of assumptions and adopted modifications to ensure
a correct parameter-estimation technique. Likewise, there are no
acceptable approaches to the residuals generated by the models
studied eventually. Neither are there assessments of the residuals’
or the structural errors’ independence from one another or
between the signal values. To sum up, it seems inarguable that
the authors should provide technical data on model fitting. This
information would allow us to know in detail to what extent we
find more descriptive models than the ones the authors intended
to fit. One simple example will serve to illustrate this detail: it
is unusual to report the value of the determination coefficient in
uniequational and also multiequational models.

Of course, we can find the studies of dimensionality. As
we mentioned before, these are widely applied in this field,
and many researchers conducted the ICA. However, like in the
situations described above, no special tradition exists to offer
variability results in dimensionality reduction, either by ICA,
as previously mentioned, or by Principal Component Analysis
(PCA). In both cases, the selection of maximum explained
variance vectors entails a process based on the normalization
of the vectors representing the voxels’ original values with
regard to the ROI defined. Usually, there is no mention of the
conditions of sphericity of the voxels selected or of the values
that characterize the statistical viability of each ROI. The fact
that ROI size is a determining factor to obtain a good solution
(either in ICA or PCA) is unimportant. In smaller ROIs the
conditions of unidimensionality are easier to obtain than in other
techniques. Regarding these considerations, only seldom can we
obtain values of explained variance in selected voxels. It could
be irrelevant if variance values assumed by ROIs were high, as
it usually happens but not always, and these cases go unnoticed
because they are not reported.

Lastly, many authors chose for the analysis to conduct a
model fit, which was mostly used to fit the data prior to the
analysis. In this category, we found numerous examples, such
as the Small World Analysis, the Gaussian Random field theory,
ROC curves, behavioral vectors, the deconvolution analysis,
the segmentation of brain regions, ALFF (Amplitude of Low
Frequency Fluctuations) and fALFF (fractional Amplitude of
Low Frequency Fluctuations) analyses, the spatial extent analysis,
the estimation of deformation fields, the analysis of Regional
Homogeneity (ReHo), the Granger Causality Analysis, the
analysis of functional synchrony and DICCCOLs, the Dynamic
Causal Model, and the Structural Equation Model. As we
mentioned above, part of these approaches show the advantages
and disadvantages of common linearmodels. Nevertheless, in our
opinion, those are the most reasonable approaches to the study
of connectivity, at least so far. The advantages are related to a
fundamental issue, which is the fact that those techniques are
devoted to the complexity of multiequational structures with a
dynamic substratum. It is obvious that they are probably very
far away from a feasible representational model, but they still
imply a representational model that favors the networks and
the comprehension of the structures. However, these techniques
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FIGURE 1 | Summary of publication years in the survey.

still need statistical complexity and, without some previous
information, they are very difficult to replicate. For example, it
is usual to omit information related to the estimation techniques
and their defining values. Convergence criteria are not cited,
neither are the values of initial solutions (if there are any)
or the conditions of parametrization and reparametrization of
estimations. Also, nothing is said about whether the authors
opted for full or partial estimations, or whether they opted for
colinearity robust estimations (like two-steps techniques) or for
techniques based on parameter ponderation (like Weight Least
Square). Finally, in this type of approach, the authors usually offer
the final results in a simplified way completed with any kind of
graph showing the activated areas in the brain, but usually no
information is included about parameter intensity and what it
means for the connectivity network.

It should be noted that it is common to use more than one
analysis in a publication. Accordingly, many authors choose
more than one test for each study. Specifically, in 32 papers,
the researchers applied analytic techniques pertaining to different
categories from the classification above.

Table 3 shows the frequencies of the main analyses and
connectivity models proposed by the authors according to the
classification used previously. The study of these papers about
connectivity and MCI showed an obvious effect that confirms
the scarcity of replicable works in an exact way, regarding
the statistical models used. This situation, as mentioned above,
is not exclusive of this domain but needs to be considered
as an important problem to solve. In the following section
we offer more details about this situation and some viable
recommendations to solve it.

Clinical Results
In this section we intend to emphasize how the articles selected
did not tackle, in general, the clinical aspects of the pathology.
Only few works noticed the relationship between the estimated
connectivity network and the intra- and between-groups effects;

in the former case, in order to distinguish networks of specific
population groups (for example, control vs. clinical group) and,
in the latter case, for longitudinal course studies (for example,
estimated networks in repeatedmeasures paradigms). The results
presented in these papers focus occasionally on secondary aspects
such as those showing the effects of different degrees of severity
(Miller et al., 2008) or those regarding the earliest stages of
the pathology, when subjective and memory complaints are
reported and, therefore, these are very subtle cognitive mistakes
(Machulda et al., 2009).

It is true that, in some articles, we can find clinical implications
of connectivity estimation. One example is the verification of
the existence of compensatory mechanisms in different brain
areas. This means that we can find some increased activity in
particular regions of MCI patients as compared to normal adults
to compensate the deficits in other areas (Krishnan et al., 2006;
Bai et al., 2008). Another example is that increased activation in
the hippocampus to solve memory tasks seems to predict early
detection of Alzheimer’s Disease (AD) (Dickerson et al., 2005;
Mueller et al., 2012). However, in most of the publications we
found the importance of the hippocampus regions on different
aspects because it is one of the regions most involved in MCI
pathology. Accordingly, changes in hippocampus activity are
present in most MCI patients (Greicius et al., 2004; Johnson et al.,
2004; Miller et al., 2008; Wang et al., 2011), converters and non-
converters to AD, whichmake it difficult to conclude that changes
in hippocampus activity could predict AD.

Therefore, we have seen that there is some clinical information
in the articles included herein, but, in general, there is a scarcity of
reported information on clinical consequences in the estimation
of cognitive networks in MCI.

Conclusions

In this article, we summarized the main features of the
studies on functional brain connectivity through fMRI in
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TABLE 3 | Summary of research goals, use of ROI analysis, brain regions, and statistical analysis in the survey.

Number of articles

Investigation goals Compare brain activity between MCI and Alzheimer’s and/or elderly with preserved cognition 64

Properties and characteristics of fMRI/ Comparison with other types of signals 9

Find biomarkers for early MCI detection 7

Others 3

Tasks and cognitive paradigms Resting state 25

Face-encoding task 6

Face-name match task 5

Brain region Hippocampus and hippocampal gyrus 36

Inferior parietal lobe and cortex 33

Parahippocampus and parahippocampal gyrus 27

Posterior cingulate cortex and gyrus cingulate 23

Precuneus 23

Prefrontal cortex 17

Fusiform 17

Use of ROIs Analysis Hypothesis driven 27

Data driven 19

Absence of ROIs analysis 29

Hippocampus as a ROI Hypothesis driven 17

Data driven 5

Connectivity model/Statistical Analysis Classic parametric strategies 63

General lineal model approximations 22

Dimensionality study models 12

Specific techniques of Model’s fitting 24

When more than one type of statistical analysis within the same group was used in one paper, the frequency was one for this category. In cases in which different categories of analyses

were used, the frequency was one for each category used.

MCI patients. Based on 79 publications, we described the
most relevant elements, especially statistical models for the
estimation of connectivity and some considerations on the
clinical consequences of those studies.

Thus, most articles aimed to compare the functional brain
connectivity network in MCI patients with that of Alzheimer’s
patients and/or adults with preserved cognition. Many authors
opted for semantic or episodic memory tasks, although resting
state designs are becoming more frequent. These allowed us
to reduce the amount of interference in the data obtained. It
seems reasonable to assume that fostering studies based on
the DMN involves a simpler experimental system and fewer
confounding variables than certain complex cognitive paradigms
whose activation correlates are not clear. The brain region that
is most frequently activated with significance on the connectivity
network estimated in these articles is the hippocampus. However,
in resting state designs there is a remarkable presence of other
MTL and DMN regions, such as the inferior parietal lobe and
the parahippocampal region. All of this is consistent with the
definition of the DMNusually assumed. It is also themost studied
region in the analysis of ROIs, both in the definitions before and
after early connectivity analysis.

Undoubtedly we found the widest variety in the models of
statistical estimation of functional brain connectivity chosen,
as well as in the data analysis techniques used in relation to
the general models. Most authors choose classic parametric
strategies. Estimations based on Pearson’s correlation were
common, and so were estimations of partial and semi-partial
correlations in order to isolate the effects as efficiently as possible.
It seems evident that this procedure attempted to reduce the
perverse effects of colinearity. However, within this category,
we still found a large number of diverse analyses. Indeed,
parametric statistical tests are frequent, and they are used to
contrast specific data between samples and effects. This effect
might be caused by the need to compare the different samples,
because once they conducted an early connectivity analysis, many
authors chose to present the results of the parametric tests in
order to compare some specific data. The use of Student’s t
or ANOVA tests, both included in this category, is frequent
in this type of paper, although they are not specific techniques
for connectivity estimation. Accordingly, the difference in
the values of specific ROIs among groups is often mistaken
for differences in the structure and intensity of connectivity
networks.
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The results obtained in the different publications were diverse,
which is consistent with the different goals predetermined
by the authors. Still, we found a series of common features
regarding functional brain connectivity in MCI patients. First,
it was common to observe a reduced brain activity in many
of the studied regions, such as the hippocampus or the
lateral parietal cortex. Likewise, we also noticed increased brain
activity in MTL regions during the task or in DMN regions
during the resting state. The authors concluded that these were
compensatory mechanisms; that is, in order to solve the task
correctly, MCI patients required more activity and involvement
from brain regions than the participants without cognitive
deterioration. Therefore, the participants seemed to compensate
for reduced connectivity in some regions by involving others,
or even by increasing the activation within them. Other authors
distinguished amnesic MCI patients from non-amnesic ones,
and they concluded that the latter showed better performance
and more preserved functional connectivity in general. Lastly,
many articles proposed possible biomarkers of future cognitive
deterioration or future progression to AD. The most frequent
biomarkers found in those articles were changes in the DMN and
hippocampus connectivity patterns, as well as those in the lateral
temporal lobe and the posterior cingulate cortex. The images
from fMRI were optimal for this type of study.

Taking into account the aforementioned information available
in the articles included herein, we verified that the study of
functional brain connectivity in MCI patients was a difficult
subject to approach, as noted by Carp (2012) in studying
general fMRI articles. The publications we consulted showed
great variability concerning the connectivity model chosen.
This fact may reflect the difficulty inherent in the choice
of an ideal method to analyze brain connectivity. Given the
remarkable differences between the techniques, it was difficult
to make the right choice. In fact, in most cases, there seemed
to be no theoretical justification. This situation also makes
difficult to elaborate a meta-analysis of this topic, because
of the disparity of methods and approaches, and the lack of
statistical details. We can find some meta-analysis regarding
clinical results, but it would be very difficult if we want to keep
in mind statistical results and functional connectivity models
found.

We did not find a previous article about this subject, so we
consider that our summary provides a global idea about the
state of statistical analysis in functional connectivity studies. We
established several relevant aspects:

• The use of such dispersed statistical models prevents the
comparison of results in an accumulative and integrated way.
In fact, most papers do not justify their choice or establish
clearly to what extent the assumptions of eachmodel have been
proven, assumed, or simply forgotten. The impossibility to
compare results makes it very difficult to make suprastructural
estimations of regular connectivity networks.

• Likewise, the complexity inherent to this type of statistical
approach involves extreme difficulty in replicating analytical
procedures. Not only are the data processing phases opaque,
but some of the algorithms used are also underdeveloped.

Except for the cases based on the estimations of correlations, it
is truly difficult to strictly replicate some analytical procedures.

• In the case of the networks estimated in the papers under
consideration, this situation is exactly the same and makes it
unfeasible to conduct a simple accumulation of connectivity
networks.

• In addition, this implies that each statistical model studies
the conception of connectivity in a different way. Regardless
of statistical matters, suffice it to say that the connectivity
network based on simple parametric tests does not lead to the
same result as Bayesian-based complex statistical tests. That
being said, they coexist cooperatively in this study sector.

• An attempt to group the different statistical approaches
only showed the disparity and lack of specificity we already
mentioned. The classification we are proposing is just a general
description that allows us to identify the primary areas of
statistical interest.

• It is also evident that, in the case of MCI, the results were
dependent on aspects outside the phenomenon at hand. The
choice of technique has a strong influence on the result on
which we base our choices of prediction and knowledge of
the characteristics of these patients. Obviously, we should be
alerted by the system’s fragility.

We believe that this document could provide an idea of
the complexity of article replication in functional connectivity
studies of MCI patients. We considered that it is important to
provide tools to the clinical professionals to better understand
the MCI characteristics and elements to focus the diagnosis
and treatment for every patient. It would be difficult if every
article used a different approach in their analysis, so we aimed
to highlight this point to the research community to improve the
comparisons of results’.

Regarding the most clinical details about this pathology,
our data shows that studies on connectivity networks have
not provided, so far, relevant information for the applied field.
Thus, we found little information on the CR protector effect
on MCI appearance or on how networks show specific patterns
for individuals with crystallized CR. Also, there is a lack of
information about the use of networks for severity and risk
prediction. Additionally, relevant information on the possible
effect of frailty in the elderly for network estimation is missing,
too. As we mentioned above, we can find some articles that
provide possible biomarkers to detect MCI converters to AD,
but these biomarkers seem to be far from an actual detection
of AD converters. Evidently, this field is very complex and we
are in a primary stadium of knowledge, which is insufficient to
answermost of these unsolved questions and other characteristics
of MCI. However, our paper does show that the problem
comes before the study of clinical consequences as the use
of technology and dispersed models causes difficulties in this
matter. Consequently, we seem to be far from using these studies
for clinical categorization in MCI patients.

As regards the differences in the information reported
between articles, it could be useful to have guidelines to establish
which information should be reported in an article on this topic
in order to understand and replicate a study. Following the
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guidelines proposed by Poldrack et al. (2008) and, mentioned
by Carp (2012) would facilitate the unification of information in
the articles. Then, it would be possible to easily find the same
information in every document and would clarify the statistical
approach used. Also, it would allow for a global idea of this topic
and would help in the elaboration on meta-analysis in this topic.

Furthermore, all things considered, it seems necessary to
establish some recommendations for the MCI field and also
for the general scope of connectivity estimation models from
fMRI paradigms. They should, i) adopt techniques based on
easily estimable statistics, such as correlation coefficients; ii)
identify and describe all the phases in statistical analysis and to
identify the tools used by its application; iii) provide instructions
and analyses in an annex form, to be used in other data-
bases or allow for replication; iv) clearly establish the correction
mechanisms and their values in cases of classical corrections,
such as the Bonferroni correction as well as more elaborated
corrections, such as the False Discovery Rate (FDR); v) facilitate
the fulfillment of model assumptions; vi) generate works with

sufficient sample sizes to support a statistical model compatible
with statistical predictor tools; and vii) clearly offer effectuated
modifications or settings to the general estimation techniques.

In conclusion, we believe that the aforementioned aspects
should be taken into account for future publications on
functional brain connectivity in MCI patients. This way, better
homogeneity would be achieved in brain connectivity study
models and data analyses. This would make it possible to make
comparisons between studies and the results would be more
easily generalized.
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