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Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging
methods. However, the evaluation of task complexity varies significantly across
neuroimaging studies. Most studies have parameterized task complexity by objective
features such as the number size. Only a few studies used subjective rating procedures.
In fMRI, we provided evidence that strategy self-reports control better for task
complexity across arithmetic conditions than objective features (Tschentscher and Hauk,
2014). Here, we analyzed the relative predictive value of self-reported strategies and
objective features for performance in addition and multiplication tasks, by using a
paradigm designed for neuroimaging research. We found a superiority of strategy
ratings as predictor of performance above objective features. In a Principal Component
Analysis on reaction times, the first component explained over 90 percent of variance
and factor loadings reflected percentages of self-reported strategies well. In multiple
regression analyses on reaction times, self-reported strategies performed equally well or
better than objective features, depending on the operation type. A Receiver Operating
Characteristic (ROC) analysis confirmed this result. Reaction times classified task
complexity better when defined by individual ratings. This suggests that participants’
strategy ratings are reliable predictors of arithmetic complexity and should be taken into
account in neuroimaging research.

Keywords: problem solving, arithmetic cognition, task complexity, Receiver Operating Characteristic,
neuroimaging

Introduction

The difficulty of any given problem is a function of individual problem solving skills and task
features. Hence, task complexity in an experimental setting can be either defined by participants’
problem solving strategies and performance measures, or a priori, by considering a discrete number
of objective task features (Imbo et al., 2007). Mental arithmetic has proven to be a powerful
paradigm to study various aspects of abstract problem solving in neuroimaging experiments (Zhou
et al., 2007; Jost et al., 2009; Rosenberg-Lee et al., 2009; Arsalidou and Taylor, 2011), due to the
simplicity of numerical stimuli and clear formal structure of arithmetic problems.

However, it is still an open question which criterion may predict task complexity best across
differential problem solving conditions. While a priori defined task features for complexity have
the advantage of being based on explicit and objective definitions, the complexity of a task for an
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individual participant on an individual trial may be better
captured by assessment of their individual strategies. In order
to evaluate these approaches, one needs independent criteria for
the success of a complexity criterion. The ideal choice would
depend on a detailed knowledge of the cognitive mechanisms
contributing to task complexity, how they vary across individuals,
and how they are affected by experimentally controlled stimulus
and task parameters. In many studies, this is far from achievable.
We here provide a pragmatic solution with an arithmetic
task paradigm that allows assessment of performance and
individual participants’ strategies in neuroimaging research. For
this paradigm, we determined the relative explanatory value of
objective task features (e.g., problem size) and individual strategy
ratings (e.g., “In howmany steps did you solve this problem?”) on
performance.

Previous neuroimaging research in the domain of arithmetic
cognition has mainly focused on objective task features when
defining levels of task complexity, while not much attention
has been paid to assessment of participants’ problem solving
strategies. Most studies defined task complexity based on number
size (cf. Jost et al., 2004, 2009; Rosenberg-Lee et al., 2011), the
number of involved operands (Menon et al., 2000), or carry-
effects (whether the solution exceeds the next 10s) (Kong et al.,
2005). Overall, number size has been the most used criterion of
task complexity in neuroimaging research. It has been argued that
number size may reflect the differential use of strategies involving
direct memory retrieval of answers vs. solution of problems in
several sub-steps (cf. Jost et al., 2009; Arsalidou and Taylor, 2011).
However, previous behavioral studies already demonstrated that
even tasks involving only two single digits, for which solutions
are often assumed to be retrieved from memory, may be solved
by procedural strategies (LeFevre et al., 1996a,b, 2006; Barrouillet
and Thevenot, 2013), and the amount of tasks solved by direct
memory retrieval is determined by participants’ overall skill level
(Hecht, 2006).

Objective task complexity measures do not account for
individual differences, and are particularly problematic when
aiming to evaluate neural differences between arithmetic
operation types (for example, addition, subtraction, and
multiplication) independently of task complexity effects. It has
been, for example, suggested that addition and multiplication
genuinely differ regarding the application of cognitive strategies
used to solve each of these operation types. Addition may
more strongly involve visual-spatial and sensorimotor processes
while multiplication may more strongly rely on direct memory
retrieval (Lakoff and Núñez, 2000; Fischer, 2012; Hauk and
Tschentscher, 2013). This has been shown by behavioral (Badets
et al., 2010; Klein et al., 2011) as well as neuroimaging research
(Zhou et al., 2006, 2007; Grabner et al., 2009; Rosenberg-Lee
et al., 2011). However, these studies mostly defined complexity
based on task features, yielding a mismatch across operation
types in accuracy and reaction times (Chochon et al., 1999; Zhou
et al., 2006; Grabner et al., 2009; Rosenberg-Lee et al., 2011).
Thus, results from these studies may have been confounded by
task complexity effects.

So far, only very few neuroimaging studies assessed task
complexity via individual problem solving strategies (De Smedt

et al., 2009; Grabner et al., 2009; Grabner and De Smedt, 2011;
Tschentscher and Hauk, 2014). A recent fMRI study suggested
that trial-by-trial strategy self-reports provide a more accurate
measure of task complexity across different operation types,
and previously reported neural differences between addition
and multiplication problems vanished once task complexity was
defined by strategy ratings (Tschentscher and Hauk, 2014). Self-
reported strategies also revealed more sensitive measures of
task complexity in EEG recordings compared to complexity
definitions based on number size (Grabner and De Smedt, 2011),
and effects of training in oscillatory EEG correlates were reflected
in increases of reported retrieval strategies as well as decreased
error rates and reaction times (Grabner and De Smedt, 2012).
Therefore, the assessment of individual strategies may provide
a more reliable measure of complexity across different types of
problems. This is in line with several behavioral studies showing
a high consistency between strategy reports and mean reaction
times (LeFevre et al., 1996a; Baroody and Dowker, 2003), as well
as parameters from modeling of reaction times (Campbell and
Penner-Wilger, 2006).

In the present study, we asked participants to solve addition
and multiplication tasks that consisted of two operands. While
production tasks with verbal responses have been used in most
behavioral studies on mental arithmetic (cf. LeFevre et al.,
2003), our design required the pressing of a button as soon as
participants knew the answer, which then triggered the onset
of a 2-Alternative-Forced-Choice (2AFC) result display. The
result display remained on screen for very short time only, thus
discouraging participants to “pre-emptively” press the button
before they finished calculating. A similar design has been used
in combination with a voice-key before, in which a button was
pressed before answers were verbally indicated (Lemaire and
Arnaud, 2008). Our paradigm provides reliable reaction time
measures even in a noisy environment, such as in the MRI
scanner, and has the advantage that the answer options are still
unknown during the calculation phase, as opposed to a classical
2AFC paradigm.

We assessed task complexity on a trial-by-trial basis using
strategy ratings (i.e., reports of direct memory retrieval, 1-step
calculation, 2-steps, 3-steps, or more steps). Such a rating scale
has been used in three previous neuroimaging studies (Grabner
and De Smedt, 2011, 2012; Tschentscher and Hauk, 2014), and
allows a task complexity assessment with comparable results
across participants, once subjects are instructed and trained in
appropriate use of the scale. We investigated whether number
size based task features or strategy ratings predict behavioral
performance best across a range of addition and multiplication
tasks. We a priori grouped together arithmetic problems that
may involve similar strategies, based on the idea that certain
types of tasks are frequently solved by a particular “shortcut”
which simplifies the problem solving process, compared to the
solution of other tasks with equivalent or even smaller operands.
For example, tasks involving the multiplier 9 (“9 × 6”) might
be solved faster than tasks involving the multipliers 7 or 8 (i.e.,
“7 × 6,” or “8 × 6”) since a “shortcut” strategy could be applied:
9 × 6 = [10 × 6] – 6. Hence, the task feature of “number size”
may in this case not be a reliable predictor of task complexity.
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Whether or not participants make use of such shortcut strategies
may depend on individual skill levels, and cannot be inferred
from task features.

A Principal Component Analysis (PCA) was applied first to
our reaction time data to determine whether performance across
categories of problems can be described by a single dimension,
presumably reflecting problem difficulty. We then applied a
multiple linear regression analysis in order to decide whether
predictors derived from objective task features or individual
ratings best explain performance. Finally, we used a Receiver
Operator Characteristic (ROC) analysis to test whether reaction
times classified task complexity better when it was based on
individual ratings than when it was based on objective task
features.

Materials and Methods

Participants
Data from 21 adult participants (10 males; 11 females) were
obtained. All participants were right-handed, had normal or
corrected-to-normal vision, and had no history of neurological
or psychiatric disorder. Participants’ IQ was assessed by using the
Culture-Fair-Test, Scale 2 (Cattell and Cattell, 1960). The mean
age of the analyzed participants was 22 years (SD: 3.25), and the
mean IQwas 127.84 (SD: 14.61). Participants were recruited from
the MRC Cognition and Brain Sciences Unit’s internal volunteer
panel, and received about £10 for their participation. Ethical
approval was obtained from the Cambridge Local Research Ethics
Committee.

Stimuli
Based on number sizes, five different levels of task complexity
were initially defined for addition tasks, and three different
levels of task complexity were defined for multiplication tasks
(Table 1). These were chosen based on complexity levels reported
in previous literature (Fehr et al., 2007; Grabner et al., 2009;
Arsalidou and Taylor, 2011; Tschentscher and Hauk, 2014). We
also included task categories with highly frequent problems, for
example ties (“6 + 6” or “7 × 7”) or problems involving the
multipliers 2 (“2 × 3” or “2 × 4”). Further, task categories
were defined that might be solved by a shortcut strategy. These
were problems involving the multipliers 5 or 9. In the case of
tasks involving the multiplier 5, a typical “shortcut-strategy”
could be for example: 5 × 6 = [10 × 6]/2. In the case of tasks
with the multiplier 9, a shortcut strategy might look as follows:
9× 6= [10× 6] – 6. This implies that the problem of for example
“9× 3” would be solved faster than the problem “8× 3,” although
the sum of operands is larger in the first case, compared to the
latter case. Hence, surface criteria such as number size may not
reflect task complexity accurately for these problem categories,
and it was expected that participants would mainly indicate the
use of memory retrieval or easy procedural strategies.

Twenty problems were presented for each number size
based subcategory, all matched according to the following
criteria: odd and even numbers, the order of presenting
the larger operand, carry-over effects (in which the solution

exceeds the next 10), and multipliers larger vs. smaller
than five in multiplication problems. Participants had to
choose between two result options (correct and incorrect)
in a 2AFC task. Incorrect options (IA, see Table 1) were
matched in surface features with the correct solutions (i.e.,
regarding parity, and the multiplicative of 5, where appropriate),
and varied between plus/minus 2, 5, or 10, depending
on the correct solution. Overall, 152 addition tasks and
138 multiplication tasks were presented in the experiment
(see Table 1 for details on trial numbers within each
subcategory).

Procedure
Problems were presented on a computer screen in a conventional
format “operand–operator–operand” and participants were
instructed to work out the solution as fast and accurately as
possible. They were told to press a button as soon as they knew
the answer, which triggered the onset of a 2AFC result display
(Figure 1). The result display remained on screen for 750 ms.
This discouraged participants to “pre-emptively” press the button
before they finished calculating. Subsequently, participants had
to indicate their arithmetic strategy by rating the number of
solution steps. The following rating options were given: answer
known (i.e., direct memory retrieval), 1-step calculation (e.g.,
10 + 15 = 20 + 5), 2-steps (e.g., 14 + 17 = 20 + 4 + 7),
3-steps (e.g., 27 + 36 = 20 + 30 + 7 + 6), or more steps.
Examples for each rating option were given in a 15-trial practice
session. Tasks were randomized within eight blocks, containing
around 30 trials per block. The inter-stimulus-interval was 3 s.
Fluid intelligence measures from the Culture Fair Intelligence
Test (Cattell and Cattell, 1960) were obtained after the behavioral
experiment.

Statistical Analyses
First, a PCA was conducted on reaction times across participants
and task categories (see Table 1). The reaction times for each task
category were averaged for individual subjects, and then entered
into a PCA across subjects for addition and multiplication
tasks separately. This was done in order to explore (a) whether
categories correlated highly with each other and could be
subsumed under one category, and (b) whether the component
loadings reflected specific self-reported strategies. For this, mean
reaction times and mean percentages of strategy rating options
were compared with results of the PCA analysis.

Second, the relative impact of individual strategy ratings
compared to task surface criteria was assessed in a multiple
regression analysis. Independent simultaneous multiple linear
regression analyses were run on reaction times of individual
subjects including the predictor “Strategy” (retrieval, 1–3
steps, and more steps), and either of the two number size
predictors “Sum of Operands” and “Product of Operands.”
Separate multiple regression analyses were run for all tasks
(addition and multiplication together), as well as for addition
and multiplication tasks. The mean percentage of partially
explained variance by each predictor was determined for
each of the described regression models across subjects. The
relative predictive value of strategy and number size predictors
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TABLE 1 | Task categories based on surface criteria.

Addition Multiplication

Number size based
complexity levels

Other surface criteria
“shortcuts”

Number size based
complexity levels

Other surface criteria
“shortcuts”

Level 1: 1–9 vs. 1–9
Number of Trials: 20
IA = ±2

Ties: e.g., 9 + 9
Number of Trials: 8
IA =±2

Level 1: 1–9 vs. 1–9
Number of Trials: 20
IA = ±2

Ties: e.g., 6 × 6
Number of Trials: 8
IA = ±2

Level 2: 1–9 vs. 12–19
Number of Trials: 20
IA = ±2

Sum to ten (a): e.g., 8 + 2
Number of Trials: 4
IA = ±2

Level 2: 1–9 vs. 12–19
Number of Trials: 20
%50 IA = ±2
%50 IA = ±10

Multiplier 2 easy: e.g., 2 × 4
Number of Trials: 10
IA = ±2

Level 3: 12–19 vs. 12–19
Number of Trials: 20
IA = ±2

Sum to ten (b): e.g., 14 + 6
Number of Trials: 8
IA = ±2

Level 3: 12–19 vs. 12–19
Number of Trials: 20
%50 IA = ±2
%50 IA = ±10

Multiplier 2 hard: e.g., 2 × 19
Number of Trials: 10
IA = ±2

Level 4: 12–19 vs. 21–59
Number of Trials: 20
%50 IA = ±2
%50 IA = ±10

Sum to ten (c): e.g., 13 + 17
Number of Trials: 12
IA = ±2

Multiplier 5 easy: e.g., 3 × 5
Number of Trials: 10
IA = ±5

Sum to ten with 5: e.g., 5 + 15
Number of Trials: 20
IA = ±5

Multiplier 5 hard: e.g., 5 × 17
Number of Trials: 10
IA = ±5

Multiplier 9 easy: e.g., 9 × 7
Number of Trials: 10
IA = ±2

Level 5: 21–59 vs. 21–59
Number of Trials: 20
%50 IA = ±2
%50 IA = ±10

Multiplier 9 hard: e.g., 16 × 9
Number of Trials: 10
IA = ±2

The range of incorrect answers (IAs) is given for each category.

FIGURE 1 | Illustration of trial structure used in the experiment.
Participants were instructed to work out the solution as fast and
accurately as possible, and to press a button as soon as they knew the
answer, which triggered the onset of a 2-Alternative-Forced-Choice (2AFC)

result display. The result display remained on screen for 750 ms only, in
order to discourage participants to pre-emptively press the button before
they finished calculating. Arithmetic strategies were assessed on a
trial-by-trial basis by ratings on the number of solution steps.

was analyzed by subjecting z-transformed values of explained
variance to paired-sample t-tests.

Third, in order to investigate whether reaction times
determine strategy type or task features more appropriately, we
ran a ROC analysis. This method from signal detection theory
classifies a data set into two groups based on a variable of interest
(Centor, 1991). For any given threshold, the proportion of cases
that are correctly classified into a particular group is determined
(i.e., the true positives), as well as the percentage of cases that are
incorrectly classified into the same group (false positives). The
threshold is varied to yield an ROC curve that indicates the point,

at which the proportion of true positives and false positives is
optimal, i.e., true positives are maximized while false positives
are minimized. The Area under the Curve (AUC) provides a
measure of the likelihood at which the ROC curve correctly
classifies between true positives and true negatives (Fawcett,
2006). An AUC of 0.50 indicates chance level, while an AUC of 1
indicates perfect classification. In recent years, a few studies used
ROC analyses to determine whether reaction times accurately
classify arithmetic strategy choices of primary school children
with different skill levels (Mazzocco and Thompson, 2005; Wu
et al., 2008). We here focus on the relative classification accuracy
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of strategy ratings and task features across a heterogeneous
group of participants, for a broad range of task conditions. ROC
analyses were conducted for ratings (retrieval vs. any procedural
strategy) and task features (1-digit vs. multiple-digits tasks)
of all arithmetic tasks, as well as separately for addition and
multiplication tasks. The ROC function provided by the Matlab
(R2009a) software was used. For statistical analyses, AUC values
were z-transformed, and tested for normality (Lilliefors, 1969).
In order to investigate differences in classification accuracy of
ratings and task features, paired-sample t-tests were applied to
AUC values of all tasks, as well as to AUC values of addition and
multiplication tasks.

Results

Data of 19 participants (11 females and 8 males) were analyzed.
Two participants were excluded from the initial group because
they did not use the rating scale appropriately, i.e., did not report
any retrieval strategies whatsoever, and chose one option on the
rating scale over-proportionally frequently, despite the fact that
their reaction times were within the mean and standard deviation
of all other participants. This suggests that these participants
failed to follow our instructions. The mean error rate across
all task categories was 11 percent (SD = 6.07). Reaction times

for error-trials were excluded from analyses, as well as outliers
of three standard deviations above the mean of addition and
multiplication tasks.

Principal Component Analysis
A PCA on reaction times was run in order to explore to
what degree pre-defined task categories (e.g., shortcut strategies)
differentially affect performance. The first component accounted
for 94 percent of variance in reaction times of both operation
types (see Figure 2 for overview of factor loadings of all
PCA components, and for cumulated percentages of variance
explained by each of the components). The first two components
explained 96 percent of variance in reaction times of addition and
multiplication tasks. Six components for addition tasks and eight
components for multiplication tasks explained ∼100 percent of
variance in the data (see Table 2 for component loadings).

The loadings of the first component (Figure 3A, see
Table 2 for Component Loading Matrix) closely matched the
mean percentages of retrieval ratings (Figure 3B), as well
as the pattern of mean reaction times (Figure 3C) across
task categories. This suggests that the amount as to which
subjects use the direct memory retrieval strategy, as opposed
to any procedural strategy, predicts reaction times well across
trials, and explains most variance in the PCA analysis. This
was the case for addition as well as multiplication tasks.

FIGURE 2 | (A) Factor loadings of PCA components for addition and
multiplication tasks across pre-defined task categories. The blue line
indicates the first PCA component out of the 7 components (in different
colors) that together explained approximately a hundred percent of
variance (see B). (B) Cumulative variances for PCA components for
additions (left) and multiplication (right). x-Axis labels for addition in

(A) (see Table 1): L1–5, number size based complexity levels; T, ties; ST,
sum to next 10s; ST5, sum to next tens by adding 5. x-Axis labels for
multiplication in (A) (see Table 1): L1–3, number size based complexity
levels; M2E, multiply by 2 (easy); M2D, multiply by 2 (difficult); M5E,
multiply by 5 (easy); M5D, multiply by 5 (difficult); M9E, multiply by 9
(easy); M9D, multiply by 9 (difficult); T, ties.
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TABLE 2 | Component loading matrix of PCA analysis, corresponding to Figure 3.

Component Loading Matrix

Addition

C1 C2 C3 C4 C5 C6

Level 1 −5789.40 −910.53 −6.58 297.57 −125.05 652.58

Level 2 −2750.19 −1084.20 1199.93 −847.91 −182.14 −243.05

Level 3 3537.96 1065.17 641.97 710.55 −906.43 37.42

Level 4 8184.92 316.74 716.60 240.43 844.13 −121.15

Level 5 10496.82 −1140.74 −1087.75 −33.26 −166.02 4.66

Ties −8679.49 −272.48 −516.70 859.28 226.27 −548.55

Sum-to-next-ten −3000.45 952.40 −163.39 −262.70 601.81 404.99

Sum-to-next-ten by
adding 5

−2000.15 1073.65 −784.08 −963.97 −292.56 −186.91

Multiplication

C1 C2 C3 C4 C5 C6 C7 C8

Level 1 −15226.81 −5528.17 −3162.14 186.70 −3104.47 2433.10 496.86 −25.36

Level 2 15713.04 −6431.04 −2286.43 4629.61 2120.84 −1596.28 89.04 −2.66

Level 3 63569.99 −2545.53 1999.25 −3436.67 −965.49 −254.24 −71.92 16.84

Multiply 2 eay −23466.06 1453.94 1942.28 −1587.48 −367.60 −2166.47 672.85 −518.03

Multiply 2 difficult −10113.76 644.65 −1909.13 −3034.98 4604.08 1491.68 251.31 287.12

Multiply 5 eay −17882.24 358.63 1675.46 165.66 −1024.35 −645.26 −1858.88 846.75

Multiply 5 difficult 4547.63 3036.39 6959.88 3359.05 564.39 1920.56 321.94 −160.37

Multiply 9 eay −14859.47 −280.95 −1061.56 −911.23 162.68 134.72 −1440.19 −924.68

Multiply 9 difficult 20543.67 9681.05 −5197.44 1594.01 −1041.58 −133.95 186.60 56.00

Tie −22825.97 −388.95 1039.83 −964.66 −948.48 −1183.85 1352.37 424.39

The six components (C1–C6) for addition tasks are presented, as well as the eight components (C1–C8) for multiplication tasks, which together explained ∼100 percent
of variance.

Interestingly, high factor loadings of the first component emerged
for task categories including a wide range of number sizes,
ranging from 1/1-digit tasks to 2/2-digits tasks. This suggests
that arithmetic task complexity is not well-explained by task
surface features, but may rather reflect participants’ strategy
ratings.

Multiple Regression Analysis
In a multiple regression analysis, we determined the relative
predictive value of strategy ratings and task features. The
predictor “Strategy” included the five rating options (retrieval,
1–3 steps, and more steps), and was evaluated together with
the number size predictors “Sum of Operands” as well as
“Product of Operands.” Simultaneous multiple linear regressions
were run on reaction times of all arithmetic tasks, as well
as on reaction times of addition and multiplication tasks.
The inter-correlation of strategy and number size predictors
was around 0.6, and did not vary much across regression
analyses of all tasks, as well as addition and multiplication
(Table 3B). Collinearity statistics showed a mean Variance
Inflation Factor (VIF) between 1.4 and 2.45 across the
different regression models (see Table 3C for details). Due
to these relatively high inter-correlations, the absolute values
of regression coefficients should be interpreted with caution.
Hence, we here only analyzed the relative differences of partially

explained variance between predictors. The relative impact of
strategy and number size predictors was analyzed by subjecting
z-transformed values of explained variance to paired-sample
t-tests.

Strategy ratings explained most of the variance in reaction
times of addition tasks compared to number size predictors
(Figures 4A,B; Table 3A). This was the case for regressions with
the predictor “Sum of Operands” [t(18) = 2.72, p = 0.014], as
well as for regressions with the predictor “Product of Operands”
[t(18) = 4.66, p < 0.0001]. No significant difference between
strategy ratings and predictors of number size was observed
in regressions on reaction times of all tasks, as well as in
regressions on reaction times of multiplication tasks. However, in
both cases strategy ratings and number size predictors explained
a substantial amount of independent variance, suggesting the
importance of strategy ratings as measure of task complexity in
all conducted regression analyses.

Receiver Operating Characteristic Analysis
We used a ROC analysis to determine whether reaction times
differentiate better between strategy ratings (retrieval vs. multi-
step procedural) or between task features (tasks involving 1-
digit vs. 2-digit numbers). The analyzed AUC value provides
the likelihood that, given a true positive and a true negative,
the ROC analysis correctly classifies the variable “Ratings” or
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FIGURE 3 | (A) Factor loadings of first PCA component (same as in
Figure 2A); (B) mean percentage of retrieval ratings of each pre-defined
category; (C) mean reaction times in pre-defined categories presented.
Error bars indicate the SE of the mean. Abbreviations: L1–L5, number

size based complexity levels; T, ties; ST, sum to next 10s; ST5, sum to
next 10s by adding 5; M2E, multiply by 2 (easy); M2D, multiply by 2
(difficult); M5E, multiply by 5 (easy); M5D, multiply by 5 (difficult); M9E,
multiply by 9 (easy); M9D, multiply by 9 (difficult).

“Task Features.” In the case of ratings, true positives would
refer to the percentage of retrieval trials that were accurately
identified as retrieval trials, and false positives would refer to the
percentage of procedural trials that were inaccurately identified
as retrieval trials. An AUC of 1 indicates perfectly accurate
classification.

Receiver Operating Characteristic analyses revealed a
significant classification difference of reaction times for strategies
and task features. For analyses of all tasks, a significantly higher
AUC value was observed for strategies (mean AUC value = 0.86)
than for task features [mean AUC value = 0.78; t(18) = 4.49,
p < 0.0001; Figure 5, Table 4]. This was also the case for analyses
on addition tasks, which revealed a significantly higher AUC
value for strategies (mean AUC value = 0.88) than for task
features [mean AUC value = 0.84; t(18) = 2.38, p = 0.028].

For analyses on multiplication tasks, a marginal significant
differences between strategies (mean AUC value= 0.90) and task
features (mean AUC value = 0.87) was observed [t(18) = 1.96,
p = 0.065] due to the fact that reaction times also classified
task features very well. Overall, the current ROC analysis
provides strong evidence that reaction times differentiate types of
arithmetic strategies well, and that they classify strategy ratings
significantly better than task features in analyses including all
tasks and addition tasks.

Discussion

In the current study we evaluated different measures of task
complexity in an arithmetic task paradigm that is suitable for
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TABLE 3 | (A) Mean percent and SD of partially explained variance by each
predictor from multiple regressions on reaction times run on the single-subject
level for all tasks, as well as addition and multiplication tasks. (B) Mean and SD of
predictor correlations from multiple regressions on the single-subject level run for
all tasks, as well as addition and multiplication tasks. (C) Mean and SD of the
Variance Inflation Factor (VIF) from multiple regressions on the single-subject level
run for all tasks, as well as addition and multiplication tasks.

(A) Partial R2 Coefficients

Strategy Sum of operands

Mean SD Mean SD

All Tasks 0.13 0.08 0.09 0.04

Addition 0.23 0.12 0.10 0.08

Multiplication 0.22 0.15 0.17 0.09

Strategy Product of operands

Mean SD Mean SD

All Tasks 0.16 0.08 0.11 0.04

Addition 0.29 0.12 0.09 0.08

Multiplication 0.25 0.14 0.27 0.10

(B) Correlations of Predictors

Sum of operands
∗ Strategy

Product of operands
∗ Strategy

Mean SD Mean SD

All tasks 0.66 0.07 0.59 0.06

Addition 0.62 0.07 0.53 0.07

Multiplication 0.74 0.07 0.68 0.09

(C) Variance Inflation Factor (VIF)

Sum of operands
vs. Strategy

Product of operands
vs. Strategy

Mean SD Mean SD

All Tasks 1.90 0.31 1.58 0.18

Addition 1.70 0.26 1.41 0.16

Multiplication 2.45 0.75 2.03 0.49

future neuroimaging research. The relative predictive value of
self-reported strategies for arithmetic performance was analyzed
and compared with objective task complexity criteria based on
number size.

Overall, strategy ratings outperformed task features in
most of our analyses, suggesting that strategy assessment
in our neuroimaging research compatible paradigm is a
powerful measure of problem complexity across different task
types, and should be incorporated in future neuroimaging
research on arithmetic problem solving. This is in line
with evidence from two recent EEG studies showing that
trial-by-trial self-reported strategies explain neural effects
better than complexity measures based on number size
(Grabner and De Smedt, 2011, 2012), as well as evidence
from an fMRI study in which self-reported strategies
yielded a better match in task complexity across arithmetic

FIGURE 4 | (A) Mean explained variance by each predictor in multiple
regression of reaction times on the standardized predictors “Strategy”
(retrieval, 1-step, 2-steps, 3-steps, more-steps) and “Sum of Operands” for all
task, as well as addition and multiplication. Error bars indicate the SE of the
mean. (B) Mean explained variance by each predictor in multiple regressions
of reaction times on the standardized predictors “Strategy” and “Product of
Operands” for all task, as well as addition and multiplication.

FIGURE 5 | Mean Area Under Curve (AUC) values from ROC analyses
on all tasks, as well as addition and multiplication tasks. Error bars
indicate the SE of the mean.

conditions, compared to number size based complexity criteria
(Tschentscher and Hauk, 2014). Therefore, we propose that
neuroimaging studies that aim to compare different types
of tasks (for example arithmetic operation types), should
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TABLE 4 | Mean and SD of AUC values from ROC analyses of all arithmetic tasks, as well as addition and multiplication tasks.

Area under the Curve (AUC) values

All arithmetic tasks Addition Multiplication

Strategy Task features Strategy Task features Strategy Task features

Mean 0.86 0.78 0.88 0.84 0.90 0.87

SD 0.08 0.07 0.06 0.03 0.05 0.05

match these tasks with respect to individual ratings of task
difficulty.

Strategy Ratings are the most Powerful
Predictor of Task Complexity
In the PCA, over 90 percent of variance in reaction times of
addition and multiplication tasks was explained by the first
component. High factor loadings of this first component were
observed for task categories that varied in number sizes between
combinations of 1/1-digit numbers and 2/2-digits numbers.
Hence, number size, which has been a common criterion of
task complexity in many previous neuroimaging studies, did not
reflect component loadings well. When comparing patterns of
strategy ratings and mean reaction times with PCA results, it
is striking that the pattern of strategy choices closely matched
the factor loadings of the first PCA component (Figure 3). This
finding gains further support by results of simultaneous multiple
regression analyses. Strategy ratings explained about one third
more variance in reaction times than number size predictors. This
difference was more pronounced in addition tasks, while strategy
and number size predictors explained substantial amounts
of independent variance in all analyses. This suggests that
strategy ratings should be considered as additional criterion for
complexity beyond task features in future studies. We finally
assessed whether a ROC curve more appropriately classifies self-
reported strategies (direct retrieval vs. multi-step procedural)
or number size based complexity levels (tasks involving 1-digit
numbers vs. 2-digit numbers), and could provide evidence for
the superiority of strategy ratings. The classification accuracy of
strategy ratings across all tasks was high (mean AUC= 0.86), and
significantly differed from classifications based on number size
(mean AUC = 0.78).

Limitations of Strategy Reports
While strategy ratings were the best predictor of task
performance in the current study, they may still be affected
by response biases in a different experimental setting. The
current group of participants was relatively high performing,
with average and above average IQ. However, the predictive
value of strategy ratings might differ for groups of participants
with lower overall skills. For example, it has been shown that
the performance of participants with low arithmetic fluency
is more affected by trial-by-trial strategy reports in both error
rates and reaction times, than the performance of higher-
skilled participants (Smith-Chant and LeFevre, 2003). Hence,
performance differences between groups may be enhanced when
strategy measures are simultaneously obtained. Further, strategy

reports might be biased by the way experimental instructions
are provided, resulting in systematic biases toward more or less
reports of direct memory retrieval (Kirk and Ashcraft, 2001).
This can be a concern when comparing proportions of partial
strategy choices (memory retrieval vs. procedural) across studies.

Conclusion

The ideal measure for task complexity would be based on
detailed knowledge of the cognitive and neural mechanisms
contributing to the problem solving process, and how they
are affected by individual differences. While a number of
theoretical and neuroscientific proposals for the mechanisms of
problem solving exist (Baddeley, 1986; Anderson, 2005; Duncan,
2010), a generally applicable model for task complexity has
not been established yet. The current study aims to provide a
pragmatic approach toward better control of task complexity
effects in neuroimaging research. Many studies – such as
neuroimaging studies on neural differences between arithmetic
operation types – do not explicitly address questions about
task complexity or individual participants’ arithmetic strategies.
However, these studies have to rule out that differences in
task complexity across conditions, i.e., differences in the use of
arithmetic strategies, confound their hypothesized specific neural
differences between arithmetic operation types. If only reaction
times were considered, it would not be clear how to select
trials in order to match stimulus conditions for complexity. Our
rating procedure offers a principled way to categorize stimulus
categories in a factorial design, as used in most neuroimaging
studies on numerical cognition. We recommend individual
strategy ratings as a pragmatic measure for task complexity,
possibly in combination with reaction time assessment and
objective task-based measures, especially for cases where detailed
cognitive models of task complexity are not available.

Our conclusion that individual strategy ratings capture task
complexity better than objective task features is based on our
finding that individual ratings were the most reliable predictor
for behavioral performance across different analyses conducted in
the current study. The relevance of this finding has already been
indicated by a few neuroimaging studies (Grabner et al., 2009;
Grabner and De Smedt, 2011, 2012; Tschentscher and Hauk,
2014), where classification of task complexity via arithmetic
strategies significantly changed the results. However, according to
our knowledge we here provide first evidence on the superiority
of strategy ratings based on the direct comparison between
subjective ratings and objective task complexity criteria.
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