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Fluid intelligence (Gf) is a crucial cognitive ability that involves abstract reasoning in order

to solve novel problems. Recent research demonstrated that Gf strongly depends on

the individual effectiveness of working memory (WM). We investigated a popular claim

that if the storage capacity underlay the WM–Gf correlation, then such a correlation

should increase with an increasing number of items or rules (load) in a Gf-test. As often

no such link is observed, on that basis the storage-capacity account is rejected, and

alternative accounts of Gf (e.g., related to executive control or processing speed) are

proposed. Using both analytical inference and numerical simulations, we demonstrated

that the load-dependent change in correlation is primarily a function of the amount of

floor/ceiling effect for particular items. Thus, the item-wise WM correlation of a Gf-test

depends on its overall difficulty, and the difficulty distribution across its items. When the

early test items yield huge ceiling, but the late items do not approach floor, that correlation

will increase throughout the test. If the early items locate themselves between ceiling

and floor, but the late items approach floor, the respective correlation will decrease. For

a hallmark Gf-test, the Raven-test, whose items span from ceiling to floor, the quadratic

relationship is expected, and it was shown empirically using a large sample and two types

of WMC tasks. In consequence, no changes in correlation due to varying WM/Gf load,

or lack of them, can yield an argument for or against any theory of WM/Gf. Moreover,

as the mathematical properties of the correlation formula make it relatively immune to

ceiling/floor effects for overall moderate correlations, only minor changes (if any) in the

WM–Gf correlation should be expected for many psychological tests.

Keywords: fluid intelligence, working memory, Raven-test, correlation, floor/ceiling effects

1. Introduction

Fluid intelligence (Gf) is an important cognitive ability that constitutes the main component of
human general intellectual aptitude (Gustaffson, 1984). Gf consists of using reasoning (inductive,
deductive, spatial, etc.) in order to solve novel abstract problems unsolvable by solely using existing
knowledge. Fluid intelligence explains a large part of individual differences in the diverse types
of human cognition and behavior. For instance, more intelligent people are better in knowledge
acquisition, language comprehension, and spatial navigation, they achieve on average a higher
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socioeconomical status (including academic, professional, and
financial one) than do less intelligent people, and they also
better manage in daily life (e.g., less often meet with accidents,
more effectively go through medical treatments, etc., Deary,
2012). A hallmark test of fluid intelligence is Raven’s Advanced
Progressive Matrices test, which requires discovering one or
more abstract rules hidden within the geometrical pattern that is
missing one fragment, and applying those rules in order to choose
from several alternatives one correct solution that best matches
the pattern.

An important theme in fluid intelligence research consists of
identification of its underlying cognitive mechanisms. The last
20 years of research have produced convincing evidence that
the strongest known predictor of Gf is the capacity (WMC)
of working memory (WM)—a neurocognitive mechanism
responsible for active maintenance and transformation of task-
relevant information in the mind. Numerous studies have
demonstrated that, when properly measured (see below), WMC
can explain between half (Kane et al., 2005) and all variance
in Gf (Oberauer et al., 2008; Chuderski, 2013). Unfortunately,
this observation did not lead automatically to the identification
of what makes both WM and Gf correlate strongly, because
WM tasks are themselves quite complex; usually more than one
WM process/resource is involved in performance in these tasks
(Shipstead et al., 2014). Thus, one of the most exciting debates
in Gf research concerns the identification of the mechanisms
responsible for the strong association between WMC and Gf.

One influential theory assumes that shared variance in both
WM tasks and Gf-tests depends on attention control exerted
over cognitive processes that includes goal-driven directing
attention and filtering out distraction (Kane and Engle, 2002;
Shipstead et al., 2014). Evidence for this theory comes from
significant correlations between Gf and the indices of executive
control obtained from various tasks, for example involving
memory updating (Burges et al., 2011), the inhibition of
unwanted thoughts or prepotent responses (Dempster and
Corkill, 1999; Unsworth et al., 2004), and dual-tasking (Ben-
Shakhar and Sheffer, 2001). Moreover, research on high-WMC
individuals (usually assessed with the complex span task that
strongly correlates with Gf), compared to low-WMC people,
demonstrated that the former were faster and more accurate
on antisaccades (Unsworth et al., 2004), produced smaller error
rates in incongruent trials using a high-congruent version of the
Stroop test (Kane and Engle, 2003) and the flanker task (Heits and
Engle, 2007), as well as more effectively suppressed distractors
in a dichotic listening task (Conway et al., 2001). The attention-
control theory of fluid reasoning holds that people with low
attention control are poor reasoners because they find it difficult
to maintain reasoning goals, and their cognitive processing is
prone to frequent capture by irrelevant stimuli.

Alternatively, performance on simple storage capacity (short-
term memory; STM) tasks that involve little attention control
but require the active maintenance of a few items in parallel,
was at least as good a predictor of Gf as performance on tasks
requiring executive control, when rehearsal and chunking were
blocked in the former tasks (e.g., Cowan et al., 2006; Colom et al.,
2008; Chuderski et al., 2012). These results suggest that storage

capacity may be the main determinant of fluid intelligence. One
explanation (Carpenter et al., 1990) predicts that more capacious
WM allows to keep the sub-products of reasoning (induced rules,
elements of a solution, etc.) in the most active and accessible part
of WM, called primary memory (Cowan et al., 2006). WM may
also play an important role in fluid reasoning because it affects
what relationships can be constructed among WM items (e.g.,
Hummel and Holyoak, 2003). Notably, Oberauer et al. (2008)
proposed that relational integration—the construction of flexible,
temporary bindings between a number of chunks held in WM in
order to develop novel, more complex structures—is crucial to
reasoning.

Although current theorizing tends to acknowledge that both
executive control and storage capacity mechanisms in some way
contribute to Gf (e.g., Cowan et al., 2006; Chuderski and Necka,
2012; Shipstead et al., 2014; Unsworth et al., 2014) the mutual
relationships between these two mechanisms have not yet been
understood satisfactorily (are they interacting or independent?
does one underlie the other, or vice versa?), and it is still argued
that either executive control (e.g., Burges et al., 2011; Shipstead
et al., 2014) or storage capacity (Martínez et al., 2011; Chuderski
et al., 2012) is a more fundamental factor for explaining fluid
intelligence (whereas the other factor just explains some minor
variance in Gf). One important set of arguments in favor of each
theory came from the analysis of WM–Gf correlations in the
function of an increasing difficulty of Gf-test items. Such studies
empirically tested the hypothesis, originally put forward by the
seminal capacity-based model of processing in the Raven-test
(Carpenter et al., 1990), which assumed that more difficult items
of the Gf-tests should involve more information being stored
in WM, and thus such items should yield stronger correlations
between Gf and WM than do easier items, when WM loads are
unlikely to surpass the WMC of most participants. The logic
of such tests was the following: if the storage-capacity account
is right, then the positive correlation between the Raven item
difficulty and WMC should be observed; otherwise, if no or
even negative correlation is noted, then the storage capacity
account should be rejected, and there is room for some alternative
explanations of the neurocognitive basis of Gf (most possibly, the
executive control or processing speed accounts).

Some researchers have indeed found evidence that Pearson’s
r increases for more difficult items (Little et al., 2014), and on
this basis advocated the plausibility of storage-capacity account;
whereas others found such correlations to be fairly constant
(Salthouse, 1993, 2014; Unsworth and Engle, 2005; Salthouse and
Pink, 2008; Wiley et al., 2011), and thus rejected this account,
instead opting for the attention-control account. Moreover,
a similar argument has been used outside the WM domain,
for example in studies of relationships between intelligence and
aging (Salthouse, 1993; Babcock, 2002) or learning (Carlstedt
et al., 2000; Verguts and DeBoeck, 2002).

Our goal is to show that the above line of reasoning: if more
difficult Gf items lead to stronger WM–Gf correlations, then
storage capacity likely underlies Gf, if not, then some other
mechanisms must underpin Gf, although intuitively attractive,
is nevertheless fundamentally flawed. To outline our reasoning,
the change of correlation for a particular item primarily depends
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on the amount of floor/ceiling effect for that item, and the
maximal strength of correlation exists when no such effects are
present. Thus, correlations drop for both very easy and very
difficult items (i.e., a lot of floor/ceiling), and are the highest for
items of average difficulty (little or no floor/ceiling). Moreover,
the mathematical formula for the Pearson correlation is highly
immune even to relatively large amounts of ceiling or floor effects
if an overall WM–Gf correlation is moderate or weak, and thus
only minor differences in correlation between easy/difficult and
medium items can be expected for most of psychological tests. In
consequence, no change in WM–Gf correlation with increasing
Gf-test difficulty, or lack of it, can be used as an argument in favor
of or against either the executive-control or storage-capacity
accounts of WM/Gf. This matter is not only a statistical issue,
but is a key methodological and theoretical problem, because
the argument in question has been raised by numerous notable
researchers in their theorizing about the WM and intelligence
relationship (see below). Thus, it is crucial to systematically
evaluate the validity of this argument.

The remaining text has been divided into four sections: First,
we present the most notable examples in the literature of the
arguments related to the increasing difficulty of Gf-tests. Second,
using analytical inference we show the correlation between two
variables to (slowly) decrease with increasing ceiling or floor
effects. Third, with numerical simulations we demonstrate when
the correlation formula is insensitive to such effects. Finally,
we confirm our prediction empirically with the use of a large
sample of participants, the Raven-test, and twomethods ofWMC
measurement.

2. Examples of Relevant Studies

There are at least two cases in which correlation between
two variables may potentially change between two conditions
(e.g., easy and difficult). First, in Condition 1, the mechanism
generating variance in variable x may also generate a substantial
variance in variable y, but it may yield less or no such variance
in Condition 2 (we will develop this argument formally in
the subsequent section). Thus, in Condition 1, the variance of
variable y consists of a relatively large amount of variance shared
with variable x, and a relatively small amount of error variance
(reflecting measurement errors and the effects of all other
variables affecting variable y not accounted for). In Condition
2, however, the variance of variable y consists mainly of error
variance, whereas the amount of variance shared with variable x is
relatively small. As the correlation coefficient reflects the squared
root of shared variance, such a coefficient will be substantially
larger in Condition 1 than in Condition 2. For example, in our
recent study (Chuderski and Necka, 2012), we found that scores
on the well-knownWM task, namely the n-back task, depend on
either primary memory, when the WM load is small, or activated
long-term memory (LTM), when the load is large (and the to-be-
detected target falls out of the primary memory). Then, we found
that the primary-memory condition substantially correlated with
scores on intelligence tests (r ≈ 0.5), whereas in the LTM
condition this correlation was close to zero. Thus, we concluded
that primary memory underlies intelligence, whereas LTM is

not an important mechanism for Gf. In general, this type of
argument is quite obvious, and a substantial part of psychological
knowledge has been inferred with such a logic.

However, the studies that raised the argument related to the
increasing WM–Gf correlation with increasing difficulty of Gf-
tests relies on quite a different logic. These studies assume that the
samemechanism drives variable y in both conditions. However, it
is expected that in an easier condition the ceiling effect will arise,
and because this will yield less variation in data, it will also yield
a lower correlation between variables, than will a more difficult
condition in which ceiling effects will be reduced or absent (and
the floor effect will still be low).

For example, investigating relations between intelligence,
aging, and WM, Salthouse (1993, see also Salthouse and Pink,
2008; Salthouse, 2014) found WM–Gf correlations fairly stable
for the Raven items that differed in difficulty:

Average solution accuracy varied considerably across the items

examined, and it seems reasonable to hypothesize that at least

some of the item variation might have been due to increased

workingmemory demands. [. . . ] The configuration of results [. . . ]

presents a challenge for interpretation. On the one hand, there is

evidence of moderate to large relations between the measures of

working memory and matrix reasoning performance, but on the

other hand, the data indicate that these relations are no greater for

difficult (low accuracy) than for easy (high accuracy) problems.

A [. . . ] potential explanation is that much of the variation in

item difficulty may be attributable to factors unrelated to working

memory (pp. 181–182).

Similar arguments can be found in Unsworth and Engle (2005),
who divided scores on the Raven-test items into four quartiles
according to decreasing mean accuracy, and found constant
correlations of the first three quartiles with a variant of complex
span task:

[. . . ] the correlation between solution accuracy and a measure

of working memory capacity should increase as the number of

rules, goals, and/or sub-results on a given problem increases

(given that there is enough systematic variability present). That

is, items with low memory loads will not exceed even the capacity

of low WM span participants and thus most individuals should

get these problems right and there should be little systematic

variability present. However, as memory load increases so will

item discriminability and thus the item-WM span correlations

will increase (p. 70).

[. . . ] the results suggest that, for the most part, the [WM–Gf]

correlations are fairly constant and do not vary systematically

with variations in memory load [. . . ] Taken together, the results

of the present study strongly suggest that the number of goals

or sub-results that can be held in memory does not account for

the shared variance between working memory span measures

and fluid intelligence. Thus, the results do not support the

hypothesis [. . . ] that the link between individual differences in

working memory capacity and intelligence is due to differences

in the ability to hold a certain number of items in working

memory (p. 78).
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Furthermore, Wiley et al. (2011) used constant point-biserial
correlations between progressively more difficult items of the
Raven-test and a variant of the complex span to conclude:

Our results [. . . ] are consistent with previous findings in that

neither the normative difficulty of RAPM items nor the number of

rule tokens required for solution showed the positive relation with

WMC that would be predicted by a rule/capacity explanation.

[. . . ] these factors do not seem to be what drives the relation with

WMC. [. . . ] Thus, differences in the quality of executive function,

and not capacity per se, may be responsible for the relationship

between WMC and RAPM (p. 261).

All these arguments against the storage-capacity account of Gf
have often been referred to in the literature. To give only one
example from Vigneau et al. (2006):

A recent study by Unsworth and Engle (2005) showed that the

relation between working memory capacity and the Raven seems

to be rather constant across levels of difficulty and memory load.

This result is incompatible with the view that the number of

rules or rule instances required to solve an item is central to the

expression of individual differences on the Raven (p. 262).

Proponents of the storage-capacity account (Little et al.,
2014) defended their approach by showing that the constant
WM–Raven correlation in previous studies resulted from
measurement errors and the generally low level of observed
correlations between the Raven-test items/quartiles and WM
scores. Obtaining pronounced such correlations, they showed
that a relatively small but significant rise in the WM–Raven
correlation can be observed when the Raven items become more
difficult:

High overall accuracy lowers the item-wise correlation for the

early items (i.e., the point-biserial correlation must be near zero

if nearly everyone gets the item correct) resulting in an increasing

slope across the entire test. For the later more difficult items, the

participants who respond correctly have to come from the pool

of participants who have higher Raven’s scores and higher WMC.

Consequently, with a high overall correlation between WMC and

Raven’s, the point-biserial correlation between WMC and the

most difficult Raven’s items that have the lowest accuracy, must

be higher than the point-biserial correlation between WMC and

the easiest Raven’s items (p. 6).

When there is a moderate to strong overall correlation between

WMC and performance on the Raven’s-test of fluid abilities,

then the role of WMC becomes increasingly more important

as item difficulty increases. [. . . ] Our results are compatible

with theoretical analyses of Raven’s performance that appeal to

workingmemory as a repository for rules and intermediate results

(pp. 10–11).

From above citations we can clearly see that whether or not
the increase in difficulty of Gf-test items led to an increase
in their correlation has served as an important argument
in the debate between attention-control and storage-capacity
(and other) accounts. However, can the presence/lack of such

an increase serve as an argument in favor/against the role of
storage capacity in Gf? With a simple formal analysis, we aim to
show that the answer to this question is definitely “no.”

3. Analytical Inference of a Relationship
Between test Difficulty and its Correlation
with another Test

3.1. General Assumptions
In general, the issue of the analysis of correlations between
different types of data is quite complex. However, we can make
a few assumptions that effectively simplify the reasoning. Some
of the assumptions have no effect on the generalizability of
our reasoning. Other assumptions yield a small effect, but are
reasonable on the grounds of empirical domain to which we
refer.

1. All analyzed variables (independent variable, true test score
and test outcome) display a mean equal to zero and a variance
equal to one. This assumption is justified by the fact that the
correlation estimator is scale independent and thus has no
effect on reasoning.

2. All analyzed variables have the normal distribution.
3. A participant’s ability does not depend on test difficulty.
4. Covariance of dependent and independent variables equals

one. We assume so for the sake of simplicity of our
analytical argument, but once our point is made, we show via
numerical simulation that the same results still hold when this
assumption is relaxed.

5. A test result is a linear function of ability and test difficulty
unless a floor or ceiling effect arises (more details below).

6. The error term of the linear dependency between dependent
and independent variables and the error term of the test result
are independent.

We will refer to following random variables:

1. The true test score Z as it is defined on the ground of classical
test theory (Guilford, 1954).

2. The independent variable X—the observable variable whose
possible influence on dependent variable is examined. We
suggest that the true independent variable is not observable,
and what is observable is the sum of the true independent
variable V and some random noise ζ (see Figure 1). However,
since there path from X to Z is open, that is the causal impact
flows from X to Z, (Pearl, 2009) we can treat variable X as
possibly influencing dependent variable.

3. The observable test result Y—is a dependent variable.

Whenever we use uppercase Latin letter (e.g., X) we refer to
random variable whereas the same lowercase letter (e.g. x) refers
to a particular observation derived from that variable.

3.2. Impact of Test Difficulty
The observable test result Y is a sum of true score Z and error
γ . We examine the relation between two variables: independent
variableX and dependent test score Z. We assume there is a linear
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FIGURE 1 | Relation between random variables discussed. Arrows

indicate possible causal impact. White circles denote latent variables and gray

circles denote observable variables. Lowercase Greek letters denote random

noise.

relation between X and Z:

Z = α + βX + δ,

where α and β are linear coefficients and δ is error. Variables X
and Y are observable while true test score Z is latent.

Observed test results Y is sum of true test score Z and random
noise γ :

Y = Z + γ.

Therefore, relation between Y and X is presented below:

Y = α + βX + δ + γ.

The linear coefficients α and β are scale dependent. As scale of
the variables is of no interest here, we can assign to them values
zero and one, respectively. Error terms δ and γ are independent
and normally distributed and have a mean equal to zero. Thus,
the sum ε = δ + γ of the error terms also is normally distributed
and has a mean equal zero. If the variance of δ is equal σ 2

δ and
the variance of γ is equal σ 2

γ then the variance of ε is equal

σ 2
δ + σ 2

γ . Thus, the relation between the observed test results and
independent variable can be rewritten as follows:

Y = X + ε. (1)

The correlation between the set of observed results Y and the
independent variable X influencing them is then negatively
linearly related with error variance. It can be easily seen that when
ε = 0 then Y = X and rX, Y = 1, and when ε → ∞ then
rX, Y → 0.

We adopted following definition of test difficulty: when test
difficulty increases, all results Y decreases proportionally to
difficulty increase. We also assume that there exists floor value
of test result f which is the minimal possible test score (see
Figure 2). Thus, the extended relation between observed results
and true scores takes form

Y = max(X + ε, f ). (2)

That implies that if any observation y had value lower than f ,
then value f would be assigned to this observation. Depending

FIGURE 2 | Observed data Y for different values of floor f. See

description in text.

on the amount of floor effect, a bigger or smaller part of data
will equal f . The value of floor can be expressed in one of the
two most convenient scales: as a standard score (in units of the
distribution of X, where f is minimal possible value of scores,
e.g., zero correct responses) or as a proportion of values on floor.
As the former scale is more suitable for further inferences we
will apply that scale, but one can easily transform f values to the
other scale using the normal distribution function. Importantly,
although our argument refers to floor effect and the increasing
difficulty of a test, the very same argument symmetrically applies
to ceiling effect and the decreasing difficulty of the test.

3.3. Analytical Inference
Pearson product-moment correlation coefficient r between two
random variables X and Y is a quotient of covariance of the
variables and the product of their standard deviations:

rX,Y =
cov(X,Y)

σXσY
,

or alternatively:

rX,Y =
∑n

i = 1(xi − x̄)(yi − ȳ)
√

∑n
i = 1(xi − x̄)2

√

∑n
i = 1(yi − ȳ)2

, (3)

where x ∈ X, y ∈ Y , and n = |X| = |Y| is the number
of observations. The covariance cov(X,Y) between two jointly
distributed random variables X and Y is a measure of how
strongly a value (relative to expected value) of one variable is
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linked to value (also relative) of the second variable, and it is
defined as follows:

cov(X,Y) = IE

(

(

x− IE(x)
)(

y− IE(y)
)

)

,

where IE(x) means expected value of x. So covariance is the
stronger themore observations vary from respective mean jointly
on both scales and the weaker the more observations take high
value on one scale and low value on the other one. As a change
in test difficulty does not influence the participants’ ability
(Assumption 3), and the standard deviation of this ability equals

one, the factor 1/
√

∑n
i = 1(xi − x̄)2 in Formula (3) remains

constant and equal one, so we can ignore it.
Correlation does not depend on data intercept; so as long as

there is no floor, values Y can be increased or decreased without
any change in correlation (in fact they can be manipulated in any
linear way). Such a decrease in value Y would be what we have
defined as the effect of an increase in difficulty. Nevertheless, the
increase in difficulty would change the distribution ofY when this
change causes some of the data points to reach floor. When some
of the test results are on floor, whereas the independent variable
remains unchanged, their correlation may alter in a non-linear
way. So, let us examine what impact the relative change of f would
have on Formula (3).

When floor is introduced, the distribution of test results Y
becomes a mixture of two distributions: a truncated normal
distribution (a normalized normal distribution with removed
values below the threshold) with threshold f , and a degenerate
(deterministic) distribution that includes only value f . From
now on, the test difficulty will be defined as raising floor (and
leaving Y unchanged) instead of decreasing Y (and leaving floor
unchanged). These two approaches are fully equivalent, but the
former is more convenient.

Proportion p of results belonging to the truncated normal
distribution is a fraction of the normal distribution for values not
lower than f :

p(f ) =
∫ ∞

f
φ(y)dy,

or alternatively:

p(f ) = 1−
1+ erf

(

f√
2

)

2
,

where φ(x) is the density of the standard normal distribution at
x and erf is error function, which is a non-elementary function
related to the cumulative normal distribution.

Themean value ȳ of observed test result Y is an expected value
of mixture of these two distributions with proportions p(f ) and
1− p(f ),

ȳ(f ) =
∫ ∞

f

(

φ(y)ydy
)

+ f
(

1− p(f )
)

.

Whereas, the standard deviation σY of observed test result Y
equals

σY (f ) =

√

∫ ∞

f

(

φ(y)
(

y− ȳ(f )
)2
dy

)

+
(

f − ȳ(f )
)2(

1− p(f )
)

.

Let us now consider covariance. As we assumed earlier,
covariance of the variables analyzed equals one (as long as there
is no floor effect). Therefore, the covariance cov(X,Y, f ) of the
joint distribution of Y and X for a given value of f is the sum
of the weighted expected values of the products of differences
between the values of the two distributions included in Y and
their common mean ȳ:

cov(X,Y, f ) =
∫ f
−∞ φ(y)y

(

f − ȳ(f )
)

dy

+
∫ ∞
f φ(y)y

(

y− ȳ(f )
)

dy.

Note that because of the unit covariance X is entirely known
given Y so there is no need to include x values in the formula [in
fact the expression cov(X,Y, f ) could be replaced by cov(Y, f )].

Figure 3 presents plot of three functions [cov(X,Y, f ), σY (f ),
and rX,Y (f )] over floor. Values of floor are in standard deviation
of X. Floor f = −3 means that all values of Y below −3 were
replaced by the value of f analogously f = 0 means that half of
the values of Y was replaced by 0.

In consequence, it can be easily seen that (a) the strength of
correlation between two variables is a function of the amount of
floor/ceiling effect for the dependent variable. However, (b) for
any reasonable proportion of results on the floor/ceiling the
correlation decreases relatively little in comparison to the case
when no floor/ceiling effect is present. For example, for half
results on floor/ceiling, which in psychology can be considered
quite a strong floor/ceiling effect, rX, Y drops from 1.0 to 0.86.
The remaining part of the paper includes empirical tests of
these two analytically derived predictions using both numerically
generated and actually observed WMC and Gf variables.

4. Numerical Simulations

Until now, we have considered only an idealized case of error
term equal zero, that is, the case when X = Y . Let us focus on
a more general case in which the amount of variance in error
term influences correlation. Below, we analyze the change in
correlation due to an increasing floor value in data generated by
a numerical simulation.

Obviously, the correlation between X and Y is lower than
unity when the error (ε) is larger than zero (see Formula 1). The
larger the error, the less values Y become determined by values X,
hence the covariance and correlation are lower. So, let us examine
the influence of floor (f ) on correlation (rX, Y ) for different values
of error.

In the present simulations, values Y were determined by
a relationship depicted in Formula (1). Values X were drawn
from the standard normal distribution. Values ε were drawn
from normal distributions with the mean equal to zero, and
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variances systematically differing between 0 and 7. When floor is
virtually absent (f = −3), these values yield correlations within
the range between 1 and 0.18. Every sample comprised 100,000
observations. To determine the influence of floor on r, values ofY
in every sample were transformed according to Formula (2) (one
hundred values of floor were used). Figure 4 shows the changes
in correlation over floor f , and error ε.

FIGURE 3 | Covariance, standard deviation, and correlation as

functions of floor (in units of standard deviation of X, 0 = x̄). See

description in text.

FIGURE 4 | Change in correlation over floor and error. The error value

differs from zero (the darkest highest line) to five standard deviations of X (the

lightest lowest line).

We can see that the lower the base correlation (i.e., when floor
is absent), the less it decreases with an increasing floor level. For
example, for the initial correlation equal to 0.5 that in psychology
is a moderately strong relationship between variables, and for
the floor level reaching 25 percent of cases (f = −0.67) that
should also be considered a moderate floor effect, the correlation
decreases from 0.5 to only 0.45. The same initial correlation
(0.5) does not even reach 0.25 (less than a 50% decrease) until
virtually all Y values reach floor (f = 2.61). Thus, it can
be concluded that the correlation formula is highly immune
to even large floor/ceiling effects, and moderate differences in
floor/ceiling between task conditions need not result in any
significant differences in correlation between these conditions,
given that an overall correlation between WM- and Gf-tests is
relatively low, or the sample is relatively small.

5. Empirical Verification of the Simulation
Results

The existing evidence on changes in the WM–Gf correlations
when the floor or ceiling effects occur is mixed. Some studies did
not find any such changes (Salthouse, 1993, 2014); some noted
a slight decrease in correlations with increasing test difficulty
(Unsworth and Engle, 2005;Wiley et al., 2011), whereas one study
(Little et al., 2014) suggested a moderate increase. In this section,
we aim to resolve this discrepancy by means of a theoretically-
driven reanalysis of the results of our two recently published
studies (Chuderski, 2013, 2015), administered to a large sample
of participants (N = 939 in total). First, we analyzed data
for N = 347 (from Chuderski, 2015) regarding the standard
measure of WMC—the three variants of the complex span task
(unfortunately, they were not used in the other study), as well
as data from the Raven Advanced Progressive Matrices. Second,
we used combined samples of N = 347 and N = 592 (the
latter fromChuderski, 2013) and looked into data from the Raven
as well as two alternative (strongly correlating with complex
spans; see from Chuderski, 2015) measures of WMC—the short-
term memory task and the relational integration task (that were
used in both studies). Most participants were allowed 60 min.
to complete the Raven (except for 288 people who were given
40 min). Due to relatively untimed testing, the participants
had chance to attempt most items of the Raven. The overall
correlation between the Raven and the mean from z-scores in
three complex spans was r = 0.51 (p < 0.001;N = 347). Similar
was the correlation between the Raven and the mean z-score
of the short-term memory and relational integration tasks (r =
0.43, p < 0.001;N = 939). For participants data, procedure,
descriptive statistics, reliabilities, and the correlations between
tasks refer to Chuderski (2013, 2015).

5.1. Raven-test
The 36 items of Raven’s Advanced Progressive Matrices (Raven
et al., 1983, Section 4: Advanced Progressive Matrices) consist of
a three-by-three matrix of figural patterns in which the bottom-
right pattern is missing; subjects must choose a potential match
for the missing pattern from eight response options (one option
is correct). The task is to discover the rules governing the
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configuration of the patterns and apply them to select the single
correct response option.

5.2. Complex Span Tasks
Adapted versions of three complex span tasks: the operation
span, reading span, and symmetry span tasks were applied. Each
task required participants to memorize a sequence of three to
seven (i.e., set size) stimuli. Each stimulus, out of nine possible
stimuli for that task, was presented for 1.2 s. Each stimulus was
followed by a simple decision task, presented until a response was
given, but for a maximum of 9 s. After two two-stimuli training
trials, three trials for each set size (in increasing order) were
presented in each complex span task. The operation span task
analog required the memorization of letters, whilst deciding with
a mouse button if an intermittent simple arithmetical equation
(e.g., “2×3−1 = 5”) was correct. Themodified reading span task
consisted of memorizing digits, whilst checking if letter strings
(e.g., “EWZTE,” “KTAN”) began and ended with the same letter.
The spatial span task involved memorizing locations of a red
square in the 3×3matrix, whilst deciding which of two presented
bars was larger. The response procedure in each task consisted
of a presentation of as many 3 × 3 matrices as was a particular
set size, in the center of the computer screen, from left to right.
Each matrix contained the same set of all nine possible stimuli
for a given task. A participant was required to point with the
mouse at those stimuli that had been presented in a sequence,
in the correct order. Only a choice that matched both the identity
and ordinal position of a given stimulus was taken as the correct
answer. The dependent variable for each complex span task was
the proportion of correctly pointed stimuli to all stimuli in the
task.

5.3. Short-term Memory Task
A variant of an array-comparison task was used that consisted
of 90 trials. On each trial a virtual 4 × 4 array was filled with
five to nine stimuli, picked from a set of ten Greek symbols (e.g.,
α, β , γ , and so on), then followed by a black square mask of
the same size as the array, presented for 1.2 s, and then another
array was shown. In a random 50% of trials, the second array
was identical to the first; in the remaining trials the second array
differed from the first by exactly one item in one position, which
was always a new item (not a duplicate of an item from another
position). The task was to press one of two response keys to
indicate whether the highlighted item was the same or different
in the two arrays. The task was self-paced.

5.4. Relation Integration Task
No-memory version of the alphanumeric monitoring task,
originally devised by Oberauer et al. (2008), was used. The
stimulus for each trial on the task consisted of a 3 × 3 array
of syllables. Participants were asked to detect whether any
of the rows or columns consisted of three syllables ending
with the same letter. The array could either include one of
the specified configurations; on these trials participants were
required to press the space key to indicate that they had detected
this configuration, or could not contain any of the specified
configurations. Trials lasted 5.5 s and were followed by a 0.1 s
blink separating subsequent arrays. There were 80 test trials.

5.5. Results and Discussion
Themean scores for consecutive Raven items spanned fromM =
0.92 to M = 0.09 (the floor defined by the theoretical random
level was 0.125). All WM tasks yielded normal distribution and
virtually no floor/ceiling effects.

First, for the sake of comparison with previous studies
(Salthouse, 1993; Wiley et al., 2011; Little et al., 2014), we
calculated the point-biserial correlations between each item of
the Raven-test (ordered according to decreasing accuracy) and
WMC (the mean of z scores in three complex tasks), for N =
347. As for the easiest Raven items a substantial ceiling effect
existed, which disappeared for themedium items, whereas for the
most difficult items a visible floor effect showed up (see Table 1),
the goal of the analysis was to show that, consistently with
our theoretical conclusions, the item-wise correlation between
Raven and WMC would be increasing from the easy up to
medium items, but it would start decreasing from the medium
down to difficult items (as defined by error rate on particular
items). However, in line with our above analyses, relatively slight
(though significant) increases and decreases in correlation were
expected.

There was an insignificant linear dependency between error
rate on a Raven item and its correlation with WMC score,
F(1, 34) = 0.4, p = 0.53 (see Figure 5). However, the segmented
regression including the breakpoint (i.e., a different linear
coefficients before and after the breakpoint) that optimized the
fit revealed significant non-linear relation between difficulty of
the Raven-test item and WMC score, adjusted R2 = 0.17
(see Table 2 for parameters, and Figure 5 for the fitted values).
ANOVA test indicated that better fit of segmented regression
over linear regression compensated larger complexity of the
former, F(2) = 4.73, p = 0.02. Correlation between error
rate and the Gf–WMC correlation equaled r = 0.46 for error
rate not higher than breakpoint of 0.44 (n = 21), while
it equaled r = −0.52 for error rate above this breakpoint
(n = 15). Also, a second degree polynomial model fitted better
than a first degree polynomial model, F(1) = 134.68, p <

0.001, (adjusted R2 = 0.14 and −0.02, respectively) and its
predictions closely matched the predictions of the segmented
regression (to the extent of difference in their shapes; see
Figure 5).

However, because each participant gave only one response
to each Raven’s item, we were not able to directly estimate
the amount of floor/ceiling effects for single items. Instead, we
computed ceiling/floor effect for nine bins of items (four items
in each) constructed according to increasing difficulty of items.
As can be seen in Figure 6, the observed correlations with WMC
differed between the bins. The weakest correlation for the first
bin was significantly weaker than the strongest correlation for the
sixth bin, z = −1.86, p = 0.031, whereas the correlation for the
latter bin was marginally stronger then the correlation for the last
bin, z = 1.55, p = 0.06.

Furthermore, for each bin we used the proportion of scores
with either four or zero correct responses as the proportion
of either ceiling or floor effect for that bin. We used the
proportion of the dominant effect in each bin as the measure
of floor/ceiling effect level. Using our formal model, with such
a measure we were able to predict specific values of correlation
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TABLE 1 | Accuracy on the consecutive Raven-test items [with the 95% confidence intervals].

Item Accuracy Item Accuracy Item Accuracy

1 0.87 [0.85, 0.89] 13 0.64 [0.60, 0.67] 25 0.50 [0.47, 0.54]

2 0.92 [0.90, 0.93] 14 0.80 [0.77, 0.83] 26 0.43 [0.40, 0.46]

3 0.90 [0.88, 0.92] 15 0.76 [0.73, 0.79] 27 0.39 [0.36, 0.43]

4 0.86 [0.84, 0.88] 16 0.78 [0.76, 0.81] 28 0.27 [0.25, 0.30]

5 0.86 [0.84, 0.88] 17 0.73 [0.70, 0.76] 29 0.24 [0.21, 0.27]

6 0.91 [0.89, 0.93] 18 0.67 [0.64, 0.70] 30 0.39 [0.36, 0.42]

7 0.89 [0.87, 0.91] 19 0.73 [0.70, 0.76] 31 0.34 [0.31, 0.37]

8 0.83 [0.80, 0.85] 20 0.69 [0.66, 0.72] 32 0.30 [0.27, 0.33]

9 0.91 [0.89, 0.93] 21 0.58 [0.55, 0.62] 33 0.37 [0.34, 0.40]

10 0.82 [0.79, 0.84] 22 0.55 [0.52, 0.58] 34 0.26 [0.23, 0.29]

11 0.91 [0.89, 0.93] 23 0.58 [0.55, 0.61] 35 0.35 [0.32, 0.38]

12 0.86 [0.83, 0.88] 24 0.41 [0.38, 0.44] 36 0.09 [0.07, 0.11]

FIGURE 5 | Relation between the dificulty of a Raven-test item (error

rate) and the correlation between accuracy on that item and WMC

(measured with the complex span tasks). The solid line represents the

segmented regression line. The dashed line reflects the quadratic regression

line N = 347.

between accuracy in the consecutive Raven bins, and WMC (as
a reminder: in the model the correlation with WMC in each
bin depends on both the amount of floor/ceiling for that bin
and the overall correlation between the variables in the no-effect
case; see Figure 4). As we did not know the no-effect correlation,
we fitted its value (it was the only parameter fitted). In result,
the match between observed and predicted correlation was very
good, RMSD = 0.028, r = 0.82, χ2

(8)
= 3.31, p = 0.91 (see

Figure 6).
We also repeated the above described single-item and bin

analyses for the 939-people data, and the short-term memory
and relation integration tasks (i.e., for the mean z-score on

these two latter tasks). For the single items, exactly as in
previous analysis, the segmented regression fitted the data
much better than linear regression, F(2) = 6.10, p = 0.006
(adjusted R2 = 0.22 and −0.013, respectively, see Table 3 for
parameters, and Figure 7 for the fitted values). The breakpoint
was detected at error rate equaling 0.42. Error rates before
that breakpoint yielded a positive correlation with the Gf–
WMC correlation coefficients (r = 0.53), whereas error rates
after the breakpoint correlated negatively with the Gf–WMC
correlation coefficients (r = −0.50). Also, similarly as for the
complex tasks, a second degree polynomial model (adjusted
R2 = 0.23) fitted better than a first degree polynomial
model, F(1) = 11.71, p = 0.002, and it gave the overall
predictions quite compatible with the segmented regression
output.

Finally, the analysis of the bins, constructed in the same
way as for the N = 347 sample, but now for the N = 939
sample, yielded a non-linear relation between bin difficulty and
its correlation with WMC, now with the latter variable measured
in a different way. We predicted these data using our formal
model, and received only a little bit worse match to the observed
939-people data than in the case of theN = 347 sample, RMSD =
0.026, r = 0.57, χ2

(8)
= 6.87, p = 0.55 (see Figure 8), which

might have resulted from the overall weaker correlation between
Gf and WMC, when the latter was measured with the short-term
memory and relational integration tasks.

Additionally, we were interested in testing validity of another
claim supposed to reject the storage capacity theory, regarding
differences between item-wise Raven and WMC correlations.
Specifically, Wiley et al. (2011) reported much stronger item-wise
correlations with the complex span task if the set of rules for
a particular Raven item was used for the first time throughout
the test (and thus possibly placed larger demands on executive
control or rule abstraction), than when it was repeated from one
of the previous items. Consequently, we used item coding from
Wiley et al., resulting in 18 items coded as new-rule items, and 18
as old-rule ones (as we only used Raven’s Set II).We used the 347-
people dataset for the sake of compatibility of studies (i.e., both
analyses pertained to Raven correlations with the complex span
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TABLE 2 | The 95% confidence intervals for parameters of the regression analyses for the correlation of the Raven items with WMC (calculated from the

three complex span tasks; N = 347) over difficulty of the items.

Regression Parameter Point estimation value 95% confidence interval

Linear [F(1, 34) = 0.4] Intercept 0.21 [0.17, 0.24]

Slope 0.02 [−0.05, 0.1]

Quadratic [F(2, 33) = 3.78] Intercept 0.16 [0.11, 0.21]

Linear term coefficient 0.39 [0.1, 0.68]

Quadratic term coefficient −0.43 [−0.76, −0.1]

Segmented [F(3, 32) = 9.95] Intercept 0.17 N/A

Breakpoint 0.44 [0.14, 0.61]

Slope before breakpoint 0.23 [0.06, 1.79]

Slope after breakpoint −0.46 [−0.68, −0.04]

Point estimation values are values of parameters fitted by regression which do not take in the account the error of estimation.

FIGURE 6 | Comparison of three measures as a function of the

consecutive bins increasing in difficulty. Left: the observed (solid line) and

predicted (dotted line) bin correlation with WMC (measured with the complex

span tasks). Right: the proportion of floor/ceiling effect (dashed line). N = 347

tasks). In our data, both correlations did not differ significantly,
z(34) = 1.41, p = 0.17 (mean r = 0.223 vs. r = 0.197, for
the new- vs. old-rule items, respectively). Our data match the
results of Little et al. (2014), who also failed to find any differences
in WM predictive power between the new- and old-rule items.
Moreover, in a recent design that prevented several confounds
found in Wiley et al. and Little et al. studies (as well as in our
study), Harrison et al. (2014) found a lowerWMC–Gf correlation
for the new-rule items than for old-rule items. Thus, Wiley et al.’s
(2011) results seem to be an artifact, likely resulting from their
use of only one variant of the complex span task (and, thus,
a large amount of task-specific variance), as well as an overall low
WMC–Gf correlation observed.

6. Conclusion

This paper aimed to investigate the commonly adopted
assumption within the working memory and fluid intelligence
research, which holds that if the storage capacity underlay the
WM–Gf correlation, then such a correlation should increase with
an increasing difficulty of a Gf-test, because more difficult test
items are more sensitive to individual differences in WM. As
often no such link is observed, on that basis the storage-capacity
account is rejected, and other accounts (e.g., ones referring to
executive control or processing speed) are favored. In contrast,
when this link is found, it is used to support the storage-
capacity account. Therefore, the above claim yields important
implications for the current theorizing on the cognitive basis of
intelligence. Our formal analysis demonstrated that the above
assumption is incorrect, and reasoning that is derived from this
assumption can speak neither for nor against the storage capacity
account (nor any other account).

Specifically, using both analytical inference and numerical
simulations, we have shown that the WMC–Gf correlation
primarily depends on the amount of floor/ceiling effect for
particular items/bins. Thus, whether the item-wise WMC
correlation of a given Gf-test increases or decreases (or remains
unchanged) with an increasing difficulty (error rate) of its items
depends on the overall difficulty of the test, as well as the
distribution of difficulty across its items. For easy progressive
tests, in which the early items yield huge ceiling, but the late items
do not approach floor, the item-wise WMC–Gf correlation will
indeed increase throughout the test. In contrast, for difficult tests,
in which the early items locate between ceiling and floor, but the
late items approach floor, the respective correlation will decrease.
For tests such as Raven, whose items span from substantial ceiling
to substantial floor, the quadratic relationship will be observed.
Fully confirming the predictions of our theoretical model, we
demonstrated this latter relationship empirically, using large
samples and two alternative methods of WMC measurement.
Finally, for tests whose items vary in difficulty, but neither the
easier items approach ceiling nor the harder ones approach floor,
no significant differences in item-wise correlation with WMC
will be observed. Thus, the investigated claim which holds that
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TABLE 3 | Confidence intervals for parameters of the regression analyses for the correlation of the Raven items with WMC (calculated from the

short-term memory and relation integration tasks; N = 939) over difficulty of the items.

Regression Parameter Point estimation value 95% confidence interval

Linear [F(1, 34) = 0.55) Intercept 0.19 [0.16, 0.21]

Slope −0.019 [−0.07, 0.032]

Quadratic [F(2, 33) = 6.22] Intercept 0.14 [0.11, 0.17]

Linear term coefficient 0.31 [0.11, 0.5]

Quadratic term coefficient −0.38 [−0.6, −0.15]

Segmented [F(3, 32) = 13.5] Intercept 0.15 N/A

Breakpoint 0.42 [0.17, 0.66]

Slope before breakpoint 0.15 [0.0036, 0.65]

Slope after breakpoint −0.35 [−0.46, −0.065]

Point estimation values are values of parameters fitted by regression which do not take in the account the error of estimation.

FIGURE 7 | Relation between the dificulty of a Raven-test item (error

rate) and the correlation between accuracy on that item and WMC

(measured by the short-term memory and relational integration task).

The solid line represents the segmented regression line. The dashed line

reflects the quadratic regression line N = 939.

if the storage-capacity account was true, then the WM–Gf test
correlations should increase simply as the function of items
difficulty, does not seem justified. Vice versa, even observing
exactly such an increase does not automatically support the
storage-capacity account. Therefore, no changes in correlations
due to differences in WM/Gf load (and resulting floor/ceiling
effects), or lack of them, can be used as an argument for or against
any theory of WM and/or Gf.

Another problem, cogently noted by a reviewer, pertaining
to derivations of theoretical conclusions from the item-wise
analyses of Gf-tests, is related to the fact that to date all such
analyses relied on tests which include a very limited pool of items,
presented in a fixed order. Thus, a given relationship between
WMC and the order/difficulty of a Gf-test item may be obscured

FIGURE 8 | Comparison of three measures as a function of the

consecutive bins increasing in difficulty. Left: the observed (solid line) and

predicted (dotted line) bin correlation with WMC (measured by the short-term

memory and relational integration task). Right: the proportion of floor/ceiling

effect (dashed line) N = 939.

by unknown peculiarities concerning that item (e.g., an awesome
rule), or the fact that the item was presented at a particular
position within a sequence (e.g., late one, when a participant
already became tired or subject to time pressure). Thus, a more
correct way of testing the model presented here would be to
use a test for which load-varied items are generated dynamically
(i.e., their pool is large), and in the random order concerning
their difficulty. However, as the use of such tests in literature
is still rare (for some exceptions see Embertson, 1995; Primi,
2002; Arendasy et al., 2008), and the present study was primarily
devoted to the critical evaluation of existing studies on the item-
wiseWMC/Gf analyses (that most widely used Raven APM), here
we also focused on the Raven. However, the future testing of our
model against data from a dynamically generated Gf-test (data
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still to be gathered) will definitely constitute a more powerful and
general test of the model.

Although some scholars (e.g., Unsworth and Engle,
2005; Little et al., 2014) previously suggested that profound
ceiling/floor effects may lead to decreased correlations, our
paper is the first to elucidate the complex relationship between
the amount of ceiling/floor for a Gf-test item, the Gf-test’s
overall strength of correlation with WM, and the resulting
WM correlations for particular Gf-test items, as well as to test
this relationship in a substantially large sample. Besides the
significant contribution of our analysis to the evaluation of
arguments for or against particular theories of WM/Gf, this work
also sheds light on what is in fact measured by Gf-test items that
differ in difficulty.

Although we focused on the relationship between WM and
Gf, our line of reasoning pertaining to ceiling/floor effects and
their impact on correlation can as well be generalized onto
tests from other domains of psychology. Moreover, in line
with Little et al. (2014) we conclude that the mathematical
properties of the correlation formula make it relatively immune
to the introduction of both floor and ceiling effects into the

distribution of the dependent variable, when the overall strength
of correlations is moderate, that is, lower than r = 0.7. As
in psychology the usual correlation strengths fall between 0.2
and 0.6, it is likely that even if half the participants score
near floor/ceiling level in a given part of psychological test, its
correlation with any variable will decrease only by a few points
(probably insignificantly), in comparison to the part in which
floor/ceiling is absent.
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