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Learning new words is an increasingly common necessity in everyday life. External
factors, among which music and social interaction are particularly debated, are claimed
to facilitate this task. Due to their influence on the learner’s temporal behavior, these
stimuli are able to drive the learner’s attention to the correct referent of new words
at the correct point in time. However, do music and social interaction impact learning
behavior in the same way? The current study aims to answer this question. Native
German speakers (N = 80) were requested to learn new words (pseudo-words) during
a contextual learning game. This learning task was performed alone with a computer or
with a partner, with or without music. Results showed that music and social interaction
had a different impact on the learner’s behavior: Participants tended to temporally
coordinate their behavior more with a partner than with music, and in both cases
more than with a computer. However, when both music and social interaction were
present, this temporal coordination was hindered. These results suggest that while
music and social interaction do influence participants’ learning behavior, they have
a different impact. Moreover, impaired behavior when both music and a partner are
present suggests that different mechanisms are employed to coordinate with the
two types of stimuli. Whether one or the other approach is more efficient for word
learning, however, is a question still requiring further investigation, as no differences
were observed between conditions in a retrieval phase, which took place immediately
after the learning session. This study contributes to the literature on word learning in
adults by investigating two possible facilitating factors, and has important implications
for situations such as music therapy, in which music and social interaction are present
at the same time.

Keywords: music, social interaction, word learning, temporal coordination, contextual learning

Introduction

In an increasingly multicultural world, even adult speakers often face the necessity to acquire a
foreign language starting from its building blocks: words. New words are frequently encountered
in everyday life, and the first step to learning them is to understand what they mean. However,
possible meanings for a new verbal label are countless. How does the learner identify the correct
one? Research in second language learning has identified several factors that may facilitate learners
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in their effort to acquire new vocabulary, among which music and
social interaction stand out as particularly important, yet their
role is still debated.

The idea that music may boost language functions has
fascinated the scientific community for quite some time
(Schellenberg, 2003), with particularly convincing evidence
coming from clinical studies (Hillecke et al., 2005; Thompson
et al., 2005; de l’ Etoile, 2010; Simmons-Stern et al., 2010; Thaut,
2010; Hurkmans et al., 2011; Altenmüller and Schlaug, 2013).
Similarly, in healthy populations several studies report a positive
effect of music on the encoding and decoding of verbal material,
with music being used either as a background (De Groot, 2006;
Ferreri et al., 2014, 2013), as a contrast for sung and spoken
material (Rainey and Larsen, 2002; Ludke et al., 2014), or as
a form of long-term training (Kilgour et al., 2000; Ho et al.,
2003). The question remains open, however, as to which specific
aspects of music impact learning. It has been proposed that the
boosting effect of music may depend on different mechanisms
(for example, temporal scaffolding/attention, emotion/reward
and arousal/mood), recruited by progressively higher levels
of musical complexity (Ferreri and Verga, under review). In
particular, this account suggests that simple musical stimuli
aligned with verbal material may significantly potentiate learning
by providing a temporal structure, in which temporal regularities
orient participants’ attention to the verbal information to be
encoded (Jones and Boltz, 1989; Thaut et al., 2005; Schön et al.,
2008; Francois and Schön, 2010); in the case of vocabulary
learning, this information is represented by new words and their
respective referents. By facilitating predictions of “what is coming
next” (Tillmann et al., 2003; Collins et al., 2014; Mathias et al.,
2014), the temporal regularities conveyed by music also induce
temporal coordination1. Indeed, a tight link between music and
coordinated motor behavior emerges very early on in life (for
example see Phillips-Silver and Trainor, 2005) and continues
throughout the entire lifespan, as demonstrated by the fact that
listeners often “tap their feet or nod along to the beat of a tune”
(Chen et al., 2008; see also Loehr et al., 2011; Repp and Su, 2013).
Importantly, this form of auditory-motor synchronization to
music has been shown to further improve attentional processing,
by facilitating the temporal encoding of the stimuli (Schmidt-
Kassow et al., 2013).

Interestingly, similar mechanisms (that is, attention orienting
and temporal coordination) have been proposed to explain
the facilitating effect of social interaction on word learning in
children, for whom the presence of another person is a sine
qua non-condition to build up new vocabulary (Kuhl et al.,
2003; Kuhl, 2007). In these asymmetric learning settings the
role of the more experienced person is to guide the learner’s
attention toward the correct referent for a new word, thus
strongly reducing the number of possible referents (Csibra and
Gergely, 2009; Hirotani et al., 2009). For this facilitation to occur,

1For consistency, the term “temporal coordination” is used in this paper to describe
the establishment of temporal dynamics between participants and music or a social
partner. It must be pointed out that the same phenomena are described by other
authors as synchronization (for example Yun et al., 2012), entrainment (for example
Knoblich and Sebanz, 2008), mutual adaptation (for example Konvalinka et al.,
2010) or with the more general term coupling (for example Demos et al., 2012).

temporal coordination between the learner and the social partner
is required to triangulate attention toward the target referent
at the correct point in time (Gogate et al., 2000; Rolf et al.,
2009; Rader and Zukow-Goldring, 2012). Support for this claim
comes from evidence that children learn significantly more new
words when they are able to reach a good temporal coordination
with their caregiver (Pereira et al., 2008). However, as social
verbal learning in adults has not been the focus of research until
recently (Jeong et al., 2010, 2011; Verga and Kotz, 2013), the
impact of a partner on second language acquisition still remains
an open question. Similarly to children, coordination with a
more experienced partner may create a sort of “multi-modal
rhythm” capable of facilitating the allocation of attention and
the binding of information required for learning (that is, the
correct referent and its new verbal label; Lagarde and Kelso, 2006;
Rolf et al., 2009). While the emergence of spontaneous temporal
coordination during interactive social situations is frequently
and reliably reported in literature on joint action (for example
Richardson et al., 2007; Yun et al., 2012), its impact on word
learning has not yet been investigated.

The evidence reported so far suggests that common properties
in music and social interaction – such as the establishment of
a temporal structure – may boost word learning by facilitating
the allocation of attention and the emergence of spontaneous
temporal coordination. Importantly, however, these are not
the only commonalities between music and social interaction
that justify a comparison between the two stimuli: indeed,
they are both rich, complex stimuli that are pleasurable and
enjoyable (Blood et al., 1999; Hari and Kujala, 2009) which
are often concurrently present in a number of contexts (for
example, musical performance, music therapy). Nevertheless,
an important distinction needs to be made: Listening to music
has a unidirectional influence, in the sense that the listener
coordinates with the music, but not vice-versa (Repp and Keller,
2008). Instead, social interaction elicits a bidirectional influence
between partners, who tend to reciprocally modify their behavior
(Richardson et al., 2007; Yun et al., 2012). In this scenario,
predictions about what is coming next need to be constantly
updated in order to allow the adaptation of one’s own behavior,
an ability critically dependent on the typically human skill
to infer the other person’s intentions (Frith and Frith, 2006,
2012). Whether this difference influences the way temporal
coordination is achieved represented the topic of a recent study
by Demos et al. (2012). In their experiment, these authors
evaluated participants’ coordination with music or a partner,
while seated in rocking chairs, and observed that spontaneous
coordination emerged with music as well as with a partner.
However, coordination with music was weaker than with a
partner. Further, when both music and the partner were present,
they competed as sources of attraction, resulting in a weaker
coordination. The authors interpret these results by proposing
that coordination with music differs from coordination with a
partner because people interacting together behave as coupled
oscillators (Wilson and Wilson, 2005; Dumas et al., 2010; Demos
et al., 2012). At the neural level, this behavior reflects the activity
of populations of neurons in the member of the dyad which
become synchronized in their oscillating firing pattern (Dumas
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et al., 2010, 2011; Cui et al., 2012; Hasson et al., 2012), and
in turn, this coupling is reflected in temporal coordination
emerging at the behavioral level (Richardson et al., 2007; Pereira
et al., 2008; Yun et al., 2012). From a psychological standpoint,
these phenomena create a “common ground” between partners,
facilitating the transmission of information (Csibra and Gergely,
2009). While this psychological state has been deemed pivotal
for children to determine the adult’s referent of a new word
(Tomasello, 2000), whether adult learners may also benefit
from this “shared ground” is still an open question (Pickering
and Garrod, 2004; Jeong et al., 2010; Stephens et al., 2010;
Verga and Kotz, 2013). On the one hand, the presence of
a knowledgeable partner may help to reduce the number of
possible referents for a new word; on the other hand, adults
do posses – compared to infants – more refined cognitive
abilities, which may be sufficient for acquiring new words.
In the first case, the role of the social partner may be to
provide a temporal structure able to drive participants’ attention
toward the verbal information to be encoded; in this case,
the source of information (whether a human or not) should
be irrelevant. Conversely, if the establishment of a “common
ground” – partially reflected by temporal coordination between
the partners – is as important in adult learners as it is in
infants, then social interaction should provide an advantage
when compared to other forms of temporally structured stimuli,
such as music. In other words, this corresponds to the question
of whether it is necessary for this temporal structure to be
conveyed by someone, or if it is enough for it to be conveyed by
something.

In the current study, our aim was to answer this question by
implementing a social/non-social contextual learning task that
could be performed either with or without music. In this task,
a participant interacts with an experimenter on a checkerboard
containing images depicting either nouns or verbs; their common
goal is to identify three images, which combined together create
a plausible sentence in the form subject-verb-object. When
they reach their goal, the name of the sentence object in a
new language is presented to the participant. While the game
approach is typical for social interaction studies (e.g., De Ruiter
et al., 2007), the current word learning game represents a novel
paradigm for language learning studies.

Based on the literature reviewed above, we expected
participants to achieve better temporal coordination with a
social partner (Richardson et al., 2007; Yun et al., 2012)
and with music (Repp and Keller, 2008; Demos et al., 2012)
when compared to a computer, but hindered when both
music and social interaction were present (Demos et al.,
2012). Indeed, as suggested above, music and social partners
exert different influences (unidirectional versus bidirectional)
on participants, possibly implemented by different mechanisms
(temporal regularities versus common ground). When both
music and a social partner are present, participants either
have to integrate the two sets of information or choose just
one set and ignore the other. In terms of word learning, if
the establishment of a “common ground” is essential, then
an improved word-learning rate should be observed in the
social interaction condition, regardless of the fact that music

also drives the learner’s attention toward the correct referent
for new words. Instead, if this latter aspect is what drives
word learning, then no difference should be observed between
music and social interaction. However, another possible line of
interpretation could be considered. Music may actually ease the
cognitive dissonance arising from the stressful learning situation
represented by the learning game. Cognitive dissonance is a
well-known psychological phenomenon, describing a discomfort
originated by holding conflicting cognitions (Festinger, 1957;
Cooper, 2007; Harmon-Jones et al., 2009). Recent theories
suggest that music may allow tolerating cognitive dissonance,
hence facilitating the acquisition of new knowledge (Perlovsky,
2010, 2013a,b, 2014). If this were the case, then we should expect
participants to perform better with music, independently of the
presence of a partner (Masataka and Perlovsky, 2012; Cabanac
et al., 2013; Perlovsky et al., 2013).

However, it may still be the case that neither music nor
social interaction provides useful cues at all, as adult learners are
cognitively equipped to learn new words without any additional
help. In this scenario, music, and social interaction may, instead,
interfere with learning, by increasing the cognitive load of the
learning situation (Racette and Peretz, 2007; Moussard et al.,
2012, 2014). To investigate these hypotheses, we manipulated
the variability of the sentence context in which new words were
embedded to obtain a “difficult” condition (that is, words were
repeated in a different context so the word referent had to be
identified ex novo at each occurrence) and an “easy” condition,
in which task requirements were less demanding (that is, words
were repeated in the same sentence context (sSC) so the referent
was already known from previous presentations of the same
word). In line with our previous results, we expected music and
social cues to be maximally used in the “difficult” condition, but
not used in the “easy” condition.

Materials and Methods

Participants
Eighty native German speakers (40 F, mean 24.86 ± 2.62 years)
took part in the experiment. They were all recruited from a
database from the Max-Planck Institute for Human Cognitive
and Brain Sciences (Leipzig, Germany). All participants reported
normal or corrected to normal vision, and none of them reported
a history of hearing or neurological disorders. Right-handedness
was assessed by the Edinburgh Handedness Inventory (Oldfield,
1971). An experimenter (LV, F, 28 years) was the partner
in the social interaction conditions. The same experimenter
participated in a previous pilot study with 68 German native
speakers (34 F, mean 25.19 ± 2.88 years). This pilot study
employed the same paradigm presented here, and was used
to extract the time delays distribution used in the computer
and music conditions in the current study to mimic the social
condition. In both studies, all participants gave written informed
consent and were paid for their participation. The experiment
was conducted in accordance with the Declaration of Helsinki
and approved by the Ethics Committee of the University of
Leipzig.
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Materials and Apparatus
Visual Stimuli: Checkerboards and Pseudo-Words
Visual stimuli consisted of 180 checkerboards (3 × 3) each
containing nine images (330 × 245 pixels, 72 dpi) each centered
in a different cell of the checkerboard. The images were black
and white drawings representing objects, humans, animals, or
actions selected from a validated database available online (Bates
et al., 2003; Szekely et al., 2003, 2004, 2005; http://crl.ucsd.
edu/experiments/ipnp/). A total of 49 images were employed,
including 12 pictures representing humans, or animals (category:
Subject), 17 representing actions (category: Verb), and 20
representing objects, humans, or animals (category: Object). All
images represented single objects, humans or animals (Figure 1).

In each checkerboard, two nouns and an action were
combined to form simple transitive German sentences (noun –
transitive verb – target object; for example, “Der Junge isst das
Ei,” “The boy eats the egg”). We defined the combination of
subject (“Der Junge”) and verb (“isst”) as the “sentence context.”
Images depicting elements of the sentence were represented in
cells touching each other at least corner to corner. Given this
constraint, only one object could be chosen to form a plausible
German sentence. Subject and Verb pictures are presented to
the participant, in each trial, in rapid succession; the way these
pictures are selected depends upon the condition each participant
is assigned to: In the social condition, the experimenter selects the
two pictures, while in the computer and music conditions these
are selected by the computer (see “2.4 Task and Experimental
Procedure”). The delay between trial beginning (appearance of
a checkerboard) and selection of the Subject picture varies from a
repetition to the next, while the delay between Subject picture and
Verb picture is kept approximately constant. The distribution of

FIGURE 1 | Example of checkerboard used in the experiment. The
hidden sentence is in this example composed of the pictures representing a
young boy, the act of eating, and the object egg. The sentence “The boy eats
the egg” is the only plausible sentence that can be constructed within the
given constraints. Elements depicted in the checkerboard are in the first row
(top) from left to right: boy (noun), egg (noun), to pick (verb); second row
(middle) from left to right: letter (noun), to eat (verb), baby (noun). Third row
(bottom) from left to right: to water (verb), map (noun), to peel (verb). Images
are reproduced from http://crl.ucsd.edu/experiments/ipnp/index.html

the delays was calculated based on a previous pilot study using
the same paradigm and the same experimenter as the partner
in the social condition; the delays used in the computer and
music condition in the current study match the mean values
of the experimenter-generated delays in each repetition of this
pilot experiment. The experimenter-generated delays in the pilot
study were highly correlated with the delays generated by the
same experimenter in the current experiment (subject picture
highlight: rs= 0.883, p= 0.002; verb picture highlight: rs= 0.950,
p = 0.000). A summary of the delays in the pilot experiment and
in the current experiment is presented in Table 1.

The six pictures not belonging to the target sentence were
distractor images chosen from the initial image pool and were
balanced between nouns (either animals, humans, or objects) and
actions. None of these distractor images constituted a plausible
object for the given sentence context. The checkerboards were
further balanced for mean naming frequency of the depicted
items and mean number of times each element of the target
sentence (subject, verb, object) appeared in each cell. All possible
dispositions for the three target images were employed a
comparable number of times.

Images belonging to the category “objects” (N = 20), which
were employed as targets for the sentence context, were each
associated with a different pseudo-word. These stimuli were
based on Italian word structure and were selected from a
published set of disyllabic pseudo-words (Kotz et al., 2010). The
selected pseudo-word sample (length range: minum 4, maxmum
6 l) was balanced for syllabic complexity, initial letter and final
letter (“a” or “o”).We excluded words ending in “e” or “i” to avoid
a possible confound with the Italian plural form, since all the
pictures contained singular elements. Each pseudo-word and the
associated target object could be presented a maximum of nine
times during the learning phase of the experiment.

Auditory Stimuli: Melodies
Two original (i.e., unknown) melodies were created ad hoc by
a music theorist (P.L.) to comply with our requirements. One
melody was assigned to the “subject” of the sentence context,
while the other melody was assigned to the “verb.” The melodies
needed to parallel the role of the experimenter in the social
condition as closely as possible. For this reason, the following
criteria were applied: First, the length (duration) of the “subject
melody” was adjusted to be comparable to the response times
of the experimenter in the social interaction data previously
collected. Thus, while the original melody was always the same,
we ended up with nine different tempi, and progressively faster
tempi were used from the first to the last repetition. The duration
of the musical excerpts ranged from 2.64 to 4.64 s. To allow
comparisons with the computer condition, the same durations
were applied to jitter the stimuli in the silent condition. Second,
a melody was created for the “verb” picture with a fixed duration
of 658 ms. These time delays were comparable to the response
times of the experimenter (which were extremely stable over
the course of the experiment) to provide the “verb” picture and
collected in a previous pilot study. A summary of the specific
time delays is provided in Table 1. The rationale behind this
choice not to extract the duration of these delays from a random
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TABLE 1 | The table summarizes the details of the timing sequences (mean and SD expressed in seconds) for the two main parts of each trial in the
experiment (Subject picture highlight; time delay between Subject and Verb pictures highlight).

Subject picture highlight onsets Subject-verb pictures onsets delays

Experimenter Experimenter

Trial Pilot study Current study Music Computer Pilot study Current study Music Computer

1 4.650 ± 2.25 4.357 ± 1.06 4.642 4.650 0.652 ± 0.21 0.612 ± 0.06 0.658 0.500

2 3.424 ± 2.21 3.635 ± 0.57 3.429 3.424 0.514 ± 0.09 0.589 ± 0.08 0.658 0.500

3 3.110 ± 1.72 3.391 ± 0.49 3.117 3.110 0.498 ± 0.10 0.568 ± 0.10 0.658 0.500

4 2.972 ± 1.77 3.267 ± 0.57 2.972 2.972 0.521 ± 0.13 0.563 ± 0.12 0.658 0.500

5 3.040 ± 1.89 3.195 ± 0.63 3.038 3.040 0.491 ± 0.09 0.544 ± 0.12 0.658 0.500

6 2.774 ± 1.85 3.129 ± 0.51 2.775 2.774 0.489 ± 0.08 0.541 ± 0.13 0.658 0.500

7 2.936 ± 2.00 3.172 ± 0.55 2.936 2.936 0.480 ± 0.09 0.533 ± 0.13 0.658 0.500

8 3.000 ± 2.89 3.199 ± 0.62 3.000 3.000 0.479 ± 0.07 0.531 ± 0.14 0.658 0.500

9 2.634 ± 1.45 2.994 ± 0.53 2.637 2.634 0.463 ± 0.07 0.527 ± 0.14 0.658 0.500

rs = 0.883, p = 0.002 rs = 0.950, p = 0.000

These time delays were not controlled by participants, but by the experimenter (S+ condition), music (M+ condition), or the computer (S− condition). The correlation
between the experimenter-generated delays in the pilot study and in the current experiment is also reported. These time delays were not controlled by participants, but
by the experimenter (S+ condition), music (M+ condition), or the computer (S− condition). The correlation between the experimenter-generated delays in the pilot study
and in the current experiment is also reported.

distribution is based on the necessity to keep the structural
and musical characteristics of the melodies intact. For the “verb
delays” these were maintained at 658 ms, as this was close to the
preferred tempo used by the experimenter in the pilot study, and
confirmed in the current study. The “verb melodies” are slightly
longer than the verb delays in the other two conditions (social
and computer, 500 ms c.a.), as we found it virtually impossible
to create a melody with a meaningful development lasting less
than around 600 ms. Third, the choice of a single melody for
each part was done to ensure comparability with both the social
and computer conditions, characterized by a consistent “pacer”
(same experimenter, same computer). Fourth, both melodies
were simple with a clear development and a predictable ending
point to ensure appropriate action from the participant when
required.

Experimental Design
We manipulated three factors: two levels of music (present,
absent), two levels of social interaction (present, absent) and two
levels of sentence context variability (same, different).

Music context and social interaction were both evaluated as
between-subject factors. Every participant was semi-randomly
assigned to one of four conditions: music and social interaction
(M+, S+; N = 20, 10 F, mean age 24.40 ± 2.04 years), non-
music and social interaction (M−, S+; N = 20, 10 F, mean
age= 24.30± 2.23 years), music and non-social interaction (M+,
S−; N = 20, 10 F, mean age 24.85 ± 3.12 years), and lastly
non-music and non-social interaction (M−, S−; N = 20, mean
age 25.90 ± 2.83 years). There was no age difference between
the groups [all ps > 0.089]. The four groups were additionally
balanced in terms of their musical background, defined in terms
of years of musical practice prior to the participation in the study
(mean number of years of instrument playing = 4.99 ± 6.37;
mean number of years of singing and/or dancing = 1.94 ± 4.26;
all ps > 0.210).

Half of the objects (N = 10) occurred repetitively within the
sSC. For example, the image representing “the cow” was always
the correct ending for the sSC “the wolf bites.” The other half
of the objects (N = 10) was presented at each repetition within
a different sentence context (dSC – different sentence context).
For example, the image representing “the egg” could follow in
sentence contexts such as “the woman cuts,” “the boy eats,”
etc. The alternation between sSC and dSC checkerboards was
randomized, as well as the order in which triads belonging to
each of the two conditions were presented to each participant.
Although each sentence was repeated nine times, the actual
number of exposures to each pseudo-word was dependent on
the number of correct responses given by each participant, as
a pseudo-word was presented only in case of the correct object
identification. The order of trial presentation was randomized for
each participant.

Task and Experimental Procedure
The experiment consisted of three parts: practice trials, learning
phase, testing phase. Stimuli were presented using a desktop
computer running Presentation 16.0 (Neurobehavioral Systems,
Albany, NY, USA). Two standard wheel mice (Premium Optical
Wheel Mouse, Logitech, Morges, Switzerland) were connected
to the same Windows computer and used as response devices.
Musical stimuli were presented via a stereo speaker system
(LS21 2.1, Logitech, Morges, Switzerland). The task specifics are
described below.

Practice Trials and Learning Phase
Participants were first presented with detailed written
instructions and performed a block of 10 practice trials to
familiarize themselves with the task requirements. In all
conditions, the task of the participant was to find the correct
object for a given sentence context amongst the images on
the checkerboards. Each trial began with the presentation of a
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fixation cross (500 ms), followed by a checkerboard containing
nine images. In each checkerboard, a red frame appeared around
the image representing the subject of the sentence context,
followed by a second red frame around the image representing
the verb of the sentence context. When both elements were
marked with a red frame, the participant could give their answer
by selecting an object fitting the sentence context from the
remaining seven images on the checkerboard (Figure 2).

For participants assigned to the social condition, participant
and experimenter were sitting side by side in front of the same
computer screen; each member of the dyad was controlling a
cursor on the screen through his/her own computer mouse.
When the checkerboard containing the nine images appeared,
the experimenter selected the subject and verb of the target
sentence, by left clicking on them with the mouse in rapid
succession. The experimenter tried not to adapt specifically
to each participant’s behavior, but instead to keep a constant
behavior consisting in a gradual speeding up over time. This
decision was made to ensure the maximal compatibility with
the non-social conditions, in which there was no adaptation to
the participant’s behavior. For the participants assigned to the
non-social condition (both M+ and M−) the sentence context
was selected by a computer program. The delay between the
appearance of the checkerboard and the marking of the “subject”
of the sentence was randomly selected from a range comprised
between 2.634 and 4.650 s; this range comprises nine different
delays, each corresponding to the experimenter’s mean delay
for each repetition in a previous pilot study (Table 1). These

mean values were used in the current study to define, for each
repetition, the delays between the appearances of the sentence
context pictures. More specifically, in theM− condition, the red
frame around the “subject” appeared with a variable stimulus
onset asynchrony (range: 2.634–4.650 s; see Table 1 for the
repetition-specific delays); the red frame around the “verb”
followed after 500 ms. In the M+ condition, a melody started
playing when the checkerboard appeared; the “subject” red frame
was highlighted at the end of the melody. The duration of
the melodies was comparable to the stimulus onset asynchrony
of the M− condition (range: 2.637–4.642 s; see Table 1 for
the repetition-specific delays); in this condition, the red frame
around the “verb” followed after 658 ms. Importantly, when both
music and social interaction were present (M+, S+ condition),
the experimenter paid particular care to time her response to
the offset of the musical stimulus. The selection of the delays
between appearance of the checkerboard and appearance of the
red frame around “subject” and “verb” pictures were based on
the experimenter-generated delays in the social condition of a
previous pilot study using the same paradigm and the same
experimenter. These data are reported in Table 1, together with
the experimenter’s time in this study and the delays used for the
non-social conditions.

There was no time limit for participants to answer. In all
conditions, if a correct answer was given, the selected image was
substituted by a pseudo-word (black capital letters over white
background, Arial, 40 pt.) providing the “Italian name” of the
object. The pseudo-words remained on the screen for 1000 ms. If

FIGURE 2 | Example of an experimental trial.
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an incorrect response was given, no “Italian name” was displayed
and the following trial began immediately.

After the training, participants performed the learning phase.
The procedure of the learning phase was identical to the training
phase. Hunderd and eighty trials (20 objects × 9 repetitions)
were presented in total during the experiment. See Picture 2 for a
graphical representation of a trial.

Testing Phase
At the end of the learning phase, a behavioral testing phase took
place to evaluate whether pseudo-words presented during the
learning phase had been mapped to the corresponding objects.
In this task, participants were presented with novel sentence
contexts (that is, combinations of pictures representing a subject
and a verb that had not been seen together before), followed
by three of the pseudo-words (“Italian words”) participants had
learned during the learning phase. Participants were asked to
select the “Italian word” that matched a given sentence context.
All trials contained one correct and two incorrect options.

Data Analysis
Statistical analyses of behavioral data were performed using
MATLAB R2013a (The Mathworks Inc., Natick, MA, USA)
and IBM SPSS Statistics 18 (IBM Corporation, New York,
NY, USA). Behavioral data were first corrected for outliers.
Trials with response times exceeding the mean ± 2 SDs were
excluded from further analysis (mean rejected trials across
participants = 4.32%).

Accuracy scores (proportion of correct responses in total),
response times for correct responses and their SDs were
calculated for each repetition of the object, for each participant
and for each of the two conditions (sSC and dSC). For the
learning phase, response times were calculated as the time delay
between the appearance of the “verb” image and the participant’s
answer. To evaluate the degree of temporal coordination of the
participant during the learning phase, we used the following
measures: First, SDs of response times were employed as an index
of the stability of participants’ performance. We additionally
used the coefficient of variation (CV) as an index of variability
independent of response speed, to allow for a direct comparison
between the different conditions. Further, we calculated the
lag-0 and lag-1 cross correlation (cc) coefficients between the
intra-trial-intervals produced by the participants (i.e., the time
delay between highlight of the Verb picture and selection of the
object picture) and those produced by the experimenter (S+
conditions) or computer (S− conditions; i.e., the time delay
required to identify the subject of the sentence context). More
specifically, the cc at lag-0 indicated how much the behavior of
the participant in one trial was temporally related to the behavior
of their partner (the experimenter/computer) in the same trial.
Cross-correlations at lag-1 indicated whether the behavior of the
experimenter/computer was related to the participant’s behavior
in the following trial. There was no auto-correlation in the time
series of the pacing signal, being either experimenter, computer or
music (all ps > 0.066); furthermore, the same analyses conducted
with a correction for auto-correlations yielded the same results
as without correction. For this reason, the results here presented

are based on cross-correlation indexes calculated without a
correction for auto-correlations.

To account for the difference in the variability of trial
presentation in the different conditions, we conducted separate
ANCOVAs on the variables of interest using the SDs of the
experimenter’s/computer’s response times as covariates during
the learning phase. We did not use this covariate in the cross-
correlation analyses as SDs account for the variability in the
computer/experimenter RTs series, in which the correlation
coefficients are calculated.

For the testing phase, response times were calculated as
the time delay between the appearance of the three alternative
pseudo-words and the participant’s response. Accuracy scores
were defined as the proportion of correct responses out of the
total number of responses. We used the number of exposures
during the learning phase as a covariate. This number took into
account the mean number of times pictures were repeated during
the learning phase, ranging from a minimum of 0 (no correct
responses) to a maximum of nine times (no errors).

When the assumption of sphericity was not met, a
Greenhouse-Geisser correction was applied to the degrees of
freedom. Two-tailed t-tests and simple effect analyses were
employed to compare individual experimental conditions and to
resolve interactions. We used an alpha level of 0.05 to ascertain
significance for all statistical tests, and applied a Bonferroni
correction in post hoc tests to control for multiple comparisons.

Results

Learning Phase
Participants responded with an average accuracy of 93% correct.
A 2 × 2 × 3 repeated measures ANCOVA was conducted on
accuracy scores with the between factors music context (M+ vs.
M−) and social context (S+ vs. S−), the within factors sentence
context (dSC vs. sSC) and repetition (nine repetitions), and SDs
of presentation times (experimenter, computer) as covariates to
account for differences in variability across conditions.

Participants’ accuracy increased during the learning phase
[linear trend, F(4.569, 333.552) = 5.798, p = 0.000, η2

p = 0.074].
Words encoded in sSC, (M = 0.954, SEM = 0.008) elicited
higher accuracy than words encoded in different sentence
contexts (dSC, M = 0.925, SEM = 0.009) [F(1,73) = 14.782,
p = 0.000, η2

p = 0.168]. There were no other significant effects
or interactions (all ps > 0.074; Figure 3).

Response times decreased over the course of the learning
phase [linear trend, F(3.046, 219.321) = 34.332, p = 0.000,
η2
p = 0.323]. Words encoded in different sentence contexts

elicited slower response times (dSC, M = 3.339, SEM = 0.139)
compared to words encoded in sSC, (M = 2.487, SEM = 0.107)
[F(1,72) = 73.839, p = 0.000, η2

p = 0.506 ]. The interaction
between repetitions and sentence context was significant:
bonferroni corrected post hoc tests revealed no difference between
sSC and dSC words at the first repetition (p = 0.863); however,
response times for the two conditions started to differ already
with the second repetition, with sSC being significantly faster
than dSC during the entire learning phase (all ps < 0.001).
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FIGURE 3 | Accuracy scores (estimated marginal means) during the learning phase, plotted as a function of item repetitions and controlled for
time variability in sentence context presentation. The area subtended by the shadows represents the standard error of the mean. M−, music context
absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC, different sentence context; sSC, same sentence context.

Participants trained socially (S+, M = 2.325, SEM = 0.174)
were significantly faster than participants trained non-socially
(S−, M = 3.485, SEM = 0.174) [F(1,72) = 11.471, p = 0.001,
η2
p = 0.137]. There were no other effects or significant

interactions (all ps > 0.103; Figure 4).
The CV increased over the course of item repetitions [linear

trend, F(6.355, 457.583) = 2.813, η2
p = 0.038]. Bonferroni

corrected post hoc tests revealed that the CV was significantly
lower in the first item repetition as compared to all subsequent
repetitions (all ps < 0.033); further, in all repetitions except
the third and seventh, the CV was lower than the last one (all
ps < 0.038). Additionally, we observed an interaction between
music context and social interaction [F(1,72)= 12.173, p= 0.000,
η2
p = 0.145]. Therefore, a simple effect analysis was carried

out. This analysis revealed that participants trained non-socially
had significantly more stable performances when doing the task
with music (M+, M = 0.373, SEM = 0.026) than without
(M−, M = 0.478, SEM = 0.026) [F(1,72) = 13.681, p = 0.000,
η2
p = 0.160]. In socially trained participants, we observed the

opposite effect, though this was only marginally significant:

participants performing the music task had significantly higher
values of CV (M = 0.459, SEM = 0.020) as compared
to participants doing the task without music (M = 0.357,
SEM = 0.042) [F(1,72) = 3.825, p = 0.054, η2

p = 0.050]. There
were no other significant effects or interactions (all ps > 0.099;
Figure 5).

Standard deviations of the response times decreased over
the course of the learning phase [linear trend, F(5.490,
395.256) = 3.625, p = 0.002, η2

p = 0.048]. Bonferroni corrected
post hoc tests revealed that variability was significantly different
between the first and the second item repetition (p = 0.000),
between the second and the third (p = 0.019) and between
the fourth and the fifth repetition (p = 0.020). There was no
difference between the other transitions from one repetition to
the next (all ps > 0.796). Further, SD for the responses to sSC
words (M = 1.019, SEM = 0.051) were smaller than those
to dSC word (M = 1.402, SEM = 0.071) [F(1,72) = 35.722,
p = 0.000, η2

p = 0.332]. Additionally, participants trained in a
social interactive context (S+,M = 0.869, SEM= 0.123) were less
variable than participants trained non-socially (S−, M = 1.552,

FIGURE 4 | Response times (estimated marginal means) during the learning phase, plotted as a function of item repetitions and controlled for time
variability in sentence context presentation. The area subtended by the shadows represents the standard error of the mean. M−, music context absent; M+,
music context present; S−, non-social interaction; S+, social interaction; dSC, different sentence context; sSC, same sentence context.
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FIGURE 5 | Coefficient of variation (CV; estimated marginal means) during the learning phase, plotted as a function of item repetitions and
controlled for time variability in sentence context presentation. The area subtended by the shadows represents the standard error of the mean. M−,
music context absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC, different sentence context; sSC, same sentence
context.

SEM = 0.130) [F(1,72) = 9.347, p = 0.000, η2
p = 0.115]. There

were no further effects and no interactions (all ps > 0.113;
Figure 6).

The cross-correlations at lag-0 revealed a main effect of
repetition [linear trend, F(1.897, 142.252) = 70.639, p = 0.000,
η2
p = 0.485]; more specifically, Bonferroni corrected post hoc tests

revealed a significant increase from one repetition to the next (all
ps < 0.001) except for repetitions 4, 5, and 6 (all ps > 0.083).

The difference between the social and the non-social group
was significant [F(1,75) = 8.044, p = 0.006, η2

p = 0.097]; indeed,
participants trained socially had significantly higher lag-0 cc
values (S+, M = 0.387, SD = 0.025) compared to participants
trained non-socially (S−,M = 0.286, SEM = 0.025).

Further, the three-way interaction between sentence context,
social interaction and music context reached significance
[F(1,75) = 11.435, p = 0.001, η2

p = 0.132]. A follow-up simple
effects analysis revealed that when participants were trained
in a musical context, there were no differences if they were

trained with a partner or without [F(1,75) = 1.260, p = 0.265,
η2
p = 0.017], nor were there differences for sSC compared to dSC

words [F(1,75) = 0.017, p = 0.897, η2
p = 0.000]. However, when

learning without music, participants trained socially displayed
significantly higher lag-0 correlations for dSC words compared
to sSC words [dSC, M = 0.471, SEM = 0.044; sSC, M = 0.324,
SEM = 0.043; F(1,75) = 9.323, p = 0.003, η2

p = 111]. There
was no difference between sSC and dSC words for participants
trained non-socially without music [F(1,75) = 0.291, p = 0.591,
η2
p = 0.004].
The three-way interaction between repetition, social

interaction and music context was also significant
[F(1.897,142.252) = 4.120, p = 0.020, η2

p = 0.052], therefore a
simple effects analysis was carried out. This analysis revealed
that when learning without music, participants in the S+ group
had from the very beginning higher lag-0 cc (M = 0.245,
SEM = 0.062) than participants trained non-socially (S−,
M = 0.031, SEM = 0.061) [F(1,75) = 6.035, p = 0.016,

FIGURE 6 | Standard Deviations of response times (estimated marginal means) during the learning phase, plotted as a function of item
repetitions and controlled for time variability in sentence context presentation. The area subtended by the shadows represents the standard error of
the mean. M−, music context absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC, different sentence context; sSC,
same sentence context.
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η2
p = 0.074]. There was no difference when participants were

trained with music at the first repetition [F(1,75) = 1.698,
p = 0.196, η2

p = 0.022]. There was no difference between the
two groups (S+ and S−) in either music condition (M+, M−)
in repetitions 2, 3, and 4. Starting from the fifth repetition,
participants learning without music became significantly more
coordinated when trained with a social partner compared to a
computer. This effect was then continuous until the end of the
experiment (for all repetitions p < 0.025). The same significant
difference was found in the musically trained group, but only
starting from the second to last repetition (for repetitions 8
and 9 ps < 0.044). There were no other significant effects or
interactions between factors (all ps > 0.120; Figure 7).

The cross-correlations at lag-1 were significantly higher for
participants trained with music (M+, M = 0.167, SEM = −017)
than without (M−,M = 0.078, SEM = 0.017) [F(1,72) = 13.572,
p = 0.000, η2

p = 0.159]. Further, the interaction between social
interaction and music context was significant [F(1,72) = 8.676,
p = 0.004, η2

p = 0.108], therefore a simple effects analysis
was carried out. This analysis revealed no difference between

participants trained socially or non-socially when learning
without music [F(1,72) = 0.671, p = 0.415, η2

p = 0.009].
However, participants trained with music had significantly higher
lag-1 correlations when playing with a partner (M = 0.224,
SEM = 0.024) compared to a computer (M = 0.110,
SEM = 0.024) [F(1,72) = 11.672, p = 0.000, η2

p = 0.137;
Figure 8].

To summarize, learning effects emerged during the task with
a progressive increase in accuracy and temporal coordination
(lag-0 cc) and a decrease in response times. Overall, words
encoded in a consistent sentence context were recognized
faster and more accurately than words encoded in a different
context. Participants trained socially were significantly faster,
less variable (SDs) and more temporally coordinated (lag-
0 cc) than participants trained non-socially. In the no-
music condition, lag-0 cc were significantly higher for social
participants exposed to dSC words. However, in the music
condition no differences were observed. Variability independent
of speed (CV) was lower for participants who trained
non-socially with music than without; participants playing

FIGURE 7 | Cross-correlations at lag-zero during the learning phase, plotted as a function of item repetitions. The area subtended by the shadows
represents the standard error of the mean. M−, music context absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC, different
sentence context; sSC, same sentence context.

FIGURE 8 | Cross-correlations at lag-one during the learning phase, plotted as a function of item repetitions. The area subtended by the shadows
represents the SE of the mean. M−, music context absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC, different sentence
context; sSC, same sentence context.
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with an experimenter were instead more stable without
music. Lag-1 cross-correlations were higher for participants
trained with music, especially when playing the game with a
partner.

Testing Phase
Separate 2× 2× 2 ANCOVAswere conducted on accuracy scores
and response times to evaluate the impact of the experimental
manipulations (music context, M+ vs. M−; social context, S+ vs.
S; sentence context, sSC vs. dSC)while accounting for the number
of exposures to the pseudo-word during the learning phase.

Overall, participants performed at an accuracy level of 77%.
We observed a significant interaction between sentence context
and social interaction [F(1,75) = 4.605, p = 0.035, η2

p = 0.058],
therefore a simple effects analysis was carried out. This showed
that there was no difference between sSC and dSC words in
the group of participants trained socially [F(1,75) = 0.465,
p = 0.497, η2

p = 0.006]. However, participants trained in the S−
condition correctly identified more dSC (M = 0.801, SD= 0.209)
than sSC (M = 0.739, SD = 0.233) words, [F(1,75) = 5.536,
p = 0.021, η2

p = 0.069; Figure 9]. There were no other significant
interactions (all ps > 0.151) and no significant main effects (all
ps > 0.204).

Response times during the testing were not significantly
different between conditions when controlling for mean
repetitions during the learning phase (all ps > 0.193). In
summary, during the testing phase, participants trained non-
socially remembered more words originally encoded in different
sentence contexts.

Discussion

The aim of the current study was to investigate the impact
of music and social interaction on word learning in adult
speakers. Both types of context have been hypothesized to
enhance attention toward relevant information in the learning
environment (that is, the referent for a new word), by exerting

a unidirectional (music) or bidirectional (social interaction)
temporal influence on the learner. To address whether this
difference impacts the way new words are learned, we
implemented a game set-up, in which participants learned new
words embedded in sentence contexts with different degrees of
variability. Our results show that participants were significantly
faster, less variable and more temporally coordinated when
learning with a partner, than when participants were trained
non-socially. When learning without music, participants trained
socially displayed better coordination during variable (“difficult”)
context trials compared to consistent (“easy”) context trials.
However, coordination with music, especially when playing with
a partner, tended to be delayed from one trial to the next.
Variability, when accounting for differences in response times,
was lower for participants learning non-socially in the music
condition. Finally, in the testing phase, participants trained non-
socially rememberedmore words originally presented in different
sentence contexts, although words repeated in a consistent
context represented an easier condition (confirmed by the
faster reaction times and higher accuracy in this condition
during learning). While these results are in line with previous
evidence of spontaneous temporal coordination during social
interaction, they also provide a significant advance for research
on communication and word learning in adults; indeed, they
suggest that not only are adult learners influenced by the
presence of a social partner, but also that this influence is
different from the one exerted by other sources, such as
music.

The results presented here support previous literature showing
that temporal coordination spontaneously emerges during social
exchanges (Richardson et al., 2007; Demos et al., 2012; Yun
et al., 2012). Indeed, participants performing the task with a
social partner were faster, less variable, and more temporally
coordinated with the experimenter than participants performing
the task with a computer. Temporal coordination with music had
a weaker effect as compared to social interaction, as participants
coordinated their behavior with the music stimuli immediately
preceding the one they were listening to. These results can be

FIGURE 9 | Accuracy scores during the testing phase (estimated marginal means), controlled for mean number of repetitions during learning. Vertical
lines represent the standard error of the mean. M−, music context absent; M+, music context present; S−, non-social interaction; S+, social interaction; dSC,
different sentence context; sSC, same sentence context.
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interpreted within the framework of coupled oscillators (Wilson
andWilson, 2005; Dumas et al., 2010; Demos et al., 2012). In brief,
this hypothesis proposes that since human movements tend to be
rhythmic, two people performing a joint task are not dissimilar
from other systems displaying periodic variations in time. As
a consequence, interacting human dyads respond to the same
dynamics as other oscillators; that is, they reciprocally influence
each other in order to reach an equilibrium (Richardson et al.,
2007; see also Kelso, 1997). Music, on the other hand, represents
a unidirectional influence. In the present study, participants
coordinated with the temporal regularities of the music, but
the lack of reciprocal adaptation reduced the extent of the
coordination. While this result seems in contrast with evidence
that has consistently shown a strong effect of music on temporal
coordination, it must be noted that, in most previous studies
investigating sensori-motor synchronization, participants have
been explicitly required to coordinate with continuously playing
sequences (Pecenka et al., 2013; Repp and Su, 2013). Instead,
we wanted to exploit spontaneous coordination with a temporally
defined musical excerpt (that is, the musical sequence was finite
for each trial and participants were required to take action at the
end of the sequence, not during it), in order to maximize the
music’s potential to drive the learner’s attention to a specific point
in time. Results from the condition in which both music and a
partner were present at the same time further corroborate this
interpretation: music and social interaction may be responsible
for different forms of coordination, due, in turn, to different
underlying mechanisms. Indeed, participants learning socially
are significantly more variable in their responses when learning
with music, while the opposite is true for participants learning
alone (we observed less variable performances with music). This
increased behavioral uncertainty likely depends on the different
influences stemming from the two sources. While without music
there is only one source of information (the experimenter),
music introduces a second set of coordinative cues; since the
two sources exert different influences (unidirectional versus
bidirectional), there may be uncertainty as to what one should
coordinate to. In turn, this uncertainty is behaviorally reflected
in increased response variability. However, this uncertainty is
likely transient; increased coordination with the experimenter
(compared to the computer) when music was present, emerged
only toward the end of the learning phase, much later than
without music. Furthermore, this coordination with music was
maximal between responses in one trial and the music excerpt of
the preceding trial, but not with the music in the trial participants
were responding to; in other words, participants’ tended to have
response patterns which reflected the duration of the previous
musical stimulus, but not the one they were answering to.
Another explanation for these results may be that in the current
task, music was employed concurrently with another high-level
cognitive task (identifying a sentence on the checkerboard).
Despite the relative simplicity of the musical stimuli that we
employed, the combination of music and task demands may
have been too challenging for music to actually facilitate the
performance (Kang and Williamson, 2013). However, the lack of
difference in response accuracy or reaction times in the music and
non-music conditions tends to rule out this possibility. Further

discarding this possibility, music has been proven to ease the
cognitive dissonance arising from stressful testing conditions
(Masataka and Perlovsky, 2012; Cabanac et al., 2013; Perlovsky
et al., 2013). In a recent series of studies, Perlovsky et al. (2013)
showed that students performing an academic test obtained
better results when listening to pleasant music as compared
to a silent environment (Perlovsky et al., 2013), and, more
generally, that students who choose a music course in their
curriculum tended to achieve better grades (Cabanac et al.,
2013). The authors suggest that music may help to mitigate
the cognitive dissonance arising in these stressful contexts by
virtue of its emotional value, thus facilitating the accumulation
of knowledge (Perlovsky, 2010, 2012, 2013a,b, 2014). While the
current results do not support this hypothesis, the different
outcomes may arise from the use of repetitive, short, and novel
musical sequences in the current experiment, while Masataka and
Perlovsky (2012) and Perlovsky et al. (2013) employed Mozart
musical pieces playing as a background during the academic
tests.

So far, the results of the learning phase suggest that
temporal coordination to music and a social partner have
different characteristics, possibly reflecting different underlying
mechanisms. But what are the implications for word learning?
Both music and social interaction have been claimed to facilitate
word learning and memory (Rainey and Larsen, 2002; De Groot,
2006; Jeong et al., 2010; Ferreri et al., 2013, 2014; Verga and
Kotz, 2013; Ludke et al., 2014); several accounts explain this
effect as the result of the easiness – for these stimuli – to allow
predictions on the upcoming events and allocate one’s attention
accordingly (Gogate et al., 2000; Lagarde and Kelso, 2006; Rolf
et al., 2009; Rader and Zukow-Goldring, 2012; Schmidt-Kassow
et al., 2013). The data presented here, however, suggest that
the behavioral adjustments participants make may be based on
different kinds of predictions. In the case of music, predictions are
based on the temporal structure of the stimulus (unidirectional
influence), while in the case of a partner they rely on the ability
to infer the other person’s intention (bidirectional influence;
Frith and Frith, 2006, 2012). This allows the creation of a
“psychological common ground,” in which the transmission of
information is facilitated (Tomasello, 2000; Csibra and Gergely,
2009). In this shared psychological space, the increased temporal
coordination observed in this study may reflect a strategy that
a knowledgeable partner uses to direct the learner’s attention
toward the correct referent for a new verbal label (Pereira
et al., 2008). Thus, the attention of the learner is focused
on the target referent, consequently facilitating the mapping
of a new word onto its meaning. This account predicts that
temporal coordination with a knowledgeable partner should
be better when the learner does not know a priori where the
target referent may occur. In this situation, the adult learner
is similar to a child learning its first words and faced with a
constantly changing environment, in which multiple referents are
present. Our results show that, indeed, temporal coordination
with the experimenter was higher in this contextual condition.
However, no differences were found between music and non-
music conditions in relation to the variability of the context
that words were embedded in. An interpretation of this result
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is that a shared psychological space – behaviorally reflected in
the temporal coordination with a partner – is used by adult
learners to identify a referent for a new word, when it cannot
be extracted by the context of the word presentation alone. That
is, participants “disengage” from social interaction if they can
identify a referent by themselves. Instead, the presence of music
overrules contextual diversity, as participants maintain the same
pattern of coordination independently from the characteristics
of a word presentation. This result is somehow in-between
the two opposing accounts of the adult learner, one suggesting
that adults are entirely self-sufficient learners (Pickering and
Garrod, 2004; Stephens et al., 2010) and the other suggesting a
critical role for others in shaping cognitive activity (Schilbach
et al., 2013; Ciaramidaro et al., 2014; Schilbach, 2014; Sebastiani
et al., 2014); indeed, these results suggest that the presence of
another person is used when needed. While our results indeed
confirm that music and social interaction may drive attention in
different ways, the question remains open as to which strategy
may be more relevant to successfully learning new words. An
important implication of these results concerns situations in
which music and social interaction are present at the same time,
especially for tasks requiring coordination to either one of the
two stimuli. Music therapy represents an important example
of this situation. In addition to its positive effect on mood
and arousal (Sarkamo et al., 2008), music is often employed
to provide the patient with a temporal structure to facilitate
her/his performance (Stahl et al., 2013, 2011), while at the same
time a therapist needs to be present with the patient (Norton
et al., 2009). The competition observed in this study between
music and a social partner as coordinative tools suggest that their
respective roles should be further investigated in these types of
settings.

Quite surprisingly, during the testing phase, participants that
were trained non-socially correctly identified more words when
they had originally been presented in variable sentence contexts
(as opposed to consistent sentence contexts), while no differences
were observed either in the social group or in the music groups.
In general, an advantage of words repeated at each occurrence in
a different context is to be expected, as every time the same word
is encountered in a different context, different contextual cues
accumulate and enrich the representation of the target referent
and its association with the new word (Verkoeijen et al., 2004;
Adelman et al., 2006; Lohnas et al., 2011). Nevertheless, according
to the hypothesis that a social partner and music may help
the learner in directing attention toward the target (although
through different mechanisms), an advantage of music and social
interaction over simple computer learning should be expected.
We provide two possible explanations for these results: first,
while learning new words from a computer interface and testing
participants with a computer interface is consistent, participants
who learned with social interaction and/or with music may
have been disadvantaged as they experienced a contextual
inconsistency between the learning and the testing phase. Indeed,
consistency between learning and testing environments has
been suggested to facilitate recall (Godden and Baddeley, 1975;
Polyn et al., 2009). This hypothesis, known as the “transfer
appropriate processing” theory, states that the strength of a

memory trace (that is, the ease of its retrieval) depends on
the type of encoding compared to the type of retrieval (Stein,
1978; Tulving, 1979); if the form of encoding is congruent
with the type of testing, retrieval is facilitated. In this study,
the social and the music group faced an incongruity between
the learning phase and the retrieval phase, which was always
conducted by participants alone and without music. Instead, the
non-social groups were exposed to the same type of encoding
and testing (both alone and without music). An explanation
based on incongruence between the type of encoding and the
type of testing has been suggested in other learning studies;
for example, Peterson and Thaut (Peterson and Thaut, 2007)
found no behavioral advantage for sung compared to spoken
word lists in an explicit verbal learning task, in which words
were sung during learning and spoken during the recall phase.
However, a behavioral advantage for sung stimuli emerged when
participants were instructed to sing back during the recall phase
(Thaut et al., 2008, 2014; for a review see Ferreri andVerga, under
review). Further investigation is required to clarify this aspect, by
testing participants not only in the non-social, silent condition,
but also in the same condition they were trained in. Results
in this direction would have important implications in terms
of the extent to which acquired knowledge may be generalized
to different contexts. If the context of word acquisition needs
to be the same at retrieval, this would have little facilitation in
some conditions. As an example, if the same music a word was
learned with needs to be present every time the new word is
used, it would not be a particularly helpful learning aid. The
case of social interaction somehow represents an exception, as
words are often (although not always) learned with someone
(for example, in the case of first language learning) and used
to communicate with someone. In this learning situation, the
context of a word acquisition is often the same as the context
of use. Hence, in this condition, results favoring the transfer
appropriate theory would not be as problematic as for the case of
music: Not always, indeed, it is possible to play the same music a
newword was encoded in when retrieving the word in the context
of use. However, another possible explanation for the observed
results could be considered: The longer reaction times observed
during learning in the non-social, silent condition may represent
a strategy employed by the participant to look more in depth
at the checkerboard. Using this strategy, they would have had
more time to analyze the sentence context and find the correct
target object. If this was the case, this would mean that – in the
current task – the optimal strategy would be not to coordinate
with the sentence context. While this is a possible explanation for
the observed results, it may not be the most plausible: indeed,
despite the differences in reaction times between conditions,
there was no difference at the accuracy level; if the longer time
spent observing the checkerboard provided an advantage, then
we would also expect more correct responses in this condition.
More importantly, however, the presentation of the “new name”
of the target object (i.e., the word to be learned) was presented
to the participants only after the selection of the correct object –
independently of the time spent looking at the checkerboards –
and remained on the screen for an equal amount of time in all
conditions.

Frontiers in Psychology | www.frontiersin.org 13 September 2015 | Volume 6 | Article 1316

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Verga et al. Word learning: interaction and music

Second, our testing phase took place immediately after the
learning phase, and therefore we did not consider consolidation
effects that have been deemed important for word learning in
both children and adults (for example Henderson et al., 2013).
Social context has been proven to significantly bias the formation
of newmemories. For example, in a study by Straube et al. (2010),
participants watched video clips of an actor speaking to them
directly or to a third person. Source memory (the memory of
the context a sentence was heard in) was significantly biased
by social interaction, as participants tended to report that the
actor was talking to them even if he was not. In our experiment,
the testing phase took place immediately after encoding and
it did not provide information concerning possible long-term
mnemonic effects, which critically depend upon consolidation
processes (Walker and Stickgold, 2004). As the efficacy of
consolidation depends on several factors, among which sleep
seems to play a particularly pivotal role (Siegel, 2001; Stickgold,
2005; Diekelmann and Born, 2007; Atherton et al., 2014; Lewis,
2014), a possible way to test long-term effects of social interaction
may be by testing retrieval at delayed time points after the
learning phase has taken place. These delayed time points would
include short intervals within an hour, as well as longer intervals
(days or weeks). This way, it would be possible to obtain a map of
the long-term and consolidation effects as a function of the time
passed since the learning took place.

Conclusion

The current study aimed at investigating the respective roles
of music and social interaction as possible facilitators of

word learning in healthy adult speakers. We found that social
interaction, more than music, improves temporal coordination
in a verbal learning task. Further, music, and social interaction
provide different types of influence (unidirectional versus
bidirectional) that do not combine together easily, as the presence
of social interaction and music at the same time hinders
coordination. Crucially, the quality of coordination with the
human partner (but not with music) is intertwined with the
attentional demands of the task at hand; coordination is higher
when it is difficult to find a new word’s referent. Taken together,
these results support the notion that music elicits a different form
of temporal coordination from the one observed in interacting
dyads, whose behavior is compatible with coupled oscillators.
This result has important implications for situations in which
music and social interaction are present at the same time, such
as many forms of music therapy. Although different, these forms
of coordination equally impact word learning, as seen in the
testing phase immediately following the task. This result calls for
further studies to elucidate the extent to which the context of
learning and itsmodulating factors (such as cognitive dissonance)
influence performance during retrieval and how they may be
influenced by consolidation processes.
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