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Persons suffering from anxiety disorders display facilitated processing of arousing and
negative stimuli, such as negative words. This memory bias is reflected in better
recall and increased amygdala activity in response to such stimuli. However, individual
learning histories were not considered in most studies, a concern that we meet here.
Thirty-four female persons (half with high-, half with low trait anxiety) participated in
a criterion-based associative word-learning paradigm, in which neutral pseudowords
were paired with aversive or neutral pictures, which should lead to a valence change
for the negatively paired pseudowords. After learning, pseudowords were tested with
fMRI to investigate differential brain activation of the amygdala evoked by the newly
acquired valence. Explicit and implicit memory was assessed directly after training and in
three follow-ups at 4-day intervals. The behavioral results demonstrate that associative
word-learning leads to an explicit (but no implicit) memory bias for negatively linked
pseudowords, relative to neutral ones, which confirms earlier studies. Bilateral amygdala
activation underlines the behavioral effect: Higher trait anxiety is correlated with stronger
amygdala activation for negatively linked pseudowords than for neutrally linked ones.
Most interestingly, this effect is also present for negatively paired pseudowords that
participants could not remember well. Moreover, neutrally paired pseudowords evoked
higher amygdala reactivity than completely novel ones in highly anxious persons, which
can be taken as evidence for generalization. These findings demonstrate that few word-
learning trials generate a memory bias for emotional stimuli, indexed both behaviorally
and neurophysiologically. Importantly, the typical memory bias for emotional stimuli and
the generalization to neutral ones is larger in high anxious persons.
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Introduction

Emotionally arousing situations and stimuli are processed
preferentially. This has been shown by a vast body of studies,
with methods ranging from simple behavioral measures to state-
of-the-art imaging techniques (e.g., Junghöfer et al., 2001; Koster
et al., 2006; Laeger et al., 2012; Eden et al., 2014; Weierich and
Treat, 2015; for a meta-analysis, see Bar-Haim et al., 2007; for
a review, see Cisler and Koster, 2010). Preferential processing
leads to a memory bias, apparent in enhanced memory for
emotional as compared to neutral stimuli. This has been shown
for many stimulus types, such as pictures (Bradley et al., 1992;
Schupp et al., 2004a; Touryan et al., 2007; Yegiyan and Yonelinas,
2011), faces (Schupp et al., 2004b), scenes (Heuer and Reisberg,
1990), gestures (Flaisch et al., 2011), and words (Kissler et al.,
2007, 2009; Herbert et al., 2008; Scott et al., 2009; Laeger et al.,
2012; Keuper et al., 2013, 2014; Eden et al., 2014). The memory
bias, especially for stimuli that are negative and arousing, seems
more prominent in persons suffering from an anxiety disorder
(Calvo et al., 1994; Friedman et al., 2000; Dalgleish et al.,
2003; Eysenck et al., 2007) or from a subclinically anxious
personality (Norton et al., 1988; McCabe, 1999; Russo et al.,
2006; Mühlberger et al., 2009; Eden et al., 2014). The latter
group exhibits high levels of trait anxiety, does not meet the
criteria for an anxiety disorder, but is prone to develop one
(e.g., McCabe, 1999; Russo et al., 2006; Mitte, 2008; Waldhauser
et al., 2011). Increased preferential processing of negative stimuli,
difficult disengagement from such stimuli, attentional avoidance,
and their underlying mechanisms explain part of the anxiety
disorders’ etiology (e.g., Eden et al., 2015; for a review, see Cisler
and Koster, 2010). Thus, for a better understanding of this large
group of disorders, and for the improvement of therapeutic
treatments, it is crucial to understand the mechanisms that
underlie the acquisition and processing of arousing-negative
stimuli. To this aim, we compare persons with high and low
(subclinical) anxiety in an associative learning paradigm, using
behavioral and neuroimaging measures.

Learning and memory have explicit and implicit components
that are indexed by different measures and methods. Explicit
memory involves conscious recollection of previous experience
and information (semantic, episodic, and autobiographic).
Memory is typically measured by explicit recall or recognition of
learned material. In contrast, memory access remains unaware
in implicit memory, as is the case for procedural information
used in tie-knotting or bike-riding. Implicit memory reveals
itself through priming, measured in tasks such as word-fragment
completion (e.g., Eysenck and Byrne, 1994), or valence judgment
of recently acquired words – when explicit knowledge about
their meaning is absent. Implicit and explicit memories differ,
and have different neurobiological correlates (e.g., Starr and
Phillips, 1970; Cohen and Squire, 1980; Nissen and Bullemer,
1987; Gabrieli et al., 1995; Rugg et al., 1998). The memory
bias for emotional stimuli is more reliable in explicit than in
implicit measures (Eysenck and Byrne, 1994; Russo et al., 2006;
for a review, see Mitte, 2008). Mitte (2008) showed that (trait)
anxiety has an impact on explicit measures such as recall, but
not on recognition. The existence of an implicit memory bias

for emotional information is still under debate. While some
provide support for its existence (e.g., Williams et al., 1988, 1996,
1997; Eysenck and Byrne, 1994), others could not replicate their
findings (McCabe, 1999; Russo et al., 1999). Our results might
contribute to this controversy.

The memory bias can be detected with neuroimaging
measures such as functional magnetic resonance imaging (fMRI),
which is sensitive enough to even reveal emotional responses to
items that cannot be recalled explicitly (Dannlowski et al., 2007b).
As neural correlates of emotion processing many fMRI studies
have focused on limbic structures, particularly the amygdalae
(e.g., Davis and Whalen, 2001; Phelps and LeDoux, 2005). It has
been repeatedly demonstrated that the amygdala is hyperactive
in response to threatening and negative emotional stimuli. This
hyperactivity is evident for faces (e.g., Birbaumer et al., 1998;
Sheline et al., 2001; Phan et al., 2006; Dannlowski et al., 2007a,b;
Evans et al., 2008; Hall et al., 2014), scenes (e.g., Kryklywy et al.,
2013; Frank and Sabatinelli, 2014; Radua et al., 2014), and words
(e.g., Isenberg et al., 1999; Strange et al., 2000; Tabert et al., 2001;
Hamann and Mao, 2002; Cunningham et al., 2004; Herbert et al.,
2011; Kanske and Kotz, 2011; Straube et al., 2011; Laeger et al.,
2012; Hoffmann et al., 2015), and is assumed to explain part of
the pathogenesis and the maintenance of anxiety (disorders; e.g.,
Etkin and Wager, 2007; Etkin et al., 2010; Shin and Liberzon,
2010; Xu et al., 2013; Binelli et al., 2014; but see Dresler et al.,
2013 for an alternative view). Given the ongoing debate about the
neurobiological basis of (trait) anxiety, it is crucial to incorporate
imaging measurements into the study design, especially when
stimuli are presented below threshold, or trained in a shallow
learning paradigm that does not guarantee robust explicit access.
The latter is the case in our study, in which persons with high
or low levels of anxiety should learn to associate meaning to
pseudowords with only few learning instances. Pseudowords
were either paired with neutral or with emotionally negative
content, and tested with explicit as well as implicit memory
measures. We investigated the memory bias for novel emotional
(and neutral) words in persons with subclinically high and
low trait anxiety. A criterion-based approach during learning
allowed for distinguishing between novel words whose meaning
could be accessed explicitly, and words that were learned less
well.

Despite the many studies on emotion, our approach allows
to address some important issues. First, we investigate memory
bias for neutral stimuli that gain their emotional connotation
via associative learning (similarly as in Eden et al., 2014).
These stimuli possess no specific innate or learned valence
(in contrast to a picture of an attacking tiger, or of a
weapon). With meaningless and association-free pseudowords,
we aim at better control of the individual learning histories
and the depth of encoding. Second, we use explicit and
implicit memory measures to represent these differing aspects of
memory. Third, we applied a criterion-based learning approach,
ensuring that participants learned the same amount of word-
picture pairs, and were presented with equal sets of explicitly
learned and less well-learned items in the fMRI measurement,
independent of their learning history. Fourth, we included an
fMRI measurement into our design to analyze the amygdala’s
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response to the newly acquired and to completely novel
pseudowords.

In the following, we describe the rationale and the background
of our learning design in more detail. With a statistical learning
paradigm (e.g., Saffran et al., 1996; Breitenstein and Knecht, 2002;
Saffran, 2002; Breitenstein et al., 2007; Cunillera et al., 2010;
Eden et al., 2014; Laeger et al., 2014a), neutral pseudowords
were paired with either arousing-negative or neutral pictures.
This paradigm implements an increased conjoint probability
of two events (“correct pairings”) throughout the training,
compared to two events with a random contingency (“incorrect
pairings”). Participants extract relevant information without
receiving feedback and without knowing the underlying learning
principle – a shallow type of learning. By repeated presentation
of stimulus combinations, highly robust long-term learning is
possible. The more repetitions, the stronger the associations
between the stimuli, which results in a typical learning curve.
Hebbian cell assemblies probably provide the neural bases of
these processes (Pulvermüller, 1999). The paradigm has some
ecological validity and can be taken as a model for language
acquisition in children and adults (Dobel et al., 2009, 2010). It also
allows the investigation of explicit and implicit effects of shallow
learning (as investigated similarly in our prior study, Eden et al.,
2014).

Two groups of participants, one high and one low in trait
anxiety, were tested. Various measurements were used to evaluate
and analyze potentially biased memories: a valence rating, a
cued-recall test and an fMRI assessment. The behavioral tests
were presented directly after, 4, 8, and 12 days after learning, to
assess effects of consolidation and forgetting. The valence rating
entailed a spontaneous evaluation of the pseudowords’ (gained)
valence. Valence ratings do not require explicit memory and can
thus tap into implicit memory, indexing the valence transferred
from pictures to formerly neutral pseudowords. We chose the
valence rating because it has been effectively applied after only
a few learning instances, when explicit measures are not yet
sensitive to learning (e.g., Steinberg et al., 2012; Eden et al.,
2014). The cued-recall test measured explicit knowledge about
the acquired meaning of the pseudowords. It is comparable to a
vocabulary test.

In Eden et al. (2014), we used a very similar design to
investigate learning of emotional words in persons with high
anxiety. We obtained very little evidence for a memory bias
during learning, but explicit and implicit measures revealed a
bias after learning. High-anxious persons displayed a stronger
memory bias than low-anxious individuals. In fact, they even
judged neutrally paired words as negative when their meaning
could not explicitly be recalled. We took this effect as evidence
for generalization (Eden et al., 2014). Given these findings and
the current literature, we expected for the current study enhanced
memory effects (i.e., memory bias) for aversive stimulus material
immediately after learning and a stabilization of this effect
after a time delay allowing consolidation. In line with Mitte
(2008), we predicted a stronger bias in explicit cued-recall
and fMRI measurements than in (implicit) valence ratings.
We also expected a more pronounced bias in high-anxious
individuals, who should also show a generalization effect, with

increased emotional valence for neutrally paired pseudowords
after training. We included completely novel pseudowords for
particular fMRI contrasts (see below).

In sum, we instantiated shallow learning via the combination
of pseudowords with arousing-negative or neutral picture
content, which should nevertheless lead to a memory bias.
Next to behavioral effects we focused on neurophysiological
consequences of learning, as indexed by amygdalar activity. For
this, we contrasted the following conditions:

(a) Explicitly learned pseudowords vs. novel pseudowords
(contrast 1); less well-learned pseudowords vs. novel
pseudowords (contrast 2). These comparisons inform about
general learning effects for newword forms, even if they were
not learned well explicitly.

(b) Arousing pseudowords vs. neutral pseudowords (contrast 3).
This contrast displays word-affect effects.

(c) Explicitly learned arousing pseudowords vs. less well-
learned arousing pseudowords (contrast 4). This comparison
informs about similarities or differences between explicitly
learned vs. less well-learned emotionally arousing-negative
stimuli.

(d) Less well-learned arousing-negative pseudowords vs.
less well-learned neutral pseudowords (contrast 5); less
well-learned neutral pseudowords vs. novel pseudowords
(contrast 6). Less well-learned arousing-negative vs. novel
pseudowords (contrast 7). These contrasts investigate effects
of word-affect when words are not learned and remembered
well.

(e) Neutral pseudowords vs. novel pseudowords (contrast
8), to assess generalization effects reported earlier (Eden
et al., 2014). This contrast tested additionally whether
pseudowords paired with neutral meaning evoke higher
activity than completely novel pseudowords.

In a second step, we tested whether effects are mediated by
trait anxiety. This was done by entering trait anxiety as covariate.

Materials and Methods

Ethics Statement
All procedures were cleared by the ethical review board of
the Ärztekammer Westfalen-Lippe and subjects gave informed
consent to participate. All clinical investigation was conducted
according to the principles of the Declaration of Helsinki.

Participants
The Spielberger State Trait Anxiety Inventory (Spielberger et al.,
1983) was completed via online survey by 310 non-clinical
participants. On the basis of individual scores, 17 participants
scoring thirty or below in the trait-anxiety inventory (range:
20–80) were assigned to the low-anxiety group (mean trait
score = 27.76, SD = 4.15; mean age 26.53, SD = 6.21).
Another 17 subjects scoring fifty or above were assigned to
the high-anxiety group (mean trait score = 57.18, SD = 4.33;
mean age 26.12, SD = 5.60). Both groups consisted of only
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females that were matched for age and years of schooling.
All participants were native speakers of German, right-handed
(as assessed by the Edinburgh Handedness Inventory, Oldfield,
1971) and exhibited no current axis I disorders, as diagnosed
by the Mini-International Neuropsychiatric Interview (M.I.N.I.,
Sheehan et al., 1998). None took part in our earlier study (Eden
et al., 2014).

Materials
Forty-four pseudowords (e.g., “muxo,” “alep”) served as learning
materials, presented visually during learning and testing.
(Stimulus material and result files are available from the
corresponding author). All pseudowords were disyllabic and
phonotactically legal (in German). They were taken from
Breitenstein and Knecht (2002; Breitenstein et al., 2007), who
tested the stimuli for emotional neutrality and low similarity
to existing German words. The selected 44 pseudowords were
randomly assigned to 44 pictures depicting concrete objects. Half
displayed neutral objects such as a bucket or a chair, and the
other half showed arousing-negative objects such as a gun or
a shark. Pictures were color photos taken from Hemera Photo
Objects, Wikipedia Commons1 and the International Affective
Picture System (Lang et al., 1999). Some pictures were cropped
to ensure that only one object was visible and positioned in the
center. (See Appendix in Supplementary Material for a list of all
pseudowords and matched concepts. The picture material can be
requested from the author).

A pre-test assessed neutral or arousing-negative appraisal of
the pictures. Thirty participants (psychology students from the
University of Münster) were presented with 100 pictures (50
subjectively judged to be negative and arousing, 50 subjectively
judged neutral, non-arousing). Subjects rated valence and
arousal of all pictures via Self-Assessment Manikin (SAM)-scales
(Bradley and Lang, 1994), ranging from one (very pleasant
or low arousal) to nine (very unpleasant or high arousal).
The 22 most negatively rated pictures (valence: Mean = 7.85,
SD= 0.30; arousal: Mean= 5.77, SD= 0.38) differed significantly
from the 22 most neutrally rated (valence: Mean = 4.76,
SD = 0.21; arousal: Mean = 1.90, SD = 0.21) pictures [valence:
t(42) = 38.908, p < 0.001; arousal: t(42) = 42.149, p < 0.001].
These 44 pictures served as materials in the experiment.
According to the German version of CELEX-Database (Baayen
et al., 1995), the frequency of object names did not differ
between arousing-negative and neutral concepts, t(42) = –0.032,
p = 0.975. Participants who performed the pre-test rating did not
take part in the main experiment.

Design and Procedure, Analysis
During training, the subject’s task was to decide intuitively
by button-press whether a visually presented pseudoword and
object (color picture) matched. Training stopped as soon as
the participant reached criterion, that is, a predefined level
of knowledge concerning the pseudoword-picture associations
(this allowed for a balanced block-procedure in the fMRI-
task; see below). Participants were not informed about the

1http://commons.wikimedia.org

upcoming recall and valence tests and received no feedback
on their responses during training. The training consisted
of at least six learning passes. During each learning pass,
participants were confronted with one matching “correct” and
one mismatching “incorrect” pseudoword-picture pair, separated
by at least one other pair. Hence, after learning pass eight,
for instance, participants had heard each pseudoword sixteen
times, eight times paired correctly (the same pseudoword-
object combination) and eight times paired incorrectly (the
pseudoword paired with eight different other objects). Note that
all pseudowords used in “incorrect” pairings were “correctly”
paired with other pictures. Thus, all presented pseudowords
could be associated with meaning, and all pseudowords and
pictures appeared equally often. There were 88 pseudoword-
picture pairs per learning pass (22 correct arousing-negative,
22 correct neutral, 22 incorrect arousing-negative, 22 incorrect
neutral).

The training aborted when 11 arousing-negative and 11
neutral pseudoword-picture pairs were accurately identified (hit
or correct rejection) for eight times. Training continued until
this criterion was reached. The criterion approach ensured equal
learning for all participants. Participants were confronted with
8.26 (range: 7–12) learning passes on average. The choice for 11
pairs per valence condition and eight correct answers ensured
that enough pairings were learned well enough to be detectable in
explicit/implicit behavioral and imaging measures. On the other
hand, we wanted to avoid a ceiling effect, to be able to investigate
pseudowords whose meaning was not learned to criterion. Thus,
the total number of trials was not fixed and depended on the
learners’ pace of learning. Left/right assignment of “correct”
and “incorrect” answers to reponse buttons was counterbalanced
across participants. All participants finished within an hour
(44 min on average). Presentation font size was 48, on a 15′
monitor. All stimuli were presented centered, in white against a
black background. All trials began with a fixation cross (500 ms),
followed by a pseudoword (1000 ms). Another fixation cross
(300 ms) and a picture (1000 ms) followed. Afer 3000 ms, a red
exclamation mark ended the trial, providing sufficient time for
the subjects to decide whether pseudoword and pictured object
matched. If no answer was given, the next trial was initiated. If
a button was pressed within the 3000 ms interval, the next trial
began immediately. The training and the fMRI-paradigm for this
study (described below) were programmed with Presentation R©

Software2 (Version 12.1, Neurobehavioral Systems, Inc., Albany,
CA, USA).

Explicit knowledge of all picture-pseudoword pairings was
assessed via cued-recall. Subjects were presented with the
pseudowords in written format (cues) and were asked to
write down the corresponding German word (comparable with
a translation or vocabulary test). The cued-recall test was
administered four times: directly after, 4 days after, 8 days
after, and 12 days after learning. A pseudoword-valence rating
assessed the transfer of valence from objects to pseudowords.
Subjects were asked to spontaneously and intuitively rate the
pseudowords in terms of valence, on a scale ranging from

2www.neurobs.com
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minus five (very negative) to five (very positive), with zero
marked as neutral. The valence rating was administered five
times: directly before, directly after, 4 days after, 8 days after,
and 12 days after learning. Note that the last three cued-recall
tests and the last three valence ratings were carried out online3,
while all assessments on the first day took place in the Institute
for Biomagnetism and Biosignalanalysis (Faculty of Medicine,
University ofMünster). Participants received written instructions
but were not informed that their memory for the pseudowords
would be tested.

The fMRI measurement took place in the Department of
Clinical Radiology (Faculty of Medicine, University of Münster)
2 days after the training, allowing for memory consolidation
through sleep (Payne and Kensinger, 2010, 2011; Bennion
et al., 2013). The fMRI measurement used a block design,
with six blocks, crossing valence (arousing-negative, neutral)
with learning achievement (explicitly learned, less well-learned)
and two additional blocks with completely novel pseudowords.
Since learning outcome varied between participants (i.e., which
picture-word pairs a participant had learned), the respective
blocks were individually arranged for every participant. For this
purpose, the pseudowords were divided into the eleven best,
i.e., “explicitly learned” and the eleven remaining “less well-
learned” pseudowords, individually for each valence condition.
This was done on the basis of each participant’s results from the
cued-recall test directly after training. The novel pseudowords,
taken from the corpus of Breitenstein and Knecht (2002),
had not been used during training. Each block constisted of
11 pseudowords. The presentation format was the same as
during training. Each pseudoword was presented for 950 ms,
with a fixed interstimulus interval of 150 ms. The six blocks
(explicitly learned arousing-negative pseudowords, explicitly
learned neutral pseudowords, less well-learned arousing-negative
pseudowords, less well-learned neutral pseudowords, and two
blocks of novel pseudowords) were presented in a pseudo-
randomized order, to control for sequence effects. A 12500 ms
resting phase (white fixation cross centered on a black
screen) followed each block. Each block was presented twice,
resulting in 26 instances in each learning condition, and 52
instances of novel pseudowords. In all, the paradigm took
approximately 9 min. The stimuli were projected onto a
screen at the rear end of the MR tunnel, using a beamer
shielded against RF interference. Participants were instructed
to read the words attentively. No further instruction was
given.

Image Acquisition
Magnetic resonance imaging scanning was performed on
a 3 T whole-body scanner (Gyroscan Intera T3.0, Philips
Medical Systems, Best, Netherlands) equipped with Quasar Dual
gradients (nominal gradient strength in the setting used for
fMRI 40 mT/m, maximal slew rate 200 mT/m/ms). For spin
excitation and resonance signal acquisition, a circularly polarized
transmit/receive birdcage head coil with an HF reflecting screen
at the cranial end was used. T2∗ functional data were acquired

3http://www.limesurvey.org/

using a single-shot echo planar (EPI) sequence (whole brain
coverage, TE = 30 ms, TR = 2.5 s, FA = 90◦, slice thickness
3.6 mm, interleaved acquisition order, no gap, matrix 64 × 64,
FOV 230 mm, in-plane resolution 3.6 mm × 3.6 mm). The
40 transversal slices were tilted 25◦ from the AC/PC line in
order to minimize drop out artifacts in the orbitofrontal and
mediotemporal region.

Cued-Recall Analyses
Answers in the cued-recall test (translation of pseudowords
into German) were treated as correct if they described the
intended object (e.g., sofa), were synonyms (e.g., couch), or
subordinate-category responses that were correct descriptions
of the depicted object (e.g., chesterfield). Responses were
regarded incorrect if they described the superordinate category
(e.g., furniture), semantically related objects (e.g., armchair),
or unrelated objects (e.g., scissors). Incorrect answers and
misses (no answer given) were excluded from further analyses.
Means of correctly translated pseudowords were subjected
to an ANOVA with the additional factor session, with four
levels (immediately after, 4, 8, and 12 days after). This
resulted in a 2 (pseudoword affect: arousing-negative versus
neutral) × 4 (session) × 2 (trait anxiety: high versus low) mixed
within/between design.

Valence-Rating Analyses
The factor session had five levels in the analysis of pseudoword
valence ratings: before, immediately after, 4, 8, and 12 days
after training. Mean valence ratings were calculated for
arousing-negatively and neutrally linked pseudowords. With a
2 (pseudoword affect) × 5 (session) × 2 (trait anxiety) mixed
within/between design, the development of valence ratings was
investigated over time.

Image Analysis
The imaging data were analyzed with the Statistical Parametric
Mapping software4 (SPM8, Wellcome Department of
Cognitive Neurology, London, UK) implemented in Matlab
(Mathworks Inc., Natick, MA, USA). Preprocessing included
unwarping, realignment and normalization to the standard
MNI space (Montreal Neurological Institute). Smoothing
was conducted with an isotropic three-dimensional Gaussian
filter with a Gaussian kernel of 6 mm full width at half
maximum (FWHM). Afterward, on the first level, we
applied a general linear model to the data (modeled with
the canonical hemodynamic response function). The conditions
were: explicitly learned arousing-negative, explicitly learned
neutral, less well-learned arousing-negative, less well-learned
neutral, and novel. The eight contrasts of interest were:
(1) Explicitly learned pseudowords vs. novel pseudowords,
(2) Less well-learned pseudowords vs. novel pseudowords, (3)
Arousing-negative pseudowords vs. neutral pseudowords, (4)
Explicitly learned arousing-negative pseudowords vs. less well-
learned arousing-negative pseudowords, (5) Less well-learned
arousing-negative pseudowords vs. less well-learned neutral

4www.fil.ion.ucl.ac.uk/spm
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pseudowords, (6) Less well-learned neutral pseudowords vs.
novel pseudowords, (7) Less well-learned arousing-negative
pseudowords vs. novel pseudowords. (8). Neutral pseudowords
vs. novel pseudowords. These contrasts were also analyzed in a
second analysis, taking into account the individual trait anxiety
score as a covariate (regression analysis). Please note that due to
the criterion-based design and the differentiation into explicitly
learned and less well-learned words, there are to the best of our
knowledge no (fMRI) studies with a comparable orientation.
Thus, the contrasts investigating such differences (i.e., contrasts
2, 5, and 6) are more exploratory in nature.

To control for multiple testing on the second level (group)
random-effects analysis, all group results were calculated using
a combined height and extent threshold based on Monte–Carlo
simulations, as implemented in the AlphaSim program (Forman
et al., 1995). Based on this technique, we maintained a corrected
false-positive detection rate for the amygdala, our region of
interest (ROI) analysis, at p < 0.05, with a cluster extent (k)
empirically determined by computing 1000 simulations (yielding
k = 45 for the bilateral amygdala).

According to our hypotheses, ROI analyses of the bilateral
amygdala were performed for all contrasts by one-sample t-tests,
including all individual contrast maps of the first level. For this
purpose, a mask for the bilateral amygdala was created with the
aid of the WFU PickAtlas (Maldjian et al., 2003) implemented
in the SPM-software. The defined mask was dilated (according
to the AAL Atlas (Tzourio-Mazoyer et al., 2002) by 1 mm in
radius. The regression analysis tested our a priori hypothesis
concerning the relation between amygdala activity and degree of

trait anxiety in the contrasts defined above. Voxelwise tests inside
the ROI were performed and activity within the amygdalae was
correlated with STAI-T (trait anxiety) scores separately for each
subject.

Results

Cued-Recall
Figure 1 displays the recall rates (correct translation)
immediately after, 4, 8, and 12 days after training, for
both participant groups and pseudoword affects. Note that
performance is displayed in percentage correct, while statistical
analyses were done on absolute values (maximum = 44). As
expected, the brief and shallow training yielded moderate recall
results. These were highest in the first session immediately
after training (about 25% correct translations), decreased to
around 15% correct translations by the second session 4 days
later, but remained stable in session three and four (8 and
12 days after learning). The main effect of session was significant:
F(3,96) = 50.655; p < 0.001, and is best explained by a linear
effect: F(1,32) = 56.493; p < 0.001. Overall, pseudowords linked
with arousing-negative pictures were recalled significantly better
than neutrally linked ones, which is reflected in a main effect for
pseudoword affect, F(1,32) = 4.347; p = 0.045. The three-way
interaction between pseudoword affect, session, and trait anxiety
also reached significance F(3,96) = 6.523; p = 0.013.

Additional ANOVAS (word affect × session), separately
for each group, further investigated this interaction. The

FIGURE 1 | Percentage of correct responses in the cued-recall test, for four sessions (1 = immediately, 2 = 4 days, 3 = 8 days, and 4 = 12 days after
training), for high-anxiety (Upper) and low-anxiety (Lower) participants. Pseudowords paired with arousing-negative content are presented in gray bars;
neutrally linked pseudowords in dashed bars. Error bars represents 1 SE.
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data of the low-anxious group showed a main effect of
session F(3,48) = 22.690; p < 0.001, and the interaction
pseudoword affect × session, F(3,48) = 8.843; p = 0.005. The
main effect of pseudoword affect did not reach significance
F(1,16) = 1.652; p = 0.217. Post hoc t-tests calculated to assess
the interaction yielded a significant difference between arousing-
negative (Mean = 11.06, SD = 5.910) and neutral pseudowords
(Mean = 9.29, SD = 5.565) at session one [t(16) = 2.624;
p = 0.018]. No other session showed such a difference (all
p > 1.444). The data for the high-anxious group also yielded
a main effect of session: F(3,48) = 28.448, p < 0.001. No
other main effects or interactions reached significance [word
affect: F(1,16) = 2.698; p = 0.120 and word affect × session:
F(3,48) = 0.255; p = 0.857].

Pseudoword Valence Rating
Figure 2 displays the mean valence ratings separately for
participant groups and pseudoword affect, in all five sessions.
The ANOVA with session, pseudoword affect, and trait anxiety
yielded no main effect of pseudoword affect, F(1,32) = 1.872;
p = 0.506. The rating behavior toward a more negative rating
changed significantly over time, indicated by a main effect of
session F(4,128) = 10.335; p < 0.001, best described as a linear
trend, F(1,32) = 7,823; p = 0.009. Although the means suggest
a difference between negative and neutral pseudowords for the
high-anxiety group, no other main effects or interactions reached
significance. (Note: An ANOVA on the same valence data where
ratings of the first session were subtracted from ratings given
at the second and third session (baseline correction), yielded
qualitatively the same results.)

fMRI Results
Region of Interest Analysis Regarding Amygdala
Responsiveness to Pseudowords
With contrasts one and two, we investigated a general learning
effect. As expected, in contrast 1, explicit pseudowords elicited
more amygdala activity than novel pseudowords, bilaterally
x = 31, y = −10, z = −14, t(33) = 2.26, k = 56 voxels,
p = 0.015 corrected. Contrast 2 was not significant, showing
similar amygdala activity for less well-learned pseudowords and
novel pseudowords. Contrast 3 tested for effects of pseudoword
affect, independent of learning success. As expected, arousing-
negative pseudowords elicited more amygdala activity than
neutrally linked pseudowords x = −22, y = −8, z = −9,
t(33) = 3.19, k = 108, p = 0.002 corrected. Contrast 4
tested for effects of explicit learning. There was no difference
in amygdala activity between explicitly learned and less well-
learned arousing-negative pseudowords. With contrasts five
to seven, effects of acquired affect were investigated for
pseudowords that are not well learned or remembered. As
expected (and in line with contrast 3), contrast 5 showed
that arousing-negative pseudowords elicited more bilateral
amygdala reactivity than neutral pseudowords x = −30,
y = 4, z = −14, t(33) = 2.45, k = 71, p = 0.010.
However, contrast 6 (less well-learned neutral pseudowords vs.
novel words), contrast 7 (less well-learned arousing-negative
pseudowords vs. novel pseudowords) and contrast 8 (neutral
pseudowords vs. novel pseudowords) did not yield significant
results. (See Table 1 for a clear arrangement of all results
above).

FIGURE 2 | Mean valence ratings for five sessions (0 = before training, 1 = immediately, 2 = 4 days, 3 = 8 days, and 4 = 12 days after training), and
for high-anxiety (Upper) and low-anxiety (Lower) participants. Pseudowords paired with arousing-negative content are presented in gray bars; neutrally linked
pseudowords in dashed bars. Error bars represents 1 SE.
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TABLE 1 | Region of interest analysis regarding amygdala responsiveness to pseudowords.

Contrast T MNI-coordinates Cluster (k) p

x y z

1 Explicitly learned pseudowords vs.
novel pseudowords

2.26 31 −10 −14 56 0.015

2 Less well-learned pseudowords vs.
novel pseudowords

− − − − No significant clusters –

3 Arousing-negative pseudowords vs.
neutral pseudowords

3.19 −22 −8 −9 108 0.002

4 Explicitly learned arousing-negative
pseudowords vs. less well-learned
arousing-negative pseudowords

− − − − No significant clusters –

5 Less well-learned arousing-negative
pseudowords vs. less well-learned
neutral pseudowords

2.45 −30 4 −14 71 0.010

6 Less well-learned neutral words vs.
novel words

− − − − No significant clusters −

7 Less well-learned arousing-negative vs.
novel words

− − − − No significant clusters −

8 Neutral words vs. novel words 2.43 38 4 −23 8 (cluster below AlphaSim
correction level)

0.010

Conducted at p < 0.05, uncorrected (corrected at p < 0.05 on the cluster level using the AlphaSim procedure, which resulted in an empirically determined cluster-extent
threshold of k = 45 voxels). Coordinates are given in MNI space.

Trait Anxiety as Covariate
The ROI-analysis of the bilateral amygdala with trait anxiety
as covariate revealed a significant contrast 1 (explicitly learned
pseudowords vs. novel pseudowords, see Figure 3). Explicitly
learned pseudowords elicited more amygdala activity than
novel pseudowords in the bilateral amygdala, and this effect
was positively related to measures of trait anxiety x = 32,
y = 5, z = −21, t(32) = 2.62, k = 111 voxels, p = 0.007.
Importantly, and contrary to the analysis without covariate,
contrast 2 (less well-learned pseudowords vs. novel pseudowords)
also yielded significant results x = 31, y = 2, z = −19,
t(32) = 2.42, k = 77 voxels, p = 0.011, positively related to
trait anxiety. Contrast 3 (arousing-negative pseudowords vs.
neutral pseudowords) was also significant x = 34, y = −7,
z = −11, t(32) = 2.74, k = 55 voxels, p = 0.005. Hence,
arousing-negative pseudowords elicited more amygdala activity

than neutral pseudowords, and this was positively related to
trait anxiety. As in the analysis without covariate, contrast
4 (explicitly learned arousing pseudowords vs. less well-
learned arousing pseudowords) was not significant. Contrast 5,
comparing arousing-negative and neutral pseudowords that were
not learned well, was significant x = 32, y = −7, z = −9,
t(32) = 2.16, k = 47 voxels, p = 0.019. The arousing-negative
pseudowords elicited more amygdala reactivity than the neutral
pseudowords, again, positively related to measures of trait
anxiety. Contrast 6 (less well-learned neutral pseudowords vs.
novel pseudowords), however, was not significant. But contrast
7 (less well-learned arousing-negative pseudowords vs. novel
pseudowords) and contrast 8 (neutral pseudowords vs. novel
pseudowords), were highly significant (contrast 7: x = 31, y = 0,
z = −23, t(33) = 3.25, k = 207 voxels, p < 0.001; contrast 8:
x = 31, y = 4, z = −19, t(32) = 3.39, k = 116 voxels, p < 0.001.

FIGURE 3 | Coronal, sagittal and axial view depicting activation extension of one example contrast; supra-threshold voxels are shown in red. Region
of interest (ROI)-analysis with trait anxiety as a covariate for the bilateral amygdala; contrast 1: Explicitly learned pseudowords > novel pseudo words (x = 32, y = 5,
z = −21).
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Hence, pseudowords that were less well learned elicited more
amygdala reactivity than novel pseudowords, independent of the
linked affect. This was positively related to measures of trait
anxiety. See Table 2 for an overview of all regression analysis
results and Figure 3 for a visualization of the spatial extension
of amygdala activation of contrast 1.

Note that the significant contrasts showed cluster within the
amygdala’s VOIs after correction for multiple testing (seeTables 1
and 2). Subnuclei of the amygdala could not be distinguished by
our methods.

Discussion

We analyzed the development of a memory bias for novel
and neutral stimuli before and after a learning phase, during
which the pseudowords were paired with pictures with arousing-
negative or neutral content. High and low trait anxious persons
participated. Our results demonstrate that a brief training in
an associative learning paradigm suffices to elicit a memory
bias for those pseudowords that were combined with arousing,
negative pictures, compared to those that were linked to neutral
pictures. This bias became evident in behavioral as well as
in fMRI measures. A cued-recall translation test, administered
directly after and at four 4-day-intervals following training,
showed better recall for pseudowords that had been combined
with arousing-negative content. However, the valence ratings
showed no differences between arousing-negative and neutral
pseudowords. The fMRImeasurement that took place 2 days after
learning showed a hyperactivation of the amygdala in response to
the arousing-negative pseudowords, indicating that these stimuli
were processed differently from neutrally linked pseudowords.

Most interestingly, this hyperactivation was more pronounced
in high-anxious persons, replicating previous behavioral results
(Eden et al., 2014). The effect was not restricted to pseudowords
that participants could explicitly remember. In fact, it seems that
the amygdala of high trait-anxious persons reacted sensitively
to all stimulus material, an indication for generalization.
Note, however, that the behavioral data showed no general
enhancement for negative-arousing over neutral pseudowords
for high-anxious individulas, not even in session one, where we
saw an effect for low-anxious persons. Moreover, and against
our expectation, there were no significant changes in memory
bias from session two onward. The latter two findings stand in
contrast to our earlier study (Eden et al., 2014). We will discuss
each of these aspects in turn.

As expected, very few (i.e., six to nine) correct and incorrect
pairings in an associative learning paradigm resulted in a
memory bias for pseudowords that were paired with negative-
arousing pictures. This, once again, shows the effectiveness of
this paradigm for word learning (Dobel et al., 2009, 2010; Eden
et al., 2014). After learning participants showed a memory bias in
the cued-recall test. Thus, all participants, independent of their
level of trait anxiety, were better able to translate pseudowords
that had been combined with arousing-negative content than
pseudowords linked with neutral content. This replicates earlier
findings, where participants were better able to memorize stimuli
with aversive emotional content (e.g., Mitte, 2008). Here, as in
our earlier work (Eden et al., 2014), we observe this advantage
even after a very brief associative training. However, the same
effect was not found in the (implicit) valence rating. Participants
rated arousing-negative pseudowords more negative than neutral
ones, but this difference did not reach significance (see Figure 2).
Thus, participants showed an explicit but no implicit memory

TABLE 2 | Regression analysis with trait anxiety as covariate.

Contrast T MNI-coordinates Cluster (k) p

x y z

1 Explicitly learned pseudowords vs.
novel pseudowords

2.62 32 5 −21 111 0.007

2 Less well-learned pseudowords vs.
novel pseudowords

2.42 31 2 −19 77 0.011

3 Arousing-negative pseudowords vs.
neutral pseudowords

2.74 34 −7 −11 55 0.005

4 Explicitly learned
arousing-negativepseudowords vs. less
well-learned
arousing-negativepseudowords

− − − − No significantclusters −

5 Less well-learned arousing-negative
pseudowords vs. less well-learned
neutral pseudowords

2.16 32 −7 −9 47 0.019

6 Less well-learned neutral words vs.
novel words

− − − − − −

7 Less well-learned arousing-negative vs.
novel words

3.25 31 0 −23 207 <0.001

8 Neutral words vs. novel words 3.39 31 4 −19 116 <0.001

Conducted at p < 0.05, uncorrected (corrected at p < 0.05 on the cluster level using the AlphaSim procedure, which resulted in an empirically determined cluster-extent
threshold of k = 45 voxels). Coordinates are given in MNI space.
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bias. This is in line with the results of a meta-analysis by Mitte
(2008), who indeed showed that implicit memory effects are
seldom found. Some authors even question the existence of an
implicit memory bias (e.g., McCabe, 1999; Russo et al., 1999).
An explanation why explicit tests yield the memory bias but
the implicit ones do not, could be as follows. According to
Scott et al. (2009), valence features are part of the semantic
representation of words. Hence it can be assumed that the
activation of such features is required in explicit tasks such as
cued-recall. In this task, participants had to perform a one-to-
one mapping of a pseudoword to an existing German word.
In contrast, an implicit task such as the valence rating applied
here does not require the activation of German words, with their
semantic and valence features. This may explain why implicit
memory bias effects for words are so much harder to detect
than explicit ones. Note that we did obtain implict bias effects
in our earlier study (Eden et al., 2014), which had more power
in terms of items and partipants. The missing effect in the
valence rating might at first glance invite to speculate about
the processing depth of learned words and seems to suggest a
shallow encoding. However, results of former studies from our
group that used very similar associative word-learning paradigms
(e.g., Breitenstein et al., 2007; Dobel et al., 2009, 2010; Liuzzi
et al., 2010) strongly suggest that meaning is indeed acquired
for the pseudowords. Breitenstein et al. (2007) showed with
crossmodal priming that learned pseudowords primed existing
words related to their acquired meaning as effectively as native-
language words. This was corroborated by Dobel et al. (2010),
who applied magnetencephalography (MEG). They showed that
the N400 component [an indicator for semantic (mis)matches
betweenword and picture] to pictures was strongly reduced when
they were preceded by pseudowords whose acquired meaning
corresponded to the pictured concept. Based on these and other
findings, we feel confident that the learning effects found in the
present study truly reflect semantic/emotional learning, and that
the pseudowords do not simply present superficial mnemonic
cues to existing words and/or corresponding pictures.

We now turn to the fMRI data, for which we carried
out two analyses: the first analysis served to investigate the
general effect of memory bias, and the second to additionally
assess the influence of trait anxiety. With respect to the first
analysis, we observed general effects of learning. Explicitly
learned pseudowords elicited more amygdala activity than novel
pseudowords, showing that only few repetitions of pseudoword-
picture pairs sufficed to activate the amygdala, even 2 days after
learning. This amygdalar hyperactivation was seen for explicitly
learned pseudowords only, not for the set of “not so well learned”
pseudowords (the worst 11 for each participant). This suggests
that they either were not learned at all, or that their superficial
learning history leads to different processing or storage –
evident in explicit recall and amygdala reactivity. The third
contrast investigated pseudoword affect, more precisely whether
arousing-negative pseudowords generally elicited more amygdala
activity than neutral ones. Importantly, this was the case, when
looking for explicitly and less well learned pseudowords together.
This effect corroborates the memory bias found in prior studies
(for a review, see Mitte, 2008) and the main effect in the

cued-recall data of the current study. Of interest is whether
this neural correlate for a memory bias is driven solely by
the explicitly recalled items. This, as contrast 4 showed, was
not the case: Explicitly learned and less well-learned arousing-
negative pseudowords elicited equal amygdala reactivity. This
clearly goes against the suggestion that nothing is learned when
stimuli cannot be recalled explicitly. Clearly, aversive stimuli
have similar amygdalar effects, independent of their level of
explicit recall. To explore this further, we contrasted less well-
learned arousing-negative and neutral pseudowords (contrast 5),
and observed more amygdala reactivity for the arousing-negative
stimuli. This corroborates the above finding that affect is indeed
acquired for these pseudowords, even though participants could
not explicitly translate these words very well. These findings
corroborate the observed amygdala sensitivity for emotionally
arousing stimuli – even in the absence of explicit memory (e.g.,
Dannlowski et al., 2007a,b; Pichon et al., 2012; Suslow et al.,
2013). Note, however, that the overall amygdala activation of
these less well-learned pseudowords did not differ from the
activation for completely novel pseudowords. This contrast was
thus only significant for explicitly learned stimuli. There is
ample evidence that completely novel stimuli are processed
differently from items that have been seen before. Repetition
decreases amygdala activity, and only explicitly learned and
recalled stimuli overcome this repetition suppression (e.g., Ishai
et al., 2004; Wendt et al., 2011). Finally, contrast 8 was
implemented to investigate effects of generalization, comparing
all neutrally linked pseudowords (explicitly and less well-
learned) with all novel pseudowords. Both conditions elicited
about equal amygdala activity. This provides no evidence for
generalization. Neutral words were not associated or confounded
with negative affect, and that the hyperactivation of the amygdala
for arousing-negative pseudowords was indeed due to this
negative affect.

The second fMRI-analysis, with the factor trait anxiety as
a covariate, revealed the following. As expected and as in the
first fMRI-analysis, explicitly learned pseudowords elicited more
amygdala reactivity than novel pseudowords in the bilateral
amygdala, and this effect was positively related to measures
of trait anxiety. The effect increases with increasing levels
of trait anxiety, showing that persons with higher levels of
trait anxiety process stimuli, gathered in emotionally arousing
situations, differently from persons with low levels of anxiety
(e.g., Tolkunov et al., 2010; Asakawa et al., 2014; Burgess
et al., 2014). Different from analysis one, the contrast was
also significant for less well-learned pseudowords vs. novel
pseudowords. This lends support to the amygdala’s sensitivity
(i.e., hyperreactivity) in persons with high levels of trait anxiety.
Contrast 3 investigated the occurrence of a memory bias. As
expected and as in analysis one, the arousing-negatively linked
pseudowords elicited more amygdala activity than the neutrally
linked pseudowords, supporting similar prior studies (Laeger
et al., 2012, 2014a,b). Contrast 4, comparing the explicitly and less
well-learned arousing-negative pseudowords, was – again – not
significant. Thus, even when taking into account the trait anxiety
levels, the amygdalae of our participants did not differentiate
between explicitly and less well-learned pseudowords when both
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had been combined with negative content. Contrast 5 again
corroborated that even the less well-learned arousing-negative
pseudwords elicited more amygdala reactivity than less well-
learned neutral pseudowords. In addition, this effect is the more
pronounced the higher the level of trait anxiety. This shows
that our high trait-anxious participants processed the arousing-
negative words differently from the neutral words, although
they could not translate these pseudowords very well. As in
the first analysis, contrast 6 showed no differences between
less well-learned neutrally linked pseudowords and completely
novel pseudowords. Differently from analysis one, contrast
7 did reveal an effect. Less well-learned arousing-negative
pseudowords elicited stronger amygdala reactivity than novel
pseudowords, and the effect was stronger the higher the level of
trait anxiety. This finding, once again, supports the sensitivity
of trait-anxious persons for emotionally aversive stimuli, even
if distinct explicit memory for these is not present. Contrast
8, investigating potential generalization effects, turned out to
be significant. In contrast to analysis one, neutral pseudowords
elicited more amygdala activity than novel pseudwords, and
this effect was stronger with higher levels of trait anxiety. We
believe that this is especially interesting, since it shows the
down side of sensitivity in situations with aversive content.
This sensitivity, that is, the hyperactivation of amygdalae in
response to aversive situations/stimuli, may have evolved from
evolutionary mechanisms, to protect humans from getting killed
in dangerous situations. However, the final contrast shows
that the amygdala of highly trait anxious persons overreacts
in response to neutrally linked stimuli. This is an effect of
generalization, found in earlier studies (e.g., Eden et al., 2014;
see Resnik and Paz, 2014 for an animal model of the underlying
mechanisms of generalization) and probably results from a
transfer of aversion from arousing-negative stimuli to neutral
stimuli during learning.

In the current study, we tried to overcome some criticism
to earlier studies. Behavioral testing was done at various points
after learning, to assess consolidation over time. We combined
behavioral and imaging measures and differentiated between
explicit and more implicit (“less well-learned”) items. We
showed that the behavioral data do not change much from the
second measurement onward. Explicit recall is better, overall, for
negatively paired stimuli, but this effect is not significant in high-
anxious individuals. The fMRI measures revealed an interesting
pattern of results, with (1) more amygdala activation for explicitly
learned than for novel stimuli; (2) evidence for memory bias,
with more activation for pseudowords that were combined with
negative content than for those paired with neutral content, (3)
evidence that this memory bias was independent of the explicit
learning success, but (4) dependent on trait-anxiety measures
and (5) a difference in amygdalar activation between less well-
learned pseudowords and completely novel ones that depended
on trait-anxiety measures.

We would like to point out some limitations, caveats and open
questions that should be addressed in future studies. First, we
investigated two extreme groups. This well-established approach
does not allow making predictions or drawing conclusions
about the memory bias in persons with moderate levels of trait

anxiety. Thus, we recommend that future studies integrate a third
group of persons with moderate anxiety levels, or use a design
that takes individual (trait) anxiety scores into account, as was
done in the analysis of our fMRI data. Second, although we
controlled for individual learning histories concerning the items
relevant for behavioral and fMRI analyses, by use of valence-
free pseudowords, we could not control individual differences
concerning the pictures used to link negative-aversive or neutral
valence to the pseudowords. Hence, despite the pre-test, the
pictures might have evoked varying emotions to varying degrees
in our participants, which results in unknown variance in
acquired emotionality of the pseudowords. This problem is
common to all studies that use neutral and aversive stimuli, and
an assessment of the stimuli by the study participants themselves
may be of help. Third, in the behavioral part of this study we used
similar stimuli and measurements as in our earlier study (Eden
et al., 2014), but did not exactly replicate the results. In Eden
et al. (2014), participants rated all arousing-negative stimuli more
negative than neutral ones, and ratings differed between high-
and low anxious individuals. Differences between the studies
concern the number of items (44 instead of 60) and participants
(34 instead of 54), and repetitions during training (7–12; i.e.,
8.25 on average instead of 5). In both studies, recall is better for
negative than for neutral pseudowords, but the interaction with
participant group shows a different pattern. Power differences
might be responsible for these differences. Next, in contrast to
our earlier study, we observed no significant differences between
neutrally and negatively paired stimuli in the valence ratings
of high-anxious individuals. Again, the patterns are similar but
there is less power in the current study. The differing results
in two similar valence ratings actually stress that the implicit
memory bias is indeed hard to replicate and not robust (for a
meta-analytic review, see Mitte, 2008). Fourth, there is generally
a positive correlation between (trait) anxiety and depression.
Both anxiety and depression have been associated with a failure
to adequately regulate the amygdala via top–down mechanisms
(Johnstone et al., 2007). Thus, effects reported in anxiety research
might partly be due to a potential depression, and vice versa. This
is the reason why we used the reliable and well-validated M.I.N.I
interview into our study, ensuring that none of our participants
(ever) suffered from an affective disorder. However, the M.I.N.I
is a dichotomous tool (a disorder is present or not). We thus
cannot rule out the existence of subclinical depression, although
none of our participants showed any signs. We suggest that future
studies additionally apply a continuous measurement that reveals
the intensity of a potential subclinical depression [such as the
Beck Depression Inventory (BDI) or the Hamilton Depression
Scale (HAMD), Hamilton, 1960; Beck et al., 1961]. With such
measures, potential effects can be more clearly attributed to
affective or anxiety disorders. Furthermore, the current study
only focuses on the negativity bias and neglects the so-called
positivity bias, a self-serving attribution bias that represents a
well-attested and robust phenomenon in human cognition (e.g.,
Bradley, 1978; Zuckerman, 1979; Campbell and Sedikides, 1999).
In their meta-analytic review, Mezulis et al. (2004) investigated
numerous samples and showed that the bias was smallest for
anxiety and depression patients. Since the sample of our study
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consists of highly trait anxious (potentially small positivity
bias) and highly non-anxious persons (potentially large positive
bias), it would be an interesting research issue to assess
the extent of this bias and the difference between the two
groups. However, this was not the aim of our study. We
followed a strict hypothesis-driven approach and compared
only negative arousing and neutral stimuli. Future studies
might include positive arousing stimuli into the paradigm.
This would of course lengthen the learning phase, and might
thus considerably change the implicit results. Besides, the
current study did not investigate mood-congruency effects.
Mood congruency describes the phenomenon that emotional
information congruent with the current mood is more likely to
be recalled than information that is incongruent with the current
mood (Bower, 1981). In many studies it has been shown that
mood-congruent depressive information is likely to be recalled
by persons in a depressed mood (for a meta-analytic study
on explicit recall, see Matt et al., 1992; for a meta-analytic
study on implicit recall, see Gaddy and Ingram, 2014). Patients
suffering from major depressive disorder exhibited preferential
recall of negative stimuli, dysphoric persons did showed no
preferred recall of negative or positive stimuli, and healthy
controls tended to recall positive stimuli. With the current
design, we cannot decide whether non-clinical mood congruency
processing played a role, because we did not implement a mood
measurement. Given that anxiety and depression are highly
correlated and in the absence of mood information, we cannot
rule out that a depressive, an anxious or any other kind of
negative mood is partially responsible for the obtained effects.
A second kind of mood congruency (a congruency between
behavior/symptoms and mental disorders) is certainly at stake
in the study at hand. The people in our sample showed no
clinical symptoms, but since trait anxious persons exhibit a
greater risk to develop anxiety disorders, it is very likely that the
effect found in our study can be traced back to this “anxious
mood.” Furthermore, we performed an fMRI measurement with
a blocked design, because it is sensitive to small effects. Another
improvement of future studies would be the use of an event-
related design.

Finally, it is yet unclear how emotion and feelings are
implemented and operated at the level of words, and how
emotional information conveyed by words modulates and

regulates emotional experience. These questions are currently
under debate (see several contributions to this Frontiers research
topic). However, what we do know and were able to show
here is that persons with high levels of trait anxiety exhibit
dysfunctional learning and memory mechanisms for affective
verbal stimuli. This might originate from evolutionary shaped,
adaptive behavior that maximizes chances of survival due to
withdrawal from potentially threatening situations. However,
with the tremendous changes in many modern societies during
the last centuries, the advantage of this sensitivity diminishes
continuously. Today, highly anxious persons, who possess this
sensitivity as a character trait, primarily suffer from a higher
probability to develop anxiety disorders, the most prevalent
class of all psychological disorders (e.g., Kessler et al., 2005).
As suggested by others (e.g., Lissek, 2012; Resnik and Paz,
2014), neural hyperactivity to items with only brief learning
histories (that are explicitly not well remembered), together
with generalization, might be underlying mechanisms in the
development of anxiety disorders. As we hope to have illustrated
here, learning of emotional words constitutes an important
and experimentally well-controlled approach to investigate this
further. To support individual health and to prevent high burden
on health care systems, it is crucial to better understand the
processes and mechanism that underlie the development of
anxiety disorders, and to identify persons at risk.
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