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Many studies have argued for distinct but complementary contributions from each

hemisphere in the control of movements to visual targets. Investigators have attempted to

extend observations from patients with unilateral left- and right-hemisphere damage, to

those using neurologically-intact participants, by assuming that each hand has privileged

access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric

contributions to the control of aiming have focussed on increasing the spatial demands

of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left

hand reaction time advantage in right-handed participants. These early attempts have

not been successful. The present study circumnavigates some of the theoretical and

methodological difficulties of some of the earlier experiments, by using three different

tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap

effect, and visuospatial localization. None of these tasks were effective in reducing the

magnitude of left hand reaction time advantages in right handers. Results are discussed

in terms of alternatives to right hemispheric functional explanations of the effect, the

one-dimensional nature of our target arrays, power and precision given the size of the

left hand RT effect, and the utility of examining the proportions of participants who show

these effects, rather than exclusive reliance on measures of central tendency and their

associated null hypothesis significance tests.
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Introduction

The idea of a specialized role for the left hemisphere in the control of movement is well-established
in the neuroscience literature (Kimura and Archibald, 1974; Paillard, 1982a,b; Goodale, 1988;
Kimura, 1993; Elliott and Roy, 1996; Rothi and Heilman, 1997; Goldenberg, 2013). Nevertheless,
surprisingly few investigations have examined the relative contributions of the two hemispheres to
the programming and control of movement. One approach to this question has been to contrast
differences in the movements made by groups of unilateral brain-damaged patients. To date,
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however, little consensus has been reached in these experiments,
except for the general tendency for right-brain damaged (RBD)
participants to initiate their movements more slowly than their
left-brain damaged (LBD) counterparts (Fisk and Goodale, 1988;
Haaland and Harrington, 1989, 1996). This result (and similar
results from the hand difference literature using neurotypical
participants, see below) is usually interpreted in terms of some
sort of right-hemisphere process that is important for: (1)
localizing a target in space; (2) shifting or allocating attentional
resources; or (3) “premotor processing” [the latter tends mainly
to refer to any processes related to the reaction time (RT) period].

Inferences derived from deficits following brain damage,
on their own, can be difficult to interpret unambiguously
(Kosslyn and Intrilligator, 1992; Shallice and Cooper, 2011).
Hypotheses about hemispheric contributions to movement
would be strengthened if they were supported by independent
evidence from other research domains. One such domain is the
study of hand differences in neurologically-intact participants.
Given the “privileged access” of each hand’s motor outflow
and sensory inflow to other mechanisms in the contralateral
hemisphere, subtle differences in the performance of the left
and right hands should, in theory, be consistent with the
specializations of each hemisphere (e.g., Goodale, 1988, 1990;
Poizner et al., 1990; Bagesteiro and Sainburg, 2002). One result,
commonly reported in the visually-guided aiming literature,
is that left-handed movements are initiated more quickly
(e.g., Carson et al., 1992; Carson, 1996), while right-handed
movements are completed more quickly once initiated (e.g.,
Elliott et al., 1993, 1994).

Of course, the majority of hand performance studies have
investigated right-handed participants and reported advantages
for the right hand. The most robust of these advantages is a

shorter dominant hand movement duration (Fisk and Goodale,
1985; Carson et al., 1993a,b; Elliott et al., 1994). Accuracy usually
favors the right hand as well, suggesting that these shorter
movement times (and higher peak velocities) are not an obvious
result of a speed-accuracy trade off, at least for these measures of
speed.

A potentially more promising approach than simply
documenting any obtained hand difference, has been to
manipulate task demands in some fashion and make one-tailed,
directional predictions about shifts away from advantages for
a specified hand in right-handed participants (Watson and
Kimura, 1989; Carson et al., 1990, 1992; Elliott et al., 1993).
Three such studies are reviewed in detail by Carson (1996).
Effectively, most of these studies have manipulated some feature
related to the target of an aiming movement, which was thought
to increase the spatial demands of the task.

For example, Carson et al. (1992) had participants extrapolate
from a spatio-temporal pattern of targets to determine a
reach endpoint which completes the figure. Four such figures
were used, which depicted linear, quadratic, cubic, and quartic
functions. The assumption made by the authors was that
the number of “reversals” in a pattern predicted the spatial
complexity-linear the least spatially complex, quartic the most
spatially complex. The authors did not find the expected
differences as a function of target.

Other published attempts at increasing the spatial complexity
of an aiming task which have been investigated include
interpolating the center of circles of different sizes (Elliott et al.,
1993, experiment 1), reaching quickly and accurately to one of
two different types of targets in one of two different locations
(Elliott et al., 1993, experiment 2); and pointing to the mirror
image of a target’s location (Chua et al., 1992). Although the
stimuli used in such tasks are plausible as spatially complex
in some respects, the tasks that the participants are required
to complete may not be. For instance, in some of the tasks
participants actually had to reach to an identical position for each
of the different targets (Carson et al., 1992; Elliott et al., 1993). In
Elliott et al. (1993), for example, the circles of different diameters
were always centrally positioned on paper backgrounds which
required identical movement amplitudes to point to their
centers.

Specific methodological details aside, these approaches tend
to make broad assumptions about what constitutes a spatial
manipulation. Unfortunately to date they also tend not to work
(in terms of increasing or attenuating left hand RT advantages).
In fact, many of the null effects of task in these experiments
led Carson (1996) to conclude that any right hemispheric
contributions to left hand reaction time advantages “do not
arise from an engagement in spatial co-ordinate processing” (p.
163). In other words, Carson argues that whatever mechanisms
drive the left hand RT advantage, they don’t seem to relate to
visuospatial processes.

In the current study, we explored the hypothetical right
hemispheric driver of the left hand RT advantage with
three different experiments. Our main aim was to identify
a manipulation which would affect the size of the left hand
RT advantage, providing more direct evidence that this hand
difference is a consequence of a right hemisphere process. For
two of the tasks, we were motivated by independent evidence
suggesting right hemispheric specialization, in experiment 1
(bisection) and experiment 3 (the gap effect). This latter study
also constituted a more direct test of an attentional, rather
than a strictly visuospatial, contribution to the left hand RT
advantage, rarely done before (see Mieschke et al., 2001 for a
noteworthy exception). For the remaining task, we attempted
to manipulate spatial processing by altering the number of
potential targets (experiment 2). In our first experiment,
we attempted to circumvent the difficulties associated with
defining spatial complexity using the old-fashioned approach
of avoiding it altogether, by using a task with a known right
hemispheric specialization (i.e., bisection of the space between
two targets).

In all of the studies described below, participants were
encouraged to make quick and accurate movements,
but after early testing in one of our labs, we elected
to emphasize speed more than accuracy in subsequent
experiments where non-dominant hand performance was
assessed alongside dominant hand performance. Occasionally
participants are concerned (often unjustifiably so) about
performance of their “weaker” hand, so would adopt a
more conservative strategy by slowing down in practice
trials.
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Experiment 1: Single-target Pointing vs.
Two-target Bisecting

The present study attempted to investigate right hemispheric
contributions to visually-directed aiming by using a task which
is strongly linked to right hemisphere specialization–bisection.
Evidence from many clinical and experimental studies links poor
performance on bisection of lines with right hemisphere damage.
Paper and pencil line bisection frequently reveals neglect of left
space in participants with RBD, as participants place their “mark”
too far to the right (e.g., Schenkenberg et al., 1980; Milner et al.,
1993). Additionally, it has been shown that in a task which was
a visuomotor variant of line bisection, RBD patients who had
recovered from hemispatial neglect performed more poorly than
left-brain damaged patients. Thus, when the terminal endpoint
for an aiming movements was defined by the perceived midpoint
of two LEDs, RBD patients erred to the right, even though they
were able to correct rightward deviations in the initial portion of
reaches made directly to single LEDs (Goodale et al., 1990).

The aim of the present experiment was to determine whether
it is possible to exaggerate the magnitude of the left hand RT
advantage, therefore providing some evidence to support the
hypothesis that this effect is driven by a right hemispheric
specialization. In order to do so, we required participation in both
a standard aiming task and a bisecting task, where the correct
endpoints were co-incident in both. If accurate performance
in bisection is more reliant on the right hemisphere than in
single-target pointing, a left hand advantage in RT should
be stronger in this condition. A second factor manipulated
was the visibility of the hand during the reaching movement
(also see Carson et al., 1992). Some studies have suggested
that proprioception/kinesthesis may rely more heavily on right
hemispheric systems (e.g., Guiard et al., 1983; Carson et al., 1990).
If this hypothesis is correct, then any attenuation of right hand
advantages in bisecting may be exaggerated in hand-invisible
reaching.

Methods

Participants
Fourteen strongly right-handed males were tested. These
volunteers were research assistants, graduate students and
senior undergraduates from the University of Western Ontario.
Participants completed a nine-item handedness questionnaire
(a modified version of the Edinburgh Handedness Inventory;
Oldfield, 1971) and were included in the study only if they
performed all nine actions with their right hand. Participants
ranged in age from 19 to 30 years (mean= 24.5).

Procedure
Participants were required to reach quickly and accurately toward
targets under two different hand visibility conditions, run on
separate days; one in which the reaching limb was visible
and the other in which the limb was not visible. Session was
counterbalanced. Both hands were tested on each day, and the
order of hand and task was also counterbalanced.

Participants pointed to single targets, or “bisected” two targets,
in 30-trial blocks. Target light-emitting diodes (LEDs; red; 0.25◦)
were embedded in a Styrofoam wedge, centered 2 cm from the
table surface, angled toward the participant’s eyes, and covered
in black speaker cloth (such that the location of LEDS was
not visible until they were illuminated individually or in pairs).
During a session, participants wore a black long-sleeved t-shirt
and a black glove on the reaching limb (in order to eliminate
as much as possible any visual cues from the limb during hand-
invisible reaching). All calibration and test trials were performed
while in a chinrest, angled to provide optimal viewing of the
targets in the wedge. Small, infrared-emitting diodes (IREDs)
were attached with Velcro to the tip and the base of the
index finger on the glove. The three-dimensional locations of
these diodes during calibration and test trials were recorded at
100Hz using an opto-electronic recording system (WATSMART,
Northern Digital, Inc.).

After collection of five calibration trials (where participants
were allowed to adjust endpoint position to make perfect reaches
to continuously-illuminated LEDS), participants were required to
reach quickly and accurately to each presented LED target and to
remain in their initial landing position until instructed to return
to the start position and await the next trial. Participants were
told that targets could appear anywhere on the target wedge in
front of them, but were not told howmany different targets would
appear. Five different target positions were used (far left, near
left, center, near right and far right, each 6 cm away from the
adjacent target). The central target was located 32 cm in front of
the start position, and the twomost peripheral targets were 34 cm
away from the start position (21.5◦ from the central target). Each
target appeared six times, in a pre-determined, pseudo-random
sequence.

For bisecting, participants were instructed to reach quickly
and accurately to the midpoint between two simultaneously
illuminated targets. The two LEDs for any particular bisecting
trial were positioned 12 cm apart, and their true midpoints were
located at the same positions as the five pointing targets (see
Figure 1).

FIGURE 1 | Schematic representation of the pointing and bisecting

conditions of experiment 1. Five targets/midpoints were used, equally

spaced by 6 cm from a midline target/midpoint. Adapted from Goodale et al.

(1990).
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Data Analysis
After data collection, raw WATSMART files were converted
to three-dimensional coordinates and filtered at 7-Hz with a
second-order Butterworth filter. These filtered files were used
to compute peak velocity (cm/s), movement onset time and
movement duration (both in ms), and two different measures
of endpoint accuracy (relative to the position of the fingertip
LED specified by the calibration trial for that particular
target/endpoint).

Each dependent measure was analyzed using three factor
repeated measures analysis of variance, using the Geiser–
Greenhouse adjustment of the degrees of freedom (for violations
of homogeneity of covariance in repeated measures designs)
when appropriate (Kirk, 1982; Tabachnick and Fidell, 1989).
Significant interactions were explored using a simple main
effects procedure (Kirk, 1982). The main effects and interactions
relevant to hand differences in RT will be the main focus of
the rest of this paper (see Supplementary Materials for statistical
analyses of the other dependent measures in this and the other
two experiments).

Results
The principal aim of the study was to see if left hand RT
advantages in pointing would be increased by the theoretically
more “right hemispheric” bisecting task relative to single target
pointing. Table 1 includes mean RT as a function of hand,
task and visual feedback condition. Figure 2 show these means
separately for ipsilateral and contralateral hemispace (see Carey
et al., 1996; Carey and Otto-de Haart, 2001). In only one of the
four comparisons (two tasks × two hand visibility conditions)
is the left hand even marginally quicker than the right. In fact,
none of these differences in RT are statistically significant, even as
assessed by 1-tailed paired samples t-tests: pointing: t(13) = 0.215
and t(13) = −0.634; bisecting: t(13) = −0.475, and t(13) = 0.702.

We also wanted to examine the proportions of these samples
who show numerical left hand RT advantages. Even though
these effects are small in neurologically-intact participants, if they
are related to cerebral asymmetries in attentional/visuospatial
processes then the majority of any right handed sample
should show them (see Carey and Johnstone, 2014 for further
discussion of the relevance of proportions for neuropsychological
experiments comparing right- and left-handed participants). Of
course, what precise proportion of dextral people who are right
brain dominant for attentional of visuospatial function is not

well-established, although see Cai et al. (2013) for some relevant
data from fMRI. If one assumes complementary specialization
of the right hemisphere when an individual is left hemisphere
dominant for speech and language functions, then the proportion
should be as high as 90–95%.

As suggested by the means, only one of the four conditions
resulted in a majority proportion of the sample having left hand
RT numerically smaller than right hand RT, which was in hand-
invisible bisecting (0.64; hand-visible pointing = 0.50, hand-
invisible pointing= 0.50, and hand-visible bisecting= 0.50).

Discussion
These data are fairly easy to interpret in terms of left hand
RT effects. In spite of the fact that our pointing task did not
result in the often obtained left RT advantage, there is no
evidence for bisecting shifting left hand RTs lower in relative
terms. Numerically, at least, RTs did not favor the right hand in
hand-invisible bisecting, but this shift relative to hand-invisible
pointing was not statistically significant, even with rather liberal

FIGURE 2 | Mean RT as a function of hand, hand visibility, hemispace,

and task, experiment 1. A lower left hand RT, relative to the right hand, was

only obtained in hand-invisible bisecting, but this difference was not

statistically significant.

TABLE 1 | Mean RT (ms) as a function of task, hand and hand visibility.

Pointing Bisecting

Visible Invisible Visible Invisible

Mean SEM Mean SEM Mean SEM Mean SEM

269.3 13.4 300.2 17.6 Right 310.2 24.5 321.7 21.5

272.2 17.4 307.2 24.1 Left 312.7 23.5 312.9 25.9

−2.9 −7 Diff (R–L) −2.5 +8.8

SEM = standard error of the mean. A positive difference score (bottom row) indicates a numerical left hand RT advantage.

Frontiers in Psychology | www.frontiersin.org 4 August 2015 | Volume 6 | Article 1203

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Carey et al. Left hand RT in dextrals

one-tailed t-testing. The proportions who show left hand RT
advantages did change slightly in one bisecting condition (but
the sample size in this experiment is rather small for this sort of
proportional analysis).

There is little evidence to suggest what conditions tend
to favor RT advantages for the left hand (after all that is
what these experiments were designed to ascertain), therefore
occasionally null findings in a control condition such as pointing
in the present study, will limit the usefulness of any attempt
to manipulate hand differences in RT. Unfortunately, this one
interesting measure which usually favors the left hand of the right
hander, is not obtained in every experiment.

Undeterred by this first attempt, with a new sample of right
handers we attempted a somewhat different type ofmanipulation,
targeted more directly at the localization demands of a manual
aiming task.

Experiment 2: Manipulating Localization
Demands by Increasing the Number of
Target Locations

One sensible way to try and quantify the relative contribution of
the right hemisphere to motor control would be to keep the task
focussed on the spatial localization of targets for the production
of rapid movements. Localization refers to a diverse set of
processes which allow for specifying the location of an external
target to some sort of egocentric or body-centered representation
(Bock, 1986; Miller, 1996). The evidence for a right hemisphere
advantage for the localization of targets (Kimura, 1969), perhaps
in relatively early stages of movement planning (Carson et al.,
1992) motivated this second experiment. Here, we varied
the visuospatial demands of the task by manipulating target
uncertainty, while requiring identical motor responses (as in
experiment 1). If a left-hand advantage for movement onset
reflects right-hemispheric specialization for target localization,
the expectation was that increasing the spatial uncertainty of the
task by increasing the number of target locations should result in
an interaction between hand used and target number of targets.
We expected the largest left hand RT advantage occurring in
the block with the greatest number of possible target positions.
In addition, RT advantages should be decreased in the 2 target
condition, relative to the intermediate 6 target condition, if target
localization demand predicts left hand RT advantages.

Methods

Participants
Participants were 22 volunteers, 12 females and 10 males, mainly
undergraduate and postgraduate students from the University
of Aberdeen, ranging in age from 18 to 41 years (mean =

26.6, SD= 6.9). They were self-declared strong right-handers,
verified by a 9-item handedness inventory (a modified version
of the Edinburgh Handedness Inventory; Oldfield, 1971). All
participants were naïve as to the purpose of the experiment and
took part in two test sessions, one in which the right hand was

tested and the other in which the left hand was tested, run on
separate days.

Procedure
A 60Hz MacReflex three camera motion capture system was
used, coupled with a bespoke light emitting target board
controlled by an adjacent PC. The participants were given six
blocks of trials in which the number of targets used were varied.
Each block’s targets were symmetrical, and centered 15 cm
(14.6◦) to the left and right of a midline fixation point (the two
targets used in block A were at these two positions; see Figure 3).
In block B, six targets were used; inner targets were 9.8◦ from
fixation and the outer were at 19.5◦. In block C, 10 targets were
used, equidistant, at 4.9◦ at most medial to the most lateralized
at 24.2◦.

The targets presented in each block appeared randomly.
The blocks were run in an ABCCBA or CBAABC order, to
counterbalance for any potential practice or fatigue effects. The
two middle blocks (which both had either 10 targets or 2 targets)
were separated by a brief delay. Half of the participants began
with block A, while the other half began with block C.

In the test session a total of 144 trials were run for each
hand. In each block 4 pointing movements were required, in
random order, to each stimulus target used. Practice trials (one
movement to each possible target) were provided in each of the
first new blocks to familiarize the participant with the number
and location, of the 2, 6, or 10 targets. All participants were
also told the number of targets in each block verbally before the
practice trials.

Results
We predicted an interaction between number of targets and
hand, such that RT differences that favor the left hand should
have been largest in the 10-target condition and smallest in the
2-target condition. The data, shown separated for left and right
hemispace, are depicted in Figure 4.

A three way repeated measures analysis of variance with hand,
number of targets, and hemispace was performed. Overall the
hands did not differ in RT [F(1, 20) = 3.75, p = 0.067], ipsilateral
movements were initiated more quickly than contralateral
movements [F(1, 20) = 27.57, p < 0.001]. No other effects
were statistically significant, including the Hand × Number of
targets × Hemispace [F(2, 40) = 3.132, p = 0.054]. Nevertheless

FIGURE 3 | Schematic representation of target uncertainty in

experiment 2. Only two possible target positions could be illuminated in

Block (A), relative to the 10 possible in Block (C). Note how the each array is

centered equivalently relative to fixation [i.e., middle targets in (B) and (C) are

aligned with the only target in each hemispace in (A)]. Drawing not to scale.
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FIGURE 4 | Mean RT as a function of hand, number of targets and

hemispace, experiment 2. Left hand RT advantages were significant,

depended on larger ipsilateral advantages than those obtained in the right

hand, but did not interact with the number of targets. Note that in each panel,

we have plotted ipsilateral (i.e., left hemispace, left hand; right hemsipace, right

hand) movement means before contralateral movement means.

given our directional prediction we ran three paired samples t-
tests on the 2, 6, and 12 target blocks comparing right hand–
left hand RT. The left hand RT advantage was only statistically
significant for the 6 target conditions [t(21) = 2.35, p < 0.02].
We also compared the proportion of the sample who showed
a numerical left hand advantage in the 2, 6, and 10 target
conditions. The resulting proportions were 0.67, 0.76, and 0.71.

A summary of results for other dependent measures appears
in the Supplementary Materials.

Discussion
As in experiment 1, there was little evidence for any exaggeration
of left hand RT advantages as target numbers increased from 2 to
6 to 10. In this experiment, unlike the previous one, there was
at least a possibility for exaggeration or attenuation of the left
hand RT effect, as most of our participants (76%) had numerical
left hand RT advantages in the “intermediate” 6-target block
(which in some sense is the control condition in this experiment).
Nevertheless, the mean RT effect did not increase or decrease
significantly across blocks, and the proportion of the sample who
have numerical left hand advantages was virtually unchanged in
2-, 6-, and 10-target conditions.

Of course, targets were restricted to placement within a
horizontal array, whichmay not have taxed systems that normally
localize with eye, head and hand in a multidimensional world.
Furthermore, although more target uncertainty was introduced,
theoretically the attentional demands of the 2, 6, and 10 target
conditions may not have differed by much; the horizontal extent
of the space which may have contained targets for any block
varied from 30◦ (2 target blocks) to 46◦ (6 target blocks). These
two horizontal extents are well within the binocular visual fields,
and may not have differed sufficiently in terms of the extent
of space to be monitored for potential targets in a speeded
aiming task. In fact, while we were designing this task we became
well-aware of how different distances and or different spatial
resolutions are necessary to vary target number—it was difficult
to know how to trade these factors off with one another in the
absence of any strong data on left hand RT mechanisms. In any

case, this kind of thinking about attention in reaching led us to
our final experiment, where we used a manipulation coupled to
two somewhat distinct attentionalmechanisms, both linked with
right-hemisphere specialization, which may account for the left
hand RT effect.

An additional analysis of a subset participants who showed
left hand RT advantages overall, also provided no support for the
hypothesis that target number influenced the magnitude of the
left hand RT advantage.

Experiment 3: Fixation-target “Gap” vs.
“No-gap” Pointing

In the final experiment, we attempted a manipulation directed
toward a more attentional explanation of the left hand RT
effect. Right hemisphere specialization for attentional systems
has been suggested for some time, from studies of patients
with hemispatial neglect (Brain, 1941; De Renzi, 1982; Danckert
and Ferber, 2006) and neurotypical participants (e.g., Gitelman
et al., 1999; Jewell and McCourt, 2000; Rushworth et al., 2001;
Mattingley et al., 2004; Shulman et al., 2010; Voyer et al.,
2012)1. Of course, in single-target aiming, two different types
of attention may play roles in facilitating rapid responses. First,
generalized alertness or vigilance (Marrocco et al., 1994), could
be facilitated by preparing to use the left hand, largely controlled
and monitored by motor, premotor and somatosensory networks
of the right hemisphere (for evidence linking generalized
alertness to the right hemisphere, see Posner and Peterson, 1990;
Robertson et al., 1998). An alternative attentional mechanism
might be related to a more spatially—selective process such as
visual orienting to a target (Posner and Peterson, 1990; Petersen
and Posner, 2012).

For this study, we chose a manipulation which has
requirements related to both types of attentional component—
the “gap effect” (Saslow, 1967). This effect refers to facilitated RTs
for targets when a short delay (typically 100–200ms) between
fixation offset and target onset is introduced. Although described
initially in a two-target saccadic eye movement paradigm
(Saslow, 1967; Fischer and Ramsperger, 1984) a manual gap
effect has also been identified, although there is some debate
over whether or not the effects are carried over from saccadic
facilitation (Bekkering et al., 1996). Perhaps coincidentally, the
magnitude of the manual gap effect is typically around 15–20ms
(Reuter-Lorenz et al., 1991; Bekkering et al., 1996; Fendrich
et al., 1999), which is not disproportionately larger than the
left hand RT advantages in reaching experiments. What was
crucial for our purposes was that there is some evidence that
the gap effect results from both the general alerting effect of
fixation offset (Dorris and Munoz, 1995; which takes some
time to manifest itself) and from a spatial orienting/facilitation
effect (e.g., attention is released from fixation which can now be
allocated in the direction of a manual/saccadic target; Kingstone

1Surprisingly few studies report left visual field advantages in neurotypical

participants for visual search and Posner-like cueing tasks; (see Palmer and Tzeng,

1990; Evert et al., 2003; Michael and Ojéda, 2005; Poynter and Roberts, 2012, for

examples, caveats and analysis).
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and Klein, 1993; Pratt et al., 2000; Rolfs and Vitu, 2007). In other
words, this study was a first pass at an attention explanation
of the left hand RT advantage, which we intended to explore
if successful using manipulations from the gap effect literature
designed to fractionate the alerting and orienting components.

Interestingly, there are some indications of a hemispatial
asymmetry in the manual gap effect. Lünenburger et al. (2000)
found a slightly larger manual gap effect when right-handers
reached toward the right side of space, compared to equivalent
left-sided reaches. However, as the left hand was not examined
in that experiment, the conclusions that can be drawn from this
finding are limited. Gomez and colleagues also found larger gap
effects when dextrals had to react to targets appearing in their
right visual field (Gómez et al., 1998). However, this study tested
only choice reaction times (pressing left mouse button for a left
target and the right mouse button for a right target), rather than
manual localization, as was required here.

The current experiment includes data from three separate
gap effect studies performed by GB, HCD, and DPC, which
differed slightly in precise methods but all required: (1) right-
handed participants to reach in gap and no gap (fixation offset
coincident with target onset) conditions; (2) target arrays that
were balanced with respect to the participant’s midline (i.e., half
in each hemispace), and (3) separate blocks of left and right hand
unimanual reaches, made as quickly (and accurately) as possible.

Methods

Participants
A total of 67 participants were tested over the course of the 3
experiments (26 in study 1, 21 in study 2 and 20 in study 3).
The mean age of the samples was 22.0 years, SD = 2.83.
All participants had normal or corrected to normal vision.
All participants were dextral, with strength of hand preference
measured by a modified version of the Waterloo Handedness
Questionnaire (WHQ; Steenhuis and Bryden, 1989; mean =

26.85/30; SD = 3.48). Participants were naïve to the hypothesis
(including the inclusion of the temporal gap) and gave informed
consent prior to testing, with all procedures approved by the
Ethics Committee of the School of Psychology at the University
of Aberdeen.

Procedure
Each participant was tested individually in a single session in a
darkened room to minimize infrared reflections and allow for
easy detection of peripheral targets. The participant sat (head
free) on a height-adjustable chair in front of a bespoke horizontal
light emitting diode (LED) grid board. Their index finger was
then placed upon the starting location, marked by a tactile Velcro
pad on the near side of the board in line with the fixation point.
Prior to commencement of each trial, the experimenter gave an
auditory “pre-start” cue (“Ready. . . ”) and started the trial with an
audible key press. The central fixation light appeared (which the
participant was required to fixate) for a short duration and was
then extinguished, followed by either the immediate appearance
of one of the targets (“no gap” condition) or a temporal gap
(200ms for the Studies 1 and 2, 160ms for Study 3) before the
appearance of a target (“gap” condition).

An infrared reflective marker was attached to the index finger
of the participant’s reaching hand, the position of which was
monitored with either a two-camera MacReflex motion analysis
system, recording at 60Hz (Studies 1 and 3) or an Optotrak
motion analysis system, recording at 200Hz (Study 2). The
camera positions were calibrated prior to each testing session.
Studies 1 and 2 required 200 trials, while Study 3 required 192
trials. Four (Study 1), six (Study 2), and eight (Study 3) different
targets were presented.

Results
We report Task (no gap, gap) × hand (right, left) × hemispace
(ipsilateral, contralateral) ANOVAs for RT in each study first, and
combine all in an omnibus analysis with all 67 participants. Mean
RTs as a function of this factor are depicted separately for each
study in Figure 5.

Study 1
Main effects of Task [F(1, 25) = 34.16, p < 0.001], Hand
[F(1, 25) = 15.24, p < 0.002] Hemispace [F(1, 25) = 56.72,
p < 0.001] are explained by quicker movement initiation by the
left hand (8ms), in gap trials (22ms), and in ipsilateral hemispace

FIGURE 5 | Mean RT as a function of condition (no gap, gap), hand and

hemispace. Our prediction was that left hand RT advantages would be

enhanced in gap conditions relative to no gap conditions. Significant hand

differences in no gap conditions were not modulated statistically by the

introduction of a fixation-target gap.
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(16ms). No higher order interactions involving hand and task
were obtained, in spite of a numerically larger hand difference
in gap (11ms) vs. no gap (6ms) conditions in the predicted
direction. These means and associated variance estimates are
illustrated in the top row of Figure 5. As in experiment 1 above,
we calculated the proportion of the sample who have numerically
smaller left hand RT: in no gap, 18/26 (0.69); in gap, 22/26 (0.85).

Study 2
The same three factor repeated measures ANOVA uncovered
significant effects of Task [F(1, 20) = 8.69, p < 0.009; gap
11ms quicker than no gap], Hand [F(1, 20) = 8.09, p < 0.02;
left hand quicker by 14ms] as well as Task by Hand [F(1, 20) =

9.73, p < 0.006] and Hand by Hemispace [F(1, 20) = 7.01,
p < 0.02] interactions. The three way interaction between Task,
Hand, and Hemispace was not significant [F(1, 20) = 0.14, N.S.]
The relevant means and variance estimates appear in the middle
row of Figure 5.

The Task by Hand interaction may be due to a significant drop
in RT in the right hand [15ms; t(20) = 3.26, p < 0.005] but not
in the left hand [2ms; t(20) = 1.16, N.S.] in gap relative to no gap
conditions (contrary to expectations). The Hand by Hemispace
interaction may be due to no significant hemispace effect for the
right hand [−1.1. ms; t(20) = −0.69, NS] while the left hand
was significantly quicker in ipsilateral space [12ms; t(20) = 2.91,
p < 0.01].

As in experiment 1 and study 1, we calculated the proportion
of the sample who have numerically smaller left hand RT in each
condition: in no gap, 17/21 (0.81); in gap, 16/21 (0.76).

Study 3
Main effects of Task [F(1, 19) = 94.12, p < 0.001], Hand
[F(1, 19) = 6.49, p < 0.03], Hemispace [F(1, 25) = 4.95, p < 0.04]
are explained by quicker initiation by the left hand (10ms), in
gap trials (26ms), and in ipsilateral hemispace (6ms). As in study
1, no higher order interactions involving hand and task were
obtained, in spite of a numerically larger hand difference in gap
(14ms) vs. no gap (8ms) conditions in the predicted direction.
These means and associated variance estimates are illustrated
in the bottom row of Figure 5. As above, we calculated the
proportion of the sample who have numerically smaller left hand
RT: in no gap, 13/20; in gap, 13/20 (both= 0.65).

In summary, the RT differences between the hands are small,
and for two of three studies 60Hz recordings have relatively
poor temporal resolution, at least on single trials (see General
Discussion). We thought that given the completely repeated
measures nature of all three studies, we could combine these
datasets.

Omnibus analysis
The typical main effects of Task (19ms; η2

p = 0.56), Hand (11ms;

η
2
p = 0.28), and Hemispace (9ms; η2

p = 0.38) are significant, as
in the individual experiments, but of most relevance here are the
two way interaction between Task and Hand [F(1, 66) = 0.007,
NS] and the three way interaction between Task, Hand, and
Hemispace [F(1, 66) = 0.748, NS]. These data suggest that adding

a gap between fixation offset and target onset do not have any
effects on the left hand RT advantage.

General Discussion

We report on three sets of studies where we attempted to increase
or decrease left hand advantages in RT for visually-guided aiming
movements. We used three different tasks to do so: two-target
bisecting (linked to right hemispheric specialization), target
uncertainty (as a proxy for visuo-spatial processing/localization)
and the gap effect (linked to both vigilance and visuospatial
orienting, both related to somewhat distinct but nevertheless
right hemispheric circuitry). Our results provide very little
evidence for any effect of these three manipulations on hand
differences in RT.

In experiment 1, we managed to obtain one of those relatively
rare aiming samples where left hand RT advantages were not
found, which limited the scope for clear attenuation of such
effects in bisecting. In experiment 2, quite reliable left hand RT
advantages were found in our second sample of right handers, but
these were little changed by increasing target number from 6 to 10
or decreasing target number from 6 to 2. In our final experiment,
across three separate studies with different participants, there
was little suggestion of increased hand differences in RT when
comparing gap to no gap conditions. In addition to main effects
and the hypothesized two way interaction between hand and task,
we looked for evidence if hemispace moderated any differences.
It didn’t.

Our tasks may not have been optimized for “pushing” a
right hemisphere lateralized mechanism for either attentional
processes or for visuospatial analysis. In the former case, in
all tasks participants waited (vigilantly we hope) for a single
target which appeared in a relatively restricted horizontal
meridian. Although in bisection two targets needed to be
processed, a limited number of such pairs (5), of identical
inter-target distances, may have allowed some participants to
identify the limited number of response points, or to plan
their movements relative to one of the two members of the
pair, etc. With current stimulus generation/display capabilities
there is no reason why bisection performance could not be
required with varying pair sizes and orientations in space,
which might tax any visuospatial mechanisms to a greater
extent than our relatively simple stimulus display (which was
designed for use with elderly participants; Goodale et al.,
1990).

We have rather little data, surprisingly, which let us predict
what aiming experiments left hand RT advantages are obtained
in, vs. those in which they are not. There are suggestions that
adding choice to RT experiments may typically elicit right hand
advantages, but to our knowledge this type of manipulation
hasn’t been varied systematically, at least in the hand difference
literature. Similarly, the importance of visually-guided reaching
for left hand RT advantage has yet to be decisively established,
relative to, simple RT in detection tasks, for example. One
group claim that the left hand RT advantage in the same
participants depends on actually making a reach to a target
(Mieschke et al., 2001), while another group claims that it
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does not (Barthélémy and Boulinguez, 2002). These studies
may be limited somewhat by their small number of targets
and/or participants. They also approach their data sets quite
differently in statistical terms. One of us is currently attempting
a replication of these experiments with a larger sample. Our
gap effect manipulation was designed as a first pass within this
domain, but was unsuccessful.

Given the failure to find a left hand RT advantage in the
pointing task of experiment 1, it could be useful to perform
power calculations for informing sample size requirement in
future tasks. In fact, such an estimate is difficult to calculate,
given that hand is a repeated measure in these designs and
the variance of the difference scores, as well as the correlation
between right and left hand RT, are needed for the calculations
(Dunlap et al., 1996; Morris and DeShon, 2002; Maxwell
et al., 2008). These measures are not provided in published
papers. In addition, we now prefer a point estimate/accuracy
approach to sample size planning, as advocated by Kline
(2005), Maxwell et al. (2008), and Cumming (2012). These
techniques avoid questions of how large an effect size exists
in the population. Instead, experimenters consider how large
confidence intervals could be before a particular sample would
become uninformative.

For these estimates of sample size for precision, we created
an estimate of standard deviation of hand RT differences from
the current five and an additional eight in-house studies, where
variance of the difference scores was known in each. Using the
techniques of Cumming (2012) we estimate that a sample size
of at least 17 people is required, on average, to ensure that a
95% confidence interval surrounding a left hand RT advantage
does not overlap with zero. To ensure that 99% of the time
the confidence interval would never overlap with zero (what
Cummings refers to as the “with assurance” calculation), a sample
size of 28 is required (see Supplementary Materials for additional
information and a figure depicting estimated CI size and sample
size).

We have to acknowledge that the left hand RT advantage may
not depend on its’ privileged connections to the right hemisphere.
In fact, it is equivalently parsimonious to consider the typical
difference as an increase in right hand RT; it may be related to
superior motor control capacity of the left hemisphere in most
conventionally dominant dextrals, or may even be related to
many years’ experience of skilled sensorimotor activity related
to drawing and writing with the preferred hand. Of course
such experience might manifest itself in specialized networks
of the left hemisphere, but these may depend on practice and
experience. In any case, the suggestion that the hand difference
is not related to innate processing pre-dispositions of the left or
right cerebral hemisphere, is a testable one: quantify the same
dependent measures in left-handed participants. Although most
left handed people, like their right handed counterparts, are left
hemisphere dominant for speech and language, the proportion
is smaller in this group (roughly 70 vs. 95% in right handers;
Rasmussen and Milner, 1977). If directional behavioral results
(e.g., hand differences, ear advantages in dichotic listening, or
visual field biases) depend on hemispheric asymmetry, they will
mimic the direction of difference in dextrals (left hand RT <

right hand RT; right ear syllable score greater than left ear syllable
score, etc.). Themagnitude of the effect, however, will be reduced.
This reduction would follow a small proportion of the adextral
group having bilateral or reversed cerebral dominance (Carey
and Johnstone, 2014)2.

We hesitate at this stage to avoid the ubiquitous but often
trite suggestion that “further research is needed.” The more
interesting question is what kind of research is needed (or
if any indeed is required—this effect, when obtained is quite
small; approximately 7ms on average, based on 13 separate hand
difference studies in our laboratory.

First, we would suggest that any sort of speed-accuracy
trade off in the left hand relative to the right be systematically
eliminated as a major factor in left hand RT advantages (such a
suggestion has been made in the reciprocal tapping literature, for
example; see Carson, 1992, for review). We already know that if
there is such a trade-off, it would have to do with pre-movement
processing, as the dominant hand of the right hander is faster
and more accurate, once it is off the mark. Our accuracy data of
experiment 1 (see Supplementary Materials) suggest that this is
unlikely, but perhaps this hypothesis needs to be eliminatedmore
systematically, within subject, on a trial by trial basis. In fact, in
hand-visible reaching, accuracy differences tend to be quite small,
and are often restricted to increased variability in the left hand of
the right hander (e.g., Roy and Elliott, 1989; Carson et al., 1990).
Often we don’t bother to measure it, and restrict our analysis
instead to speed-related dependent measures. In any case, we
certainly see little evidence for speed accuracy trade-offs across
participants, in experiment 1 or in other experiments we have
performed.

Another approach to addressing mechanisms accounting for
left hand RT advantages might consider the distributions of left
and right handed movement RTs in participants who show these
effects robustly, and then characterize them in much more detail
than the usual mean/ANOVA approach that many scientists in
this domain have favored. For example, are the distributions
shifted by approximately 8–10ms, or is there a small population
of very fast left-handed movements, roughly analogous to
“express saccades” seem in the saccadic gap literature (e.g.,
Wenban-Smith and Findlay, 1991)?

Carson (1996) has suggested that the spatial demands
of reaching may be relatively impervious to these types of
manipulations of the stimulus, suggested by several experiments
by him and his colleagues which fail to affect the left hand RT
advantage (as well as the three experiments reported here). His
later comments on left RT advantages introduced the idea of
“spatial parametrization,” integrating information about parts of
the body in a feedforward manner for comparison to elements
of the environment (Carson et al., 1995; Carson, 1996). The idea
seems similar to the literature on the coordinate transformations
required to get from a retinal representation of target position
to a hand- or arm-centered scheme (reviewed in Carey, 2004;

2Remarkably little is known, in adextrals, about asymmetries that tend to favor

the right hemisphere in dextrals, beyond face processing (although see Elias and

Bryden, 1998. A second paper on prosody has a promising title suggesting a

comparison of left and right handers. Sadly it has a sample size of two in each

group: Perry et al., 2001).
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Crawford et al., 2011). More details on this sort of idea are
probably necessary to generate testable hypotheses for reaching
experiments. The literature on coordinate transformations has
grown considerably since the 1990s, but it is not obvious to
us how some of these computations would map neatly onto
ideas about the right hemisphere. In fact, different scientists
have argued, based on quite distinct sensorimotor tasks, that
feedforward (e.g., Meyer et al., 1988; Adam et al., 2010) or
feedback processes (e.g., Roy et al., 1994) favor left hemisphere-
right hand sensorimotor control.

The “face validity” of linking left hand RT advantages to
some sort of right hemispheric process still has some appeal. If
these hand differences (RT, accuracy, peak velocity, duration)
are related to relatively innate cerebral specializations, then
predictions can be made about the same dependent measures
when assessed in visually-guided reaching movements of left
handers. In other words, if these effects are strongly related
to cerebral asymmetries, then many left handers (roughly 70%
are left hemisphere dominant for speech and language) should
behave like right handers, literally (left hand RT advantages, right
hand duration and peak velocity advantages, etc.). There is some
evidence for this state of affairs (Boulinguez et al., 2001a,b) or at

least for weakened (but not reversed) asymmetries in a group of
left handers (Goodale, 1990). The discrepancies may be partially
resolved by a more detailed description of both the depth and
breadth of hand preferences in both right and left handers, as
well as consideration of the proportions of individuals in each
group which show any directional effect (Carey and Johnstone,
2014).
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