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“Decisions from experience” (DFE) refers to a body of work that emerged in research

on behavioral decision making over the last decade. One of the major experimental

paradigms employed to study experience-based choice is the “sampling paradigm,”

which serves as a model of decision making under limited knowledge about the

statistical structure of the world. In this paradigm respondents are presented with

two payoff distributions, which, in contrast to standard approaches in behavioral

economics, are specified not in terms of explicit outcome-probability information, but

by the opportunity to sample outcomes from each distribution without economic

consequences. Participants are encouraged to explore the distributions until they feel

confident enough to decide from which they would prefer to draw from in a final trial

involving real monetary payoffs. One commonly employed measure to characterize the

behavior of participants in the sampling paradigm is the sample size, that is, the number

of outcome draws which participants choose to obtain from each distribution prior to

terminating sampling. A natural question that arises in this context concerns the “optimal”

sample size, which could be used as a normative benchmark to evaluate human sampling

behavior in DFE. In this theoretical study, we relate the DFE sampling paradigm to

the classical statistical decision theoretic literature and, under a probabilistic inference

assumption, evaluate optimal sample sizes for DFE. In our treatment we go beyond

analytically established results by showing how the classical statistical decision theoretic

framework can be used to derive optimal sample sizes under arbitrary, but numerically

evaluable, constraints. Finally, we critically evaluate the value of deriving optimal sample

sizes under this framework as testable predictions for the experimental study of sampling

behavior in DFE.

Keywords: decisions from experience, probabilistic inference, economic decision making (EDM), uncertain

decision making, optimality

Introduction

“Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral
decision making over the last decade. The work on DFE is held together by the central question
of how humans search for information and make decisions with economic consequences in
uncertain environments. Perhaps themost popular experimental paradigm used to studyDFE is the
“sampling paradigm” (Hertwig et al., 2004; Hertwig and Erev, 2009; Hertwig, 2012): Respondents
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are presented with two payoff distributions on a computer screen.
A box represents each distribution, which contains a set of
outcomes that occur with some probability. The participants
explore each of the distributions by sampling from them.
Specifically, clicking on a box triggers a random draw of an
outcome from the associated set of outcomes. The participants
are permitted to sample until they feel confident enough to decide
which distribution is “better,” in the sense that they would prefer
to draw from it during a final trial involving real monetary
payoffs.

A commonly employed measure to capture the behavior of
participants in the sampling paradigm is the sample size, i.e., the
number of draws which participants choose to obtain from each
box prior to terminating sampling. A repeated finding is that the
typical sample sizes are rather low, dependent on the values of
the observed outcomes (Hertwig et al., 2004; Hau et al., 2008)
and modulated by the specific experimental setting (Hills and
Hertwig, 2012; Lejarraga et al., 2012; Hills et al., 2013; Frey et al.,
2014; Wulff et al., 2015). Given that all parameters of the DFE
problem (outcomes and probabilities for each distribution) are
known to the experimenter, an obvious question is how many
samples a participant would draw “optimally.” The derivation of
an “optimal” sample size for a given DFE problem can then be
used as a normative benchmark that participants’ search effort
can be compared to. It can also inform quantitative theories that
aim to explain why people deviate from this benchmark. Perhaps
surprisingly, the question of an optimal sample size for the DFE
sampling paradigm has so far not been addressed in the literature.
The central aim of the current study is thus to develop such a
normative benchmark by drawing on the classical literature on
optimal sample sizes in probabilistic frameworks.

The notion of an “optimal” sample size is, of course, a relative
concept: A given sample size can be optimal with respect to
certain constraints and suboptimal with respect to others. As an
example, consider a participant, whose objective is to invest as
little time as possible in the experiment. For her, the optimal
sample size would be zero, and the decision for a distribution
that is “better” at the final draw would correspond to random
guessing. Because the notion of “optimal” sample sizes is a
relative concept, we have to introduce a set of assumptions
or constraints that define when the benchmark applies. These
assumptions may be classified into one “strong” assumption and
several “weaker” assumptions.

The “strong” assumption that we make is that the problem
of how much to sample can be solved by some form of
statistical inference. This assumption can be stated as follows:
a reasonable approach to making a sampling-based choice
is to estimate the expected values of each distribution, and
choosing the one deemed to offer the largest expected value.
This assumption is common and implicit in many previous
experimental and theoretical studies of the sampling paradigm.
These studies have mostly been carried out in the context of the
“description-experience gap.” The description-experience gap is
the experimental finding, that choice behavior is systematically
different dependent on whether information about payoffs and
probabilities is learned sequentially as in DFE or stated explicitly
in terms of outcomes and their associated probabilities, a

paradigm referred to as “decisions from description” (DFD). As
reviewed in Hertwig (2012), the “description-experience gap”
may non-exclusively be explained by either of the following (1)
reliance on small samples (including recency; see Hertwig et al.,
2004), (2) weighting of experienced probabilities, and (3) format-
dependent cognitive heuristics, all of which imply some form of
statistical inference on the parameters of the underlying gamble.
Specifically, the explanation of the description-experience gap
by reliance on small samples states that participants’ behavior is
due to sampling error that renders the frequency-based estimate
for the probabilities of outcomes less accurate than the explicitly
stated outcome probabilities in DFD (Hertwig et al., 2004; Hau
et al., 2008). Obviously, this explanation implies that participants
aim to infer the true, but unknown, probabilities of the
experienced outcomes. Consistent with this, it could be shown
that attenuating sampling error by encouraging participants to
sample more decreased the description-experience gap (Hau
et al., 2008). Another approach to explain the description-
experience gap has been to apply the non-linear weighting of
experienced probabilities and outcomes in the evaluation of an
option’s value as suggested by prospect theory (Hau et al., 2008;
Ungemach et al., 2009). Again, this implies that participants infer
the unknown probabilities, which, upon non-linear weighting are
combined with the outcome information to evaluate the option’s
desirability. Interestingly, in these studies it has been shown that
the discrepancy between experienced outcome frequencies and
the subjective estimates thereof is rather low (Fox and Hadar,
2006; Hau et al., 2008). Finally, also approaches referred to as
“cognitive heuristics,” such as the “natural mean heuristic” imply
a form of statistical inference (Hertwig and Pleskac, 2008). The
natural mean heuristic states that participants solve the DFE
problem by calculating the samplemean for each distribution and
then choose that one with the larger mean. Clearly, the “natural
mean heuristic” may be viewed as the psychologically plausible
pendant to the estimation of an expected value by means of a
sample average.

Importantly, as will be seen, the “inference assumption”
renders the notion of optimal sample sizes in DFE a concept
that can be addressed in the maximum expected utility (MEU)
framework for statistical decisions, originally developed by Raïffa
and Schlaifer (1961). It should be noted, however, that while the
inference assumption in sampling DFE is widespread, it is by
no means without alternatives, as we will address in more detail
in the Discussion section. Notably, in our current treatment we
do not claim that the individuals solve the sample-size problem
by means of statistical inference. We merely note that this
assumption has been made (implicitly or explicitly) previously,
and thus develop a framework for an optimal sample size on the
basis of this assumption.

In addition to the inference assumption, we introduce a
number of “weaker” constraints or assumptions to arrive at
the notion of an “optimal” sample size. These include, for
example, the invocation of utility functions, sampling costs,
pre-determined sample sizes, and available information about
the distributions’ possible outcomes. These assumptions are
“weaker,” because they are ultimately consequences of the
inference assumption. In other words, if we were to refute
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the inference assumption, these additional assumptions would
presumably not enter a framework to determine optimal sample
sizes, but others would in their stead. In addition, as discussed
below, some of these assumptions (for example the available
information about outcomes) can readily be relaxed by extending
the current approach.

The outline of our manuscript is as follows. In the preceding
Sections, we formalize the sampling paradigm and precisely
specify the “inference assumption.” In the Section “The Maximal
Expected Utility Framework”, we provide a general introduction
to the optimal sample size approach by Pratt et al. (1995),
referred to as the “maximal expected utility” (MEU) framework
here and in the following. We further outline two variants
of it that will be applied in the Sections “Optimal Sample
Sizes for Parameter Point Inferences” and “Optimal Sample
Sizes for Bayesian Parameter Inference,” respectively. These
variants may be referred to as the “classical” and the “Bayesian”
inference approaches, respectively. In the preceding Sections, we
derive optimal sample sizes under relatively strong assumptions
about the decision maker’s representation of the problem. In
the Section “Numerical Solutions” we present a numerical
approach to the derivation of optimal sample sizes under
the MEU framework using weaker assumptions. Finally, we
discuss the potential applications of the current framework in
experimental research on DFE. The Supplementary Material of
this manuscript comprises additional derivations, as well as the
Matlab (MathWorks, Natick, MA) code that implements the
simulations and numerical schemes discussed and generates all
figures shown.

In sum, the manuscript makes the following novel
contributions to the literature on DFE. First and foremost,
we explicitly relate the question of optimal sample sizes in
the sampling paradigm to the classical literature on statistical
decision theory. To this end, we provide a simplified treatment
of the optimal sample size theory developed in Raïffa and
Schlaifer (1961) and Pratt et al. (1995) and show how this
framework can be applied to the sampling paradigm. In addition
to this classical treatment, we review the derivation of optimal
sample sizes under “Bayesian” inference schemes (Bernardo
and Smith, 1994). In this vein, we give an explicit form of the
“expected maximized expected posterior utility function” in a
beta-Bernoulli scenario, which, to the best of our knowledge,
has so far been absent from the works of Pratt et al. (1995) and
Bernardo and Smith (1994). Further, in our application of the
MEU framework to the DFE sampling paradigm, we go beyond
analytically established results by showing how the framework
can be used to derive optimal sample sizes under arbitrary, but
numerically evaluable constraints. Finally, we critically evaluate
the value of deriving testable predictions of optimal sample sizes
under the MEU framework for the study of sampling behavior
in DFE.

Formalization of the DFE Problem

A few preliminary remarks on the mathematical notation are in
order. For simplicity, we use the applied notation for probability
distributions specified in terms of probability mass or density

functions. In this notation, p(x) can refer to the probability
distribution, the probability density function, or the probability
mass function of a random variable x, whichever is appropriate
from the context. For sets of natural numbers (and zero), we use
the following symbols: N: = {1, 2, . . . } , N

0
: = N ∪ {0} ,Nn: =

{1, 2, . . . , n} , N
0
n: = Nn ∪ {0} , n ∈ N; for the set of integers,

we use Z. For functions, we use the standard notation f : D →

R, x 7→ f (x) : = (·), where D and R denote the domain and
range of f , respectively, x ∈ D the function’s argument, and
f (x) ∈ R the function’s value, which is defined by some closed-
form expression (·). Further, we take a rather loose approach to
denoting optimization operations in order to keep the notation
straightforward. To this end, we denote the maximum and the
minimum of a function f over its domain X by maxx∈X f (x)
and minx∈X f (x), respectively, and (usually) implicitly assume
that they exist and are unique. Likewise, we denote the elements
xmax, xmin ∈ X that correspond to the maximum or minimum
of a function f by xmax = argmaxx∈X f (x) and xmin =

argminx∈X f (x), again, implicitly assuming that these elements
exist and are unique.

The sampling paradigm in research on DFE can be conceived
in the following form: A human participant is presented with
two “binary payoff distributions” pGA and pGB , where by “binary
payoff distribution” pG we understand a probability distribution
of a random variable x taking on two possible values x1, x2 ∈ Z,
specified by the probability mass function.

pG(x = x1) = θ and pG(x = x2) = 1− θ, (1)

and parameterized by θ ∈ [0, 1]. The expected value of a binary
payoff distribution is given by:

E (x) = θx1 + (1− θ) x2. (2)

We denote the parameter θ of the binary payoff distribution pGA

by θA and the parameter θ of the binary payoff distribution pGB

by θB. After being permitted to sample from the distributions
pGA and pGB ad libitum without economic consequences (that
is, without obtaining a monetary equivalent of the sampled
outcomes as return), the participant is asked to decide from
which payoff distribution she would prefer to draw a single
realization, the outcome of which is being returned to the
participant in terms of a monetary equivalent. Assuming that
participants aim to maximize their expected return over many
repeats of the procedure described (with possibly differing payoff
distributions), a reasonable strategy, henceforth referred to as the
“inference approach,” is to choose that distribution in the final
choice that is believed to offer the higher expected value (for a
simulation of this strategy and its superiority to random choice,
see Figure 1A). The participant’s task can thus be framed as an
inference problem, namely, to estimate the expected values of the
distributions pGA and pGB , or, in other words, their parameters
θA and θB. In this manuscript, we are thus concerned with
the question of how many samples from each distribution the
agent “optimally” draws to infer the parameters θA and θB,
where “optimally” is understood in a relative way with respect to
some boundary conditions to which we shortly turn. Please note
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FIGURE 1 | (A) Simulation of the superiority of a higher EV choice strategy over random choice across different DFE ecologies. The panels depict the cumulative

return of two decision makers obtaining final samples from two urns according to a “higher expected value” choice rule and a random choice rule. Across different

ecologies the “higher EV” choice rule outperforms the random choice rule, the amount by which depending on the specific DFE ecology. More specifically, in the “Gain

Ecology” two binary payoff distributions were uniformly sampled from the space N10 × N10 × [0,1] and “final” samples obtained from either the binary payoff

distribution with the higher expected value (“higher EV”) or from either payoff distribution with equal probability (“Guess”). The cumulative returns of the “higher EV”

choice rule outperform the random choice rule from approximately 40 DFE problems on in this realization. In the “Mixed Ecology,” two binary payoff distributions were

uniformly sampled from {−10,−9, . . . , 9,10} × {−10,−9, . . . , 9,10} × [0,1]. While the random choice rule results in approximately equal gains and loss and thus a

cumulative return centered around 0, the higher EV choice rule yields cumulative gains. Finally, in the “Gain and Loss Ecology” one binary payoff distribution was

sampled from N10 × N10 × [0,1], while the other was sampled from {−10,−9, . . . ,−1} × {−10,−9, . . . ,−1} × [0,1]. Again, the random choice rule results in

approximately equal gains and loss, while the higher EV rule always prefers the binary payoff distribution with the positive expected value in the final choice. (B)

Simulation of the SSP and the superiority of the positive EV choice strategy over random choice. Agreeing to sample from a single binary distribution for monetary

return, when the expected value of the distribution is positive, yields positive cumulative return, randomly agreeing to sample regardless of whether the expected value

is positive or is not positive yields virtually no cumulative return. Throughout panels of Figure 1 the realizations shown correspond to average cumulative returns over

1000 repetitions of the 100 DFE problem sampling and choice procedures.

again that the “inference approach” to the sampling paradigm is
neither exclusive nor exhaustive; alternative formalizations are
possible (see Discussion), and the inference approach is merely
the approach we take here.

The inference approach to the sampling paradigm may itself
be addressed as a formalized decision problem in at least two
ways: either (1) the participant decides on the sample size for
each distribution before starting to draw samples from them, or
(2) the participant decides after each obtained sample whether
next to sample from distribution pGA , to sample from distribution
pGB , or to terminate the sampling process altogether and obtain a
final sample with economic consequences from either pGA or pGB .
The latter approach corresponds to a sequential decision problem
(Powell, 2011; Wiering and Otterlo, 2012). We will be concerned
with the former scenario: Specifically, we discuss a normative
inference framework for and solutions to the question of how
many samples to draw in order to make optimal inferences (and
thus good final decisions) about the payoff distributions’ expected
values prior to information search.

As a first step, we simplify the problem as follows: Because
we assume that the two distributions do not differ in their
characteristics as specified by Equations (1) and (2), and thus
the optimal sample size for each of the distributions derived
will be functionally identical, we formulate a simplified problem
to which we shall refer to in the following as the “simplified
sampling problem” (SSP) in DFE: Assume a decision maker
is faced with a binary payoff distribution pG specified by a
probability mass function over two outcomes x1, x2 ∈ Z given by:

pG(x = x1) = θ and pG(x = x2) = 1− θ, (3)

and, after being permitted to sample this distribution ad libitum,
is asked to decide whether to draw from this distribution and
obtain the resulting sampled value as monetary return or not.
How many samples should the decision maker draw before
making this decision and what are possible conditions that
constitute “optimality” for the number of samples?

In analogy to the discussion above, we postulate that a
reasonable “inference” strategy for a decision maker, aiming
to maximize expected return, is to choose to draw from the
distribution for a monetary return, if she believes that the
expected value of the distribution is larger than zero, and not,
if she believes that it is equal or smaller than zero—the former
would leave the decision maker’s expected cumulative return
identical, the latter would decrease it. In Figure 1B we show by
means of simulation that also for the SSP the inference approach
is superior to randomly deciding whether to sample the binary
payoff distribution for a monetary return or not.

The final decision strategy in the inference approach to the
SSP is trivial. However, the question of an “optimal sample
size” for inference of the expected value is not. According to
Lindley (1997), this problem has been firstly addressed in a fully
probabilistic manner by Raïffa and Schlaifer (1961) and their
approach will, by and large, be adopted here.

The Maximal Expected Utility Framework

In this section we review the general framework for optimal
decisions under uncertainty, as formulated by Raïffa and
Schlaifer (1961) and Pratt et al. (1995). In essence, this framework
corresponds to a probabilistic subjective utility theory (Savage,
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1972) in which the dependence of probabilistic inferences on
experimentation has been made explicit. Following Lindley
(1997), we will refer to this framework, when used to determine a
sample size, as “maximization of expected utility” (MEU). The
MEU framework has three main components: (1) the product
space of four sets, (2) a utility function defined on these sets,
and (3) a joint probability measure on a subset of the product
space. We will first discuss each feature in turn and exemplify the
general concepts with the help of the SSP before turning to the
question of deriving an optimal experiment or sample size under
this framework.

Preliminaries
The MEU framework rests on the specification of the Cartesian
product of four sets: a set of possible “experiments” E, a set
of possible “experimental outcomes” Z, a set of “terminal acts”
A, and a set of possible “states of the world” S. The order of
presentation of these sets is motivated by Raïffa and Schlaifer
(1961) in terms of a “game against nature”: First, the decision
maker chooses a specific experiment e ∈ E; then nature
determines the outcome of the experiment z ∈ Z; next, the
decision maker chooses a terminal action a ∈ A, and finally
nature chooses the state of the world s ∈ S. While formally
helpful, this ordering may somewhat obscure the applicability
of the framework to the SSP as sketched above. For the SSP,
the four sets underlying the MEU framework are perhaps more
intuitively apprehended as follows: for a given SSP, there is
one fixed “state of the world” s ∈ S. For example, this
state of the world may represent the difference in expected
value between the payoff distribution and zero, the parameter
θ of the distribution (which will be our approach below),
or the outcome probability masses of the payoff distribution.
Based on this state of the world the decision maker is able
to make observations z ∈ Z that are related to the state
of the world in a probabilistic manner as discussed below.
The kind of outcomes the decision maker observes depend
on the choice of an experiment e ∈ E. In most illustrative
applications of the MEU, the experiment e merely defines the
number of independent samples to take from the underlying
process. In other words, the set of experiments may be simply
understood as the set of possible sample sizes n ∈ N0. An
outcome z of an experiment e corresponding to a sample size n
then corresponds to a vector of n independent and identically
distributed observations from the underlying process. For the
SSP, the experiment e may thus correspond to the sample size
taken from the binary payoff distribution, whereas an outcome
z corresponds to the concatenated vector of n “observations”
or “realizations” obtained on each single draw. Finally, the
terminal action a ∈ A may correspond to the decision for a
specific estimate of the underlying state s ∈ S. Notably, this
approach addresses statistical inference as a decision problem,
which corresponds to the standard way of comparing different
estimation procedures (Lehmann and Casella, 1998). In the
application to the SSP, the terminal action a ∈ A should not
be confused with “the final choice with economic consequences,”
which in our formulation resides outside of the MEU framework
and is conceived as a deterministic consequence of the MEU

inference approach. We denote the Cartesian product space of
the relevant sets by A× S× E× Z.

The second ingredient of the MEU framework is a “utility
function” defined on this Cartesian product space:

u : A× S× E× Z → R, (a, s, e, z) 7→ u (a, s, e, z) . (4)

Formally, Pratt et al. (1995) distinguish between “utility” and
“value” functions, and formulate most of the theory in terms
of value functions, which are conceived as utility functions
reformulated with the help of a monetary equivalent or another
“numeraire.” However, as the notion of utility functions appears
to be more widely used (Raïffa and Schlaifer, 1961; Bernardo
and Smith, 1994; Bernardo, 1997; Lindley, 1997) with respect
to both the MEU framework and the general decision theoretic
literature, we will refer to u as “utility” function and implicitly
assume that it has the necessary mathematical properties of a
function that sensibly represents a set of preference relations. In
the MEU framework, a utility function is usually assumed to be
additively decomposable into a “terminal utility” ut determined
by the chosen action a and the state of the world s, and an
“experimentation (or sampling) utility” us determined by the
experiment e and its outcome z, i.e.

u : A× S× E× Z → R, (a, s, e, z) 7→ u (a, s, e, z)

:= ut (a, s)+ us (e, z) . (5)

As it is perhaps more natural to associate a “cost” rather than
a “utility” with experimentation, the MEU framework specifies
the cost cs of experimentation as the negative of the utility of
experimentation or sampling:

us (e, z) = : − cs (e, z) . (6)

Note that we have used the subscript s for the utility or cost of
experimentation, as it will refer to the utility or cost of “sampling”
in most of the remainder.

Finally, the MEU framework assumes that the decision maker
can specify a probability measure on the space S × Z for (and
thus dependent on) each experiment e ∈ E. We will denote
this probability measure as pe(s, z), making the dependence on
the experiment (and in its application to the SSP, the sample
size) explicit. The joint probability measure pe(s, z) induces the
usual marginal and conditional probability measures, for which
we introduce the following connotations.

1. The decision maker’s “prior probability” over states of the
world p(s).

2. The decision maker’s marginal probability of experimental
outcomes pe(z).

3. The decision maker’s “likelihood” of experimental outcomes
pe(z|s).

4. The decision maker’s posterior probability over states of the
world pe(s|z).
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The Optimal Experiment
Based on the preliminaries outlined above the optimal
experiment in the MEU framework is given by:

eopt:= argmax
e∈E

(∫

Z
pe (z)max

a∈A

(∫

S
pe (s|z) u (a, s, e, z) ds

)
dz

)
.

(7)
In order to make expression (7) transparent, we first unpack it
into a sequence of four steps and then apply it to the SSP. The
four steps implied by Equation (7) correspond to alternating
expectation and maximization operations. In the first step the
expectation of the utility function u (e, z, a, s) is evaluated under
the experiment-dependent posterior distribution over states of
the world pe (s|z). The resulting quantity is a function of
the experiment, the terminal decision a, and the experimental
outcome z and may be referred to as the “expected posterior
utility” function:

f : E× Z × A → R, (e, z, a) 7→ f (e, z, a)

:=

∫

S
pe (s|z) u (a, s, e, z) ds. (8)

In the second step, the function f is maximized with respect to the
action a ∈ A. This step results in the definition of a function that
may be referred to as the “maximized expected posterior utility
function”:

g : E× Z → R, (e, z) 7→ g (e, z)

:= max
a∈A

f (a, e, z). (9)

The argumentmaximizing the function g for a given combination
of e and z is referred to as the “optimal posterior act” and will be
denoted by aopt . In the third step, the function g is integrated with
respect to the marginal measure of the experimental outcomes
pe(z), defining a third function, which may be referred to as the
“expected maximized expected posterior utility” function:

h : E → R, e 7→ h (e) :=

∫

Z
pe (z) g (e, z)dz. (10)

Finally, in the fourth step the experiment eopt which maximizes
the function h is found and corresponds to the optimal
experiment, i.e., that experiment, which maximizes the expected
maximized expected posterior utility, or “expected utility” for
short.

By introducing additional assumptions about the utility
function and the nature of the space of experiments E, the
definition of the optimal experiment in (7) can be rewritten in
a way that allows for a more convenient application to the SSP.
First, as above, we assume that the utility function is additively
decomposable into a terminal utility ut and a cost of sampling
cs. In lieu of Equation (8) this additional assumption yields the
special case:

f (e, z, a) :=

∫

S
pe (s|z) (ut (a, s)−cs (e, z)) ds

=

∫

S
pe (s|z) ut (a, s) ds−cs (e, z) , (11)

where the integral term is referred to as the “posterior expected
terminal utility.” Consequently, in the special case of (11) the
function h takes the form:

h (e) :=

∫

Z
pe (z)max

a∈A

(∫

S

(
pe (s|z) ut (a, s) ds−cs (e, z)

))
dz.

(12)
Secondly, we assume that the experiments e ∈ E are fully
specified in terms of their sample size, that is, E: = N0, e: =

n ∈ N0, and that the cost of sampling is independent of the
experimental outcome z and linear in the sample size n with a
proportionality constant c> 0. Formally, we thus have for the
sampling cost cs:

cs (e, z) = cs (e) = cs (n) := cn (c ∈ R) . (13)

Based on these assumptions, we can re-express (7) as specifying
an optimal sample size, which we denote by nopt , by:

nopt:= argmax
n∈N0

(∫

Z
pn (z)max

a∈A

(∫

S
pn (s|z) ut (a, s) ds

)
dz − cn

)

(14)
In the MEU framework, the argument of the argmax () operator
is also referred to as the “expected net utility of sampling,” the
first term of the sum of this argument is referred to as the
“expected utility of sampling information” and the last term as
the “sampling cost.”

Having established the general MEU framework and a first
specialization of it in Equation (14) as basis for its application to
the SSP, we are now in the position to make this application more
concrete. In the Sections “Optimal Sample Sizes for Parameter
Point Inference” and “Optimal Sample Sizes for Bayesian
Parameter Inference,” we will illustrate two formulations of
the inference approach to optimal sample sizes in DFE that
differ in their notions of “inferences,” or, in general MEU terms,
their notions of “actions.” Specifically, in the Sections “Optimal
Sample Sizes for Parameter Point Inference” and “Optimal
Sample Sizes for Quadratic Terminal Loss and Beta Prior,” we
conceive the action space as a space of point estimates for the
true, but unknown, state of the SSP. In the Section “Optimal
Sample Sizes for Bayesian Parameter Inference,” we conceive the
action space as a space of probability distributions over the states
of the world. Informally, these approaches may be conceived
as different types of inferences the optimizing decision maker
performs as actions: “classical point parameter estimation” in the
former, and “Bayesian inference” in the latter case (see Figure 2).
Their parallel development illustrates the degrees of freedom in
model development that exists even under a single formalized
approach.

Optimal Sample Sizes for Parameter Point
Inference

Based on the developments in Section Formalization of the
DFE Problem, we are in the position to derive the optimal
sample size as defined by the MEU framework in Equation (14).
To recapitulate, we assumed that faced with a binary payoff
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FIGURE 2 | (A) State and action space scenario considered in the Section “Optimal Sample Sizes for Parameter Point Inference.” In this Section we consider the case

that the decision maker aims to obtain an optimal sample size under the MEU inferential approach while deriving “classical point parameter estimates” of the true, but

unknown, state s* of the SSP. Specifically, as will become clear below, the state space S in Section The Maximal Expected Utility Framework corresponds to the interval

[0,1] and so does the action space A. (B) State and action space scenario considered in the Section “Optimal Sample Sizes for Bayesian Parameter Inference.” In this

Section we consider the same state space, but a different action space as compared to the Section “Optimal Sample Sizes for Parameter Point Inference.” Specifically,

while the state space again corresponds to the interval [0,1], the action space now corresponds to the set of probability distributions over the interval [0,1] and the

optimal action to a member of this set. This corresponds to a decision maker that aims to obtain an optimal sample size under the MEU inferential approach while

performing “Bayesian inference” about the true, but unknown, state of world.

distribution, the optimizing decision maker uses an inference
approach to determine the expected value of the distribution,
with the aim of choosing to sample from this distribution
in a final draw with economic consequences if and only if
the expected value is larger than zero. Second, we assumed
that prior to entering the sampling stage, the decision maker
evaluates the optimal sample size to take from the distribution.
To apply the MEU framework to the SSP, we take advantage of
the following simple idea: We identify the SSP with the well-
studied Bernoulli distribution parameter estimation problem, by
adopting the coding scheme x1: = 1 (“success”) and x2: =

0 (“fail”) for the binary payoff distribution outcomes. The
assumption of determining the optimal sample size a priori then
becomes a Binomial sampling problem (as opposed to Pascal
sampling approaches). In this scenario, if the decision maker has
committed to an estimate of the Bernoulli distribution parameter,
he or she may evaluate the expected value of the distribution by
means of Equation (2) and thus proceed to the final decision on
whether to sample the distribution for a monetary return, or not.
Note that this approach assumes that the outcomes of the binary
payoff distribution are, by one means or another, known to the
decisionmaker, an issue we will return to in theDiscussion. Based
on this idea and under the additional assumption of parameter
point inference, the definition of the remaining components of
theMEU framework for application to the SSP is straightforward:

We define the set of possible states of the world, that is,
the set of possible true, but unknown, values of the underlying
Bernoulli parameter, by S:= [0, 1]. We denote the elements
of this set by θ for coherence with the standard notation of
Bernoulli distributions. Likewise, we define the set of possible
acts, i.e., point estimates θ̂ of θ , as A:= [0, 1]. For the Binomial
sampling problem, the set of possible experiments E is uniquely
defined by the numbers of samples n ∈ N

0 taken for each
experiment e ∈ E. We thus identify E:= N0 and use n to denote
an experiment. Because in the Binomial sampling problem the
number of observed “successes” together with the total number
of observations is a sufficient statistic for the parameter of
the underlying Bernoulli process, we replace the experimental
outcome space {0, 1}n by the sufficient statistic outcome space
N
0
n and denote by rn ∈ N

0
n the number of successes in a given

sample:

rn:=

n∑

i= 1

zi ∈ N
0
n, where z:= (z1, . . . ,zn)

T ∈ {0, 1}n. (15)

For a formal discussion of the notion of “sufficient statistics”
in the MEU setting, see Section 2.2 in Raïffa and Schlaifer
(1961). Intuitively, no information inherent in a sample of
size n that is relevant for the parameters of the underlying
probabilistic model is lost when recording the number of 1’s rn
and the total number of samples n, rather than the complete
sequences of ones and zeros. In summary, we define the problem
space as:

A× S× E× Z:= [0, 1]× [0, 1]× N
0 × N

0
n. (16)

On the problem space (16) we define a utility function:

u : [0, 1]× [0, 1]×N
0 ×N

0
n → R,

(
θ̂ , θ, n, rn

)
7→ u(θ̂ , θ, n, rn),

(17)
and, as above, assume that this utility function decomposes
additively into a contribution of terminal action ut(θ̂ , θ) and a
cost of experimentation or sampling cs(n, rn):

u : [0, 1]× [0, 1]×N
0×N

0
n → R,

(
θ̂ , θ, n, rn

)
7→ u

(
θ̂ , θ, n, rn

)

:= ut
(
θ̂ , θ

)
−cs (n, rn) . (18)

Below, we will choose a simple, familiar form for the terminal
utility. As in (13) we set

cs : N
0×N

0
n → R, (n, rn) 7→ cs (n, rn) := cn (19)

for c> 0. Finally, we denote the experiment-dependent
probability measure on the space of possible true states of the
world and experimental outcomes by:

pn (θ, rn) = p (θ) pn (rn|θ) . (20)

In the following, we will choose a simple parameterized
distribution for the marginal distribution p (θ). For the
“likelihood distribution” pn (rn|θ), we choose the Binomial
distribution throughout the remainder of this study. The
Binomial distribution specifies the probability of rn observations
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of 1’s (or “successes”) in an independent and identical Bernoulli
sampling sequence of length n. We denote the binomial
distribution on {0, 1,. . ., n} by the probability mass function with
parameters n ∈ N and θ ∈ [0, 1] by:

pn (rn|θ) := Bi (rn; n, θ) :=

(
n
rn

)
θ rn(1−θ)n−rn , (21)

where the first product term denotes the binomial coefficient in n
and rn.

Optimal Sample Sizes for Quadratic Terminal
Loss and Beta Prior
Based on the definitions (15), (16), (18), (19), and (21), we
now explore optimal sample sizes for point parameter inference
in SSP in a setting that allows for the analytical derivation of
optimal sample sizes as a function of the prior distribution
p (θ). To this end, we proceed as follows: we first establish that
instead of a terminal utility function ut

(
θ̂ , θ

)
as in (18), we

may equally frame the problem using a “terminal opportunity
loss function” lt

(
θ̂ , θ

)
. We then choose the quadratic loss

function as a familiar example of an opportunity loss function.
Finally, we define a parameterized probability distribution for
the marginal distribution p (θ) and evaluate optimal sample
sizes.

As discussed in Pratt et al. (1995) the MEU framework allows
for the specification of the statistical decision problem in terms
of “loss functions” (as familiar from classical statistics) in lieu
of terminal utility functions. Notably, in the MEU framework
“loss” is always understood as “terminal opportunity loss.” This
means “loss” is defined as the difference between the utility
that the decision maker actually realizes by choosing action
a ∈ A, if the true state of the world is s ∈ S, and the
greater value that the decision maker “had the opportunity” of
realizing by choosing the optimal action for state s, denoted by

a
opt
s ∈ A without experimentation, i.e., as expected under the
prior distribution over states. In other words, a terminal utility
function is expressed in terms of a terminal opportunity loss
function:

ult : A× S → R, (a, s) 7→ ult (a, s)

:= −lt (a, s)+min
a∈A

(∫
p(s)lt (a, s)ds

)
. (22)

Importantly, this definition is going beyond standard definitions
of loss as merely “negative terminal utility.” However, the integral
term above is independent of a and s thus corresponds to
an additive constant. If considered as a function of action
a ∈ A, we may thus conceive the decision maker to either
maximize its expected terminal utility or minimize its expected
terminal loss lt (a, s) (while minimizing expected sampling cost).
The solution in terms of the optimal action is identical. The
expected opportunity loss associated with a given act, however,
corresponds to the negative of the expected terminal utility
associated with the same act shifted by an additive constant,
which is independent of a. If the decision maker’s goal is merely
to maximize the expected utility function, she may, equivalently,

find the action a ∈ A that minimizes the expected terminal
opportunity loss. To determine the value of the expected terminal
utility function based on the minimization of the expected
terminal opportunity loss function, however, the decision maker
requires the evaluation of the second term in (22). Put succinctly:
if the decision maker is merely interested in choosing the optimal
action, it may formulate the problem either in terms of terminal
opportunity loss or in terms of terminal utility. Only if, in
addition, the decision maker is interested in the associated utility
of the optimal act, the decisionmaker is required to formulate the
problem in terms of a utility function.

A different perspective on the additive constant in
(22) is afforded by considering the terminal utility of
no experimentation. If the decision maker chooses not to
experiment at all, i.e., the sample size is n = 0, the posterior
distribution pe(s|z) will equal the prior distribution p(s) and
Equation (12) would require the integration of the ult(a, s) under
the prior distribution and maximization with respect a. This
corresponds to the integration of the first term in (22) under
the prior distribution and its maximization. To ensure that
the utility of a sample size of n = 0 is zero, this value is then
subtracted in the form of the second term in (22). Because of
this normalization property, and because we have introduced the
MEU framework in terms of a terminal utility function, which is
to be maximized, we will maintain this convention and explicitly
take the second term in (22) into account.

The specific loss function we use in the remainder of this
Section is the “quadratic loss function,” a classically chosen loss
function for point estimation problems (Lehmann and Casella,
1998). In (22), we thus replace lt (a, s) by lt(θ̂ , θ) and define:

lt : [0, 1]× [0, 1] → R+,
(
θ̂ , θ

)
7→
(
θ − θ̂

)2
. (23)

The quadratic terminal loss function is zero, if the chosen act, i.e.,
point estimate θ̂ , equals the true, but unknown, state value θ , and
the square penalizes large deviations from the true, but unknown,
valuemore strongly than small deviations. Summarizing (22) and
(23), we thus define the following terminal utility function in the
current section.

ult : [0, 1]× [0, 1] → R,
(
θ̂ , θ

)
7→ ult

(
θ̂ , θ

)

:= −
(
θ−θ̂

)2
+ min
θ̂∈[0,1]

(∫
p(θ)

(
θ−θ̂

)2
dθ

)
,(24)

which can be substituted in Equation (18). The total utility
incurred by the decision maker then comprises a contribution of
terminal opportunity loss, a contribution of sampling costs, and
a fixed offset, which depends on the prior distribution of θ .

To be able to derive optimal sample sizes, we further have to
specify the form of the prior distribution p (θ) in (24). In this
section, we assume that the decision maker is able to quantify
its initial uncertainty with respect to the parameter θ by means
of a beta distribution, i.e., a distribution on the interval [0, 1]
characterized by the two parameter probability density function:

p (θ) := Be (θ;α, β) :=
Ŵ (α + β)

Ŵ (α) Ŵ(β)
θα−1(1− θ)β−1, (25)
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where

Ŵ : R+ → R,x:= Ŵ (x) =

∫ ∞

0
tx−1exp (−t)dt, (26)

denotes the Gamma function and α, β > 0 are the parameters
(which may be interpreted as the number of “virtual prior
observations” of 1’s and 0’s, respectively). The beta prior
distribution in the Binomial sampling scenario has well-known
advantages: It is specified on the parameter space of interest
for Binomial sampling, it is the conjugate-prior distribution for
the Binomial distribution, i.e., the data conditional (posterior)
distribution is again a Beta distribution with well-known and
simple formulas for its parameters, and it allows for the
specification of an “uninformative” prior distribution in the
“reference distribution” sense (Bernardo and Smith, 1994) by

choosing α = β= 0.5. In summary, we thus specify the following
joint probability distribution over states of the world θ and
experimental outcomes rn.

pn (θ, rn) = p (θ) pn (rn|θ) := Be (θ;α, β)Bi (rn; n, θ) . (27)

Notably, this joint distribution is dependent on the sample size
n and the beta prior parameters α and β . We visualize this
joint density for selected values of n and α, β in Figure 3A.
Additionally, we depict the dependence of the beta distribution
expectation and standard deviation on its parameters in
Figure 3B.

Based on the definitions (24) and (25), we may now evaluate
optimal sample sizes as a function of the prior parameters α, β
and the value of the sampling cost proportionality constant c> 0

FIGURE 3 | (A) The joint distribution over “states of the world” θ and “experimental outcomes” rn as a function of the prior distribution parameters α, β

(rows) and the sample size n (columns). The first row depicts the joint distribution for the reference prior parameter settings, the second row for a prior

distribution centered on 0.5 with higher implied certainty, and the last row for prior distribution parameters reflecting a biased assumption about the state of

the world θ . (B) Dependence of the first two central moments of the beta distribution on its parameters. In general, if both α and β increase, the

uncertainty implied by the beta distribution decreases.
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by means of the general definition of the optimal experiment in
the MEU framework (Equation 14).

nopt = arg min
n∈N0

(∫

{0,1,...,n}
pn(rn) min

θ̂ ∈ [0,1](∫

[0,1]
pn (θ |rn)

(
lt
(
θ̂ , θ

)

− min
θ̂ ∈ [0,1]

∫

[0,1]
p (θ)lt

(
θ̂ , θ

)
dθ

)
dθ

)
drn+cn

)
.(28)

Note that we have exchanged maximization with minimization
for simplicity. Because the additive terminal opportunity loss
constant is independent of θ and rn, we may equivalenty write
(28) as:

nopt = arg min
n∈N0

(∫

{0,1,...,n}
pn(rn) min

θ̂ ∈ [0,1](∫

[0,1]
pn (θ |rn) lt

(
θ̂ , θ

)
dθ

)
drn

− min
θ̂∈[0,1]

∫

[0,1]
p (θ) lt

(
θ̂ , θ

)
dθ+cn

)
. (29)

As shown by Pratt et al. (1995), the evaluation of (29) can be
performed analytically, as we sketch in the following.

We first derive the probability distributions involved based on
the specification of pn (θ, rn) in (27). To this end, the conditional
distribution of θ given rn is well-known to conform to an updated
beta distribution.

pn (θ |rn) = Be (θ;α + rn, β + n−rn) . (30)

Perhaps less well-known is the marginal distribution of
experimental outcomes under the assumptions of a marginal beta
distribution over θ and a Binomial conditional distribution over
rn, i.e., the parametric form of:

pn (rn) =

∫ 1

0
Bi (x; θ, n)Be (θ;α, β)dθ. (31)

This distribution is given by a binomial-beta distribution (also
referred to as “hyperbinomial distribution”) with probability
density function (e.g., Bernardo and Smith, 1994):

Bb (rn;α, β, n) =
Ŵ (α + β)

Ŵ (α) Ŵ (β) Ŵ (α + β + n)

(
n
rn

)

Ŵ (α + rn) Ŵ (β + n−rn) . (32)

for rn = 0, 1, . . . , n and n = 1, 2, . . . with n ≥ k.
Based on (30) one finds that the inner integral expression in

the first term of (29) evaluates to:

∫

[0,1]
lt
(
θ̂ , θ

)
pn (θ | rn) dθ =

(α + rn)(β + n−rn)

(α + β + n)2(α + β + n+1)

+

(
α + rn

α + β + n
−θ̂

)2

. (33)

which takes on its minimal value with respect to θ̂ for:

θ̂
opt
α,β,n,rn

:=
α + rn

α + β + n
. (34)

Please see the Supplementary Material for proofs of
(33) and (34).

The quantity (33) is referred to as “posterior terminal
opportunity loss” and, for a given setting of the prior parameters,
is a function of the sample size n, the point estimate or “act”

θ̂ and the experimental outcome rn. Its minimizer θ̂
opt
α,β,n,rn

is
referred to as “optimal posterior act” and here assumes the

meaning of an optimal point estimate for θ . Notably, θ̂
opt
α,β,n,rn

is dependent on the prior distribution parameters, the sample
size and the observed outcome rn. Interestingly, in contrast
to estimators derived in the standard framework of classical
statistics and their associated optimality theory, by means of the
MEU framework, this estimator has already been established as
“optimal” for every possible state of the world. In Figure 4 we
visualize the posterior terminal opportunity loss as a function
of the point estimate θ̂ and at its minimum for varying prior
distributions.

FIGURE 4 | (A) Posterior terminal opportunity loss as a function of possible acts or point estimates θ̂ . For a sample size n = 4 and prior distribution parameters noted

above each subpanel, the three panels depict the posterior terminal opportunity loss for all possible values of the sufficient statistic rn and their respective minimal

point. The higher the prior certainty (i.e., the lower the variance of the prior beta distribution), the less dependent is the location of the posterior terminal opportunity

loss on the point parameter estimate. (B) For a sample size of n = 16 and an observation of rn = 8, this figure depicts the posterior terminal opportunity loss at its

minimum. Notably, the minimized posterior terminal opportunity loss is symmetric in the prior parameters and decreases with higher prior certainty. Note that the

posterior terminal opportunity loss is a function of the experimental outcome.
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Substitution of the optimal posterior act obviously fulfills
the minimization operation in (29) and integration with respect
to the marginal outcome distribution then yields the complete
integral term in (29) as:

∫

{0,1,...,n}
pn (rn) min

θ̂ ∈ [0,1]

(∫

[0,1]
pn (θ |rn) lt

(
θ̂ , θ

)
dθ

)
drn

− min
θ̂ ∈ [0,1]

∫
p (θ) lt

(
θ̂ , θ

)
dθ

=
α + β

α + β + n
·

αβ

(α + β)2 + (α + β + 1)
(35)

For a proof of this identity, please see the Supplementary
Material. The quantity (35) may be referred to as the “expected
maximal terminal utility,” where the expectation is taken with
respect to the possible experimental outcomes. It represents
the minimal loss the decision maker has to accept when using
the optimal posterior act as point estimate for θ averaged
over all possible experimental outcomes. Notably, the expected
minimal terminal opportunity loss is monotonically decreasing
with sample size and approaches zero for large n and is dependent
on the choice of the prior distribution. From (35) we see that
the optimal sample size for the SSP in the current scenario of a
quadratic loss function and a beta prior distribution is a function
of the prior distribution (parameters) and the sampling cost
constant, which in analogy to (12), we may write as:

h : R[0,∞] → R,n 7→ h (n) :=
α + β

α + β + n

αβ

(α + β)2 (α + β+1)

+ cn. (36)

Analytical minimization of this function (see Supplementary
Material) yields the explicit closed-form solution for the optimal
sample size in the current scenario as

nopt =

√
1

c

αβ

(α + β) (α + β+1)
− (α + β) . (37)

Note that we have replaced the space of experimentsN
0 byR[0,∞]

in (36) to obtain a differentiable function continuous in n, the
optimal sample size in discrete terms may then always be found
by choosing the closest positive integer to nopt . In Figure 5A,
we visualize the expected terminal utility, the function h, and
its maximum for three different settings of prior parameters. In
Figure 5B we visualize the optimal sample size as a function of
the prior distribution parameters for two different settings of the
sampling cost constant c. Notably, the sampling cost constant
scales the optimal sample size, but does not affect the functional
relationship of optimal sample size and prior distribution [which
is, of course, also apparent from (37)].

In summary, assuming, that the decision maker in the
SSP (1) is adopting the “inference approach,” (2) is willing
to commit to a classical, squared-loss parameter inference
scheme, and (3) is willing to quantify its prior uncertainty
about the binary payoff distribution parameter using a beta
distribution, she may thus read-off the optimal sample size
depending on her subjective sampling cost constant c > 0 and
prior uncertainty captured by the beta distribution parameters
α and β about the binary distributions from graphs such as
Figure 5B.

Optimal Sample Sizes for Bayesian
Parameter Inference

Until now we assumed that the decision maker determines the
optimal sample size with the aim to obtain a point estimate of the
“true state of the world” (that is, the parameter θ of the binary
payoff distribution). To this end, the action space A of the MEU
framework was identified with the state space S, both being equal
to the interval [0, 1], and the optimal action corresponded to

inferring θ̂
opt
α,β,n,rn

∈ [0, 1]. Now, we assume that the decision
maker is willing to accept a degree of uncertainty about the true
state of the world upon selection of the optimal action. To this
end, following Bernardo (1997), we assume that the action space
corresponds to the space Q of probability distributions over the
state space S, or more formally:

FIGURE 5 | Optimal sample sizes for parameter point estimation. (A) For three different prior parameter settings, this panel depicts the expected maximal

terminal utility as function of the sample size (dashed lines), the sampling cost for sampling cost constant of c = 0.001 (black line) and the resulting functions h, and

their maxima in the space of sample sizes (colored dots). (B) Optimal sample sizes over a range of prior parameter settings α, β ∈ [0,100] for two sampling cost

constants. Higher sampling cost implicates lower optimal sample sizes, while the optimal sample size dependence on the prior parameter size is not affected. In the

right panel, sample sizes are optimally zero for high prior certainties about the value of θ .
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A:= Q:=
{
q (s) |q is a probability distribution on S

}
. (38)

Note that this space should not be confused with the probability
measure over S × Z as assumed by the MEU framework, but
is identified with the action space. The benefit of conceiving
the action space as a space of probability distributions over
the states is two-fold: First, one may argue that given the
limited sample sizes in real-world sampling, the assumption of
a point-estimate for the state of the world with its inherent
claim to be the single true answer to the inference problem
is “overly confident.” Secondly, and perhaps more importantly,
it allows for the formulation of the inference approach to the
SSP in terms of information theoretic concepts. This has the
benefit that the utility functions employed can be derived in
a principled manner under the assumption of “quantitative
coherence,” and do not assume relatively ad hoc forms (e.g., the
quadratic loss function considered previously). More specifically,
under the assumption of the action space corresponding to the
space of probability distributions over states, the fundamental
problem in determining an optimal sample size can be
framed as a trade-off between maximizing the (well-defined)
information about the parameter and minimizing sample
cost. In the following, we extend the theoretical framework
the Section “The Maximal Expected Utility Framework” by
considering a specific type of utility function, and then apply
the “Bayesian parameter estimation” variant of the MEU
to the SSP. Finally, we employ the same prior distribution
as used above and evaluate the resulting optimal sample
sizes.

Continuing from the introduction of the terminal utility
function ut in Equation (5), we consider the consequences of
identifying the action space with the space Q of probability
distributions on the state space. Denoting the members of
this space by q(s), the terminal utility function takes the
form:

ut :Q× S → R,
(
q(s), s

)
7→ ut

(
q (s) , s

)
. (39)

As discussed in Bernardo and Smith (1994), a sensible choice for
the terminal utility function under the assumption of the action
space corresponding to the set of probability distributions over
the space of possible states of the world is the “logarithmic score
function”:

uℓt
(
q (s) , s

)
= a log q (s)+ b (s) , (40)

where a, b > 0. In Bernardo and Smith (1994) the use of a
logarithmic score function is motivated by the fact that such
a function is a natural form of so-called “proper, local score
functions” (for a proof, see Bernardo and Smith, 1994, Section
2.7). The ideas behind this are as follows: a “score function” is
defined as any smooth function that assigns a real number to
each pair of distribution over s and value of s. A “proper score
function” is a score function that takes on its maximal value, if
the function q(s) corresponds to the “posterior” distribution over
s, that is, in the current scenario the data-conditional distribution
pe(s|z). This condition ensures that the decision maker chooses
an action [i.e., a distribution q(s)] which is coherent with her

inference scheme on the space S × Z. Finally, a score function
is said to be “local,” if it depends on the density function
q(s) only through its value at s. While the requirements for
properness and locality are well-motivated on the background of
inferential decision problems for example in scientific contexts
(as they, for example, foster honesty), for the application to
the SSP, the consequences, rather than the preconditions, of
using logarithmic score functions are perhaps more important.
Specifically, the use of a logarithmic score function allows for the
definition of a number of information-theoretic quantities that
formalize the idea that through sampling, the decision maker
aims to increase her “knowledge” of “information” about the
parameter of interest. Notably, these concepts of “information”
are coherent with the general probabilistic theory of information
as developed by Shannon (Shannon, 1964; Cover and Thomas,
2006) and prevalent in many modern data analytical frameworks
(Bishop, 2007; Barber, 2012; Murphy, 2012), while the original
use of “information” quantities, such as the “expected value
of perfect information” and the “expected value of sample
information” in the classical framework of Raïffa and Schlaifer
(1961) was not. In particular, the use of a logarithmic score
function permits the definition of “information from data”
and the “expected information from an experiment” in an
information-theoretic sense. It is this last quantity, which
the decision maker can trade-off with the expected cost of
sampling in order to come to a judgment of the optimal sample
size.

To introduce the notion of “information from data”
(Bernardo and Smith, 1994) [or “the amount of information
about s” (Bernardo, 1997)], we consider again the definition of
the optimal sample size with additive utility Equation (14), here
adapted for A: = Q and the use of a logarithmic score function
as defined in (40):

nopt = argmax
n∈N

(∫

Z
pn (z) max

q(s)∈Q
(∫

S
pn (s|z) u

ℓ
t

(
q (s) , s

)
dsdz

)
− cn

)
. (41)

Because the only argument dependent on q (s) on the right hand
side of the above is ut

(
q (s) , s

)
, we may rewrite the above as:

nopt = argmax
n∈N

(∫

Z
pn (z)

∫

S
pn (s|z) max

q(s)∈Q

(
uℓt
(
q (s) , s

))
dsdz−cn

)
. (42)

By definition, the logarithmic score function is maximized for
the posterior distribution pe (s|z) and we obtain:

nopt = argmax
n∈N

(∫

Z
pn (z)

∫

S
pn (s|z) u

ℓ
t

(
pn (s|z) , s

)
ds dz−cn

)
.

(43)
If one additionally defines the coefficient a to be 1 and, and in
analogy to the notion of terminal opportunity loss above, the
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terminal utility of reporting the prior distribution over states
p (s) to be zero (Bernardo, 1997) one has:

ut
(
p (s) , s

)
= 0 ⇔ b (s) = − log p (s) . (44)

Then, because

uℓt
(
pn (s|z) , s

)
= log pn (s|z)− log p (s) , (45)

the inner integral in (43) can be written as:

KL
(
pn (s|z) |

∣∣ p (s)
)
:=

∫

S
pn (s|z) log

(
pn (s|z)

p (s)

)
ds. (46)

The quantity (46) is the well-known Kullback-Leibler divergence
(Kullback and Leibler, 1951) between the posterior distribution
pn (s|z) and the prior distribution pn (s). The Kullback-Leibler
divergence is a versatile quantity with ubiquitous applications in
probabilistic modeling and here appears in form of a terminal
utility as a consequence of the MEU framework with logarithmic
score functions. In this context, and if evaluated in a data
dependent manner between a posterior and prior distribution,
it is referred to as “information from data.” In sum, we have
reformulated (41) as

nopt = argmax
n∈N

(∫

Z
pn (z)KL

(
pn (s|z) |

∣∣p (s)
)
dz−cn

)
. (47)

The remaining integral term (the expected KL divergence
between the posterior and prior distribution over states of
the world under the marginal distribution of experimental
outcomes) is referred to as the “expected information from data,”
which we will denote here by the function:

I :N0 → R,n 7→ I (n) =

∫
pn (z)

∫
pn (s|z) log

(
pn (s|z)

p (s)

)
dsdz.

(48)
As noted by Lindley (1956) this quantity may alternatively be
expressed as the (experiment-dependent) mutual information
between the random variable representing possible states of
the world s and the random variable representing experimental
outcomes z, i.e.,

I(n) =

∫∫
pn (s, z) log

(
pn (s, z)

pn (z) p (s)

)
dsdz. (49)

Equation (49) captures the intuition that the task of selecting
a good sample size (or, more generally, designing a good
experiment) corresponds to maximizing the information that
potential outcomes contain about the underlying state of the
world [which, for real experiments has to be traded off against
the cost of experimentation as apparent from (47)]. We next
apply these general results to the SSP.

Optimal Sample Sizes for Logarithmic Scoring
Functions and Beta Prior
As in the Section “Optimal Sample Sizes for Parameter Point
Inference,” we define the set of possible states of the worlds as the

true, but unknown value of the Bernoulli distribution parameter
by S: = [0, 1]. Equally, we identify E: = N0 and assume Z to be
the sufficient outcome spaceNn of a binomial sampling approach.
As discussed above, we assume A to be the space of probability
distributions on [0, 1], here represented by probability density
functions:

Q:=

{
q (θ)

∣∣ q (θ) > 0,

∫ 1

0
q (θ) dθ = 1, θ ∈ [0, 1]

}
. (50)

Note that the assumption of the elements of Q being probability
density functions is a mere notational convenience. The results
could equally well be formulated in terms of probability mass
functions defined on suitably chosen partitions of [0, 1] (see
Bernardo and Smith, 1994). In summary, we thus assume the
MEU problem space:

A× S× E× Z:= Q× [0, 1]× N
0 × N

0
n. (51)

The form of the utility function was discussed in detail above.
Further, as above we assume the following probability measure
on the Cartesian product of the space of states of the world and
experimental outcomes:

pn (θ, rn) = p (θ) pn (rn|θ) = Be (θ;α, β)Bi (rn; n, θ) , (52)

again implicating the data conditional distribution and marginal
distributions:

pn (θ |rn) = Be(θ;α + rn, β + n− rn) and

pn (rn) = Bb (rn;α, β, n) . (53)

To obtain the optimal sample size, we now consider Equation
(47), which, based on the specifications above, evaluates to:

nopt = argmax
n∈N

(∫

N0
n

pn (rn)KL (Be (θ;α

+rn, β + n− rn) |
∣∣Be (θ;α, β)

)
drn − cn

)
. (54)

In this equation, the integral term mirrors the minimized
posterior terminal opportunity loss of Equation (29) and
intuitively corresponds to the expected KL-divergence between
the posterior and prior beta distributions under the marginal
distribution of the data. The KL-divergence between two beta
distributions is well-known (Liu et al., 2006) and the function h
specified in (12) can be expressed as:
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h : N
0 → R, n 7→ h (n)

:=

n∑

rn = 0

((
Ŵ (α + β)

Ŵ (α) Ŵ (β) Ŵ (α + β + n)

(
n
rn

)

Ŵ (α + rn) Ŵ (β + n− rn)

)(
ln

(
Ŵ (α + β + n)

Ŵ (α + rn) Ŵ (β + n− rn)

)

− ln

(
Ŵ (α + β)

Ŵ (α) Ŵ (β)

)
+ rnψ (α + rn)+ (n− rn) ψ (α + rn)

+ nψ (α + β + n)

))
− cn. (55)

For a proof, please refer to the Supplementary Material.
Unfortunately, unlike the corresponding function in the case
of parameter point inference, the function h in (55) is not
readily maximized analytically. However, because the function
shows strictly concave behavior, its maximum may be identified
by numerically evaluating its values for increasing n until
h (n+ 1) ≤ h(n). Mirroring Figure 5 for the case of parameter
point inference, in Figure 6 we depict the minimized posterior
terminal utility of Equation (55), the function h of Equation
(55), and optimal sample sizes under the assumption of Bayesian
parameter inference for different values of the sampling cost
constant c.

In summary, assuming that the decision maker in the SSP (1)
is adopting the “inference approach,” (2) is willing to commit
to a Bayesian parameter estimation scheme in which the utility
of sampling is expressed as the information (in an information-
theoretic sense) about the binary payoff distribution parameter,
and (3) is willing to quantify her prior uncertainty about the
distribution parameter using a beta distribution, she may thus
read-off the optimal sample size depending on its subjective
sampling cost constant c > 0 and prior uncertainty captured
by the beta distribution parameters α and β about the binary
distributions from graphs such as Figure 6B. Compared to the
approach in Section Optimal Sample Sizes for Parameter Point
Inference, the decision maker here has the additional freedom
of probabilistically selecting a parameter value, for example, by

choosing the mode of the posterior distribution (maximum-a-
posterior estimator), or such that it falls into a 95%-credibility
interval.

Numerical Solutions

In our application of the MEU framework for parameter point
or interval probability estimation we have so far assumed
analytically tractable parameter prior probability distributions
and terminal utility functions mostly for mathematical
convenience. However, the MEU framework is by no means
limited to these special classes of probability distributions
and terminal utility functions. In this Section we demonstrate
how the optimal sample size for the inference approach to the
SSP can be derived with the help of a computer for arbitrary,
but numerically evaluable, prior distributions and terminal
utility function. As we elaborate below, this approach is of
particular relevance for applications of the theory developed
here in an experimental context. Note that our demonstration
merely serves as a proof-of-principle and does not aim for the
systematic evaluation of the errors introduced by the numerical
approximation of analytic quantities or attempts to provide an
in any way exhaustive coverage of possible prior and terminal
utility functions.

With respect to the MEU framework, we first note that
if one specifies the marginal distribution p (θ) not by means
of a probability density function as above, but by means
of a probability mass function for an appropriately chosen
discretization of the parameter space, the data-conditional
parameter distribution pn (θ |rn) also assumes the form of a
probability mass function, which can be evaluated according to
Bayes theorem as follows:

pn (θ = θi|rn) =
pn(rn|θ = θi)p(θ = θi)∑

θi∈2
p(rn, θ = θi)

=
Bi (rn; n, θ = θi) p(θ = θi)∑
θi∈2

Bi (rn; n, θ = θi) p(θ = θi)

for i = 1, . . . , d, (56)

FIGURE 6 | Optimal sample size for Bayesian parameter inference. (A) For three settings of the prior distribution parameters, this panel depicts the expected

information from data (dashed lines), the sampling utility (negative sampling cost) for a cost constant of c = 0.02 (black line), the function h as defined in Equation (55),

and its numerically determined maximum. (B) For two cost constants, the panels depict the optimal sample sizes as a function of the prior parameters. As for the

optimal sample sizes in the case of parameter point inference, the optimal sample size is symmetric in α and β, the optimal sample size is inversely proportional to the

sampling cost, and sampling sizes of zero are optimal for high prior certainties.
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where d ∈ N denotes the (finite) number of chosen parameter
values of interest. This approach is visualized in Figure 7.

We further note that the integration operations can, for finite
discrete state and outcome spaces and probability mass functions
defined over these spaces, be evaluated by means of scalar
products. Finally, the respective maximization operations can
be evaluated using standard list sorting techniques available in
numerical computing. Figure 8 depicts the numerical replication
of the analytical results obtained in the Section “Optimal Sample
Sizes for Parameter Point Inference” for the case of a beta
prior distribution and a squared error loss function. Here, some
numerical error is introduced by the discretization of state space.
However, the larger errors are introduced by the treatment
of the sample size as a continuous variable in the analytical
case.

As a proof-of-principle that the MEU framework can yield
an optimal sample size for arbitrary prior distributions and

terminal utility function, we consider prior probability mass and
terminal utility functions for a discretization of the state space
into 10 equally spaced bins (Figure 9). Specifically, we specify the
following prior distribution over states (Figure 9A).

p (θ = 0.05) = p (0.95) = 0

p (θ = 0.15) = p (θ = 0.25) = p (θ = 0.75)

= p (θ = 0.85) = 0.05 (57)

p (θ = 0.35) = p (θ = 0.45) = p (θ = 0.55)

= p (θ = 0.65) = 0.2.

As previously, we use the binomial distribution for pn(rn|θ)
and numerically derive the marginal distribution over outcomes
(Figure 9B). For the terminal utility function, we define an

FIGURE 7 | Numerical Bayesian inference for a Binomial likelihood function. For a discretization of the state space into 10 equally spaced bins centered at

0.05, 0.15,…, 0.95, beta distribution prior parameters of α = β = 2, and a sample size of n = 10, the panels depict, from left to right (A) the joint distribution over

states θ and outcomes rn, (B) the probability mass function (blue) resulting from an approximation of the corresponding probability density function (red), (C) the

posterior distribution for the outcome observation rn = 8 in both analytically evaluated probability density form (red) and numerically evaluated probability mass

function form (blue), and (D) the discrete marginal outcome distribution in form of the analytically evaluated (red) and numerically evaluated probability mass function

(blue). Note the difference in scale between the first and second panel.

FIGURE 8 | Numerical replication of optimal sample sizes for parameter point estimation with squared error loss function and beta prior

distribution. From left to right, the panels depict: (A) the expected posterior loss in analytical (red) and numerical (blue) form, for prior parameters α = 9,

β = 5 a sample size of n = 20, and an observed outcome of rn = 9, (B) for the same prior parameters and sample size the minimal expected posterior

loss (notably, the fact that in the analytical treatment the sample size is conceived for a continuous sample size variable (in the current visualization of

course approximated by a discretization of the sample size space with bin sizes smaller than 1), introduces the largest errors that result from an numerical

approach), (C) the marginal distribution over outcomes in both numerical and analytical form, and finally (D) the function h(n) for the same sampling cost

constants and prior parameter settings as in Section The Maximal Expected Utility Framework in both numerical form (straight lines) and analytical form

(dashed lines).
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FIGURE 9 | Numerical proof-of-principle. For a detailed discussion of this figure, please refer to the main text.

“inflated 1-0 utility function” by setting:

ut : [0, 1]× [0, 1] → {0, 1} ,
(
θ̂ , θ

)
7→ ut

(
θ̂ , θ

)

:=

{
1,
∣∣θ̂ − θ

∣∣ ≤ 0.2

0,
∣∣θ̂ − θ

∣∣> 0.2
, (58)

which is shown for θ = 0.45 in Figure 9C. Based on the
numerical scheme introduced above, we then evaluate the
necessary functions and quantities (Figures 9D–F) and arrive, for
a sampling cost constant of c = 0.001, at an optimal sample size
of nopt = 19.

In summary, assuming that the decision maker (1) adopts the
inference approach, (2) commits to arbitrary, but numerically
evaluable prior distribution probability mass and utility
functions, and (3) has the numerical computing facilities, she
may thus read-off the optimal sample size depending on her
subjective sampling cost constant c > 0 and prior uncertainty
from graphs such as Figure 9F.

Leaving technicalities aside, we next elaborate on the
applicability of the numerical solutions discussed above in
a concrete experimental context. We address this scenario
first from the perspective of the decision maker, i.e., the
experimental participant, and then from the perspective of the
experimenter.

Consider an experimental participant faced with the SSP. In
line with the inferential notion of our framework, we assume
that the participant would like to solve the question of how
many samples to draw before deciding whether to take a final
draw with economic consequences by means of estimating
the expected value of the SSP. As we focused our discussion
on estimating the binary payoff distribution parameter θ , we
have to implicitly assume that the participant is aware of
the SSP’s binary payoff distribution functional form and has
knowledge about the values of the possible outcomes (e.g., by
having been exposed to experimental trials of the same task
previously). Our framework next assumes that the participant
has a means to quantify her initial uncertainty about the value
of θ in terms of a prior distribution over discrete possible
values of θ . For the current purposes, we assume that this has
resulted in the distribution shown in Figure 9A. By specifying
this marginal distribution over θ and under the assumption
of knowledge of the binary payoff character of the problem,
the experimental participant has now implicitly specified a
marginal distribution over experimental outcomes rn (number
of observations of x1) for each sample size n considered. For
the prior distribution of Figure 9A, this marginal distribution
of experimental outcomes is shown in Figure 9B. This specific
distribution corresponds to the subjective belief of the probability
of observing the outcomes of 0, 1, . . . , 15 occurrences of x1 in
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a pre-specified sample size of n = 15. We next assume that
the participant can quantify her terminal utility of misestimating
the parameter θ . Like the initial uncertainty over the value
of θ , this terminal utility may take many forms. Here, we
assume that the participant would like to avoid over- or under-
estimating θ by 0.2, which we can formalize as the inflated 1-
0 loss function noted in (58) and visualized for an assumed
true, but unknown, value of θ∗ = 0.45 in Figure 9C. Note
that in the current framework this loss function has only
hypothetical, subjective applications. In other words, at no
point is the true, but unknown, value of θ actually revealed
to the participant, such that the participant could evaluate the
degree of her over- or under-estimation in practice. Finally,
our framework implies that the participant can trade-off her
terminal utility of correctly estimating the parameter θ with
the cost (“negative utility”) c of obtaining a single observation.
Note that this sampling cost can be conceived as the (intrinsic
or extrinsic) time-constraint of the participant for carrying out
the sampling—if more samples are drawn, the experimental
procedure will take longer, and the participant may not want
to sit in the experiment for the rest of her life. Having now
specified all essential components, our framework implies that
the experimental decision maker would like to determine the
best sample size that allows her to maximize her subjective
utility (terminal utility and negative sampling cost). We may
simply frame this as that the participant would like to “behave
optimally” with respect to her initial uncertainty over θ and
her economic preferences. Importantly, this concept of optimal
behavior is completely subjective—from an objective viewpoint,
there is no guarantee that, e.g., the initial uncertainty over θ is
not completely misled with respect to the true, but unknown,
value of θ . In other words, our framework does not address an
objective or absolute form of optimality, but rather a subjective
or relative form. Given all of the above, the participant can
now evaluate her optimal sample size by firstly integrating her
terminal utility function over the outcome specific posterior
distribution (expected terminal utility Figure 9D), maximizing
this function with respect to an estimate θ̂ (maximized expected
terminal utility Figure 9E), integrating the latter with respect to
the marginal distribution over outcomes, and finally maximizing
the resulting sample size-dependent function with respect to the
sample size while accounting for sample costs (Figure 9F). From
an “observed frequency” perspective, as shown in Figure 9G

(sampled terminal utilities) and Figure 9H (cumulative averages
of the sampled terminal utilities), this optimal sample size of
n = 19 maximizes the expected utility over samples from
the subjective marginal distribution of experimental outcomes,
as compared to under- and over-sampling (n = 14 or
n = 29, respectively). Note, however, that this observed-
frequency perspective, while illustrative, is not coherent with
the interpretation of the participant’s probabilistic model as a
quantification of uncertainty, and that under this interpretation,
one would content with the analytically determined expected
value.

We next consider the experimental applicability of our
numerical framework from the perspective of the experimenter.
By considering the framework discussed here, we obviously

assume that the experimenter is led by the intuition that
the participant’s prior assumptions about the state of the
world and economic preferences are of importance when
studying decision making under uncertainty. More specifically,
an experimenter may view the framework discussed herein from
two perspectives. Firstly, the experimenter may conceive the
proposed framework as a normative “null” model, which has no
psychological plausibility, but can serve as an objective predictor
for subjectively optimal behavior. In other words, assuming that
the experimenter has made the participant’s prior assumptions,
terminal utility function, and sampling cost, explicit (for example
by having explained the binary payoff distribution character of
the SSP to the participant, having the participant revealed her
prior belief over discrete values of θ , for example by means of a
visual analog scale, and likewise having revealed the participant’s
terminal utility function and sampling cost), the experimenter
can test whether the participant behaves in accordance with
her subjective preferences or not. In case of the former, the
question arises, how the participant’s neurocognitive apparatus
is able to implement (or at least approximate) the non-trivial
computations involved. In case of the latter, the question arises,
which cognitive processes may distort the mapping from prior
beliefs and preferences to selected sample sizes—which in turn
may lead tomore psychological plausible accounts of the decision
processes in the SSP. Secondly, the experimenter may conceive
the framework as a valid working hypothesis and, by fixing or
inducing specific components of the framework, study others.
For example, assume that the participant has specified her prior
beliefs over the values of θ and her sampling cost constant c.
Based on her actual experimentally observed sample sizes (and,
of course, under the other assumptions of the framework, such
as the 1-0 loss function), the experimenter can now determine
the degree of over- and underestimation of θ the participant
allows herself. Complementary, assume that the participant
has revealed her degree of preferred misestimation of θ and
sampling cost constant c to the experimenter. Then, based on
the observed sampling behavior, the experimenter can obtain an
approximation of the prior beliefs over the values θ . Finally, by
revealing the prior distribution, misestimation preference, and
observed sample size, the experimenter can study the cost that
the participant assigns to a single draw. Additional possibilities
for using the current framework in the second way arise
by experimentally inducing prior assumptions, terminal utility
functions, and sampling costs and then observing the behavioral
consequences in sampling behavior. We further discuss the
experimental value of the framework in the Discussion.

Discussion

In this study we have shown how a normative benchmark for
optimal sample sizes in the DFE sampling paradigm can be
developed based on results from classical statistical decision
theory. More specifically, we have shown that assuming an
inference approach to the sampling problem in DFE, optimal
sample sizes are dependent on the desired inference type and
can be quantitatively related to the decision maker’s prior
beliefs about the problem, the decision maker’s value assigned
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to identifying the correct solution, and the decision maker’s
cost assigned to each sample. We conclude with discussing the
benefits and limitations of this framework for generating testable
predictions and point to potential applications of the framework
in experimental cognitive psychology.

Perhaps the most fundamental benefit of the MEU framework
in the context of DFE is that it is explicit and constructive:
upon specification of the necessary concepts (the state, action,
experimental, and outcome spaces, the utility function, and the
probability measure on the product of experimental and outcome
space) it will yield an optimal sample size. From the perspective
of behavioral experimentation this is helpful, because search
behavior in DFE can be tested against quantitative predictions.
Further, because of its generality, the MEU framework can be
adapted to a wide range of conceivable utility functions (for
example those incorporating a notion of risk-sensitivity Shen
et al., 2014), probabilistic assumptions beyond binary payoff
distributions (for example sampling fromGaussian distributions,
Daunizeau et al., 2010), and prior distributions. Finally, because
it is explicit with respect to its concepts and assumptions, it
can serve as a reference point for more psychological plausible
accounts of information search in DFE. For example, it may be
argued that the assumption of a prior distribution over states and
its ensuing observation-based update to a posterior distribution
is a cognitively impossible task. If the aim is to find a framework
that does not require the specification of a joint probability
measure on world states and experimental outcomes, but is still
constructive insofar as it allows for the derivation of quantitative
sample size predictions, then the MEU framework may serve
as a starting point from which assumptions can successively be
removed.

Perhaps the most fundamental limitation of employing the
MEU framework as a generative model for behavioral DFE data
is that it is, as presented here, “non-identifiable.” By this we
mean, as shown by Figures 5B, 6B, 9F, that a given optimal
sample size can be explained by a wide range of combinations of
prior distributions and utility functions. This issue is technically
related, but not identical to, the “complete class theorem.”
However, this weakness may also be a strength, because it guides
the experimenter directly to interesting and testable hypotheses
and well-controlled experiments: by experimentally controlling
a pre-defined subset of variables (for example, the participant’s
prior beliefs and sampling cost), observed sample sizes can be
used to infer the possible utility (value) functions on which basis
a person operates. Analogous arguments can be made in order to
infer participant’s prior beliefs or subjective sampling costs. Note
however, that as it stands the MEU framework for DFE cannot
serve as an inferential (or “generative”) model of empirical data,
because it has not been embedded into a probabilistic framework
that allows for model parameter estimation and comparison
by means of evaluation of marginal data likelihoods. However,
this is a technical issue, and its solution readily conceivable,
even if not readily carried out. As an example, Daunizeau
et al. (2010) have recently demonstrated the formal probabilistic
embedding of similar behavioral data models by capitalizing on
variational Bayesian frameworks, while a popular strategy in
mathematical psychology is the embedding in MCMC schemes

in combination with ad hoc model selection criteria (Lee and
Wagenmakers, 2014). Combining the current framework with
suitable identifiability constraints and one of the mentioned
scientific inference approaches thus allows for overcoming this
limitation.

Because of its indefiniteness, an unlimited set of objections can
be raised against the current approach from the perspective of
cognitive process modeling. We thus limit ourselves to a set of
objections for which we see constructive rejoinders at present. A
first objection may be that the current application of the MEU
framework assumes that participants have knowledge of the (to
be) observed outcomes such that estimating the state of the world,
i.e., the parameter θ ∈ [0, 1] in the SSP is actually the only
necessary action. We agree that this assumption has been made
here (for experimental approaches in DFE that work on a similar
basis, see selected experiments in Erev et al., 2008; Rakow and
Miler, 2009). A solution to this objection may be to generalize
the inference approach to the estimation of the tuple (x1, x2, θ) of
observed outcomes and parameter, where the sufficient statistics
for the outcomes may correspond to the first observations.
It should also be noted that in general, upon sampling, both
outcomes will have been observed, permitting for the evaluation
of the expected value estimate based on the inferred probability
parameter values. A second objection is that it is implausible
that participants in DFE studies evaluate optimal sample sizes
for each payoff distribution prior to starting the sampling.
Instead, they may after each observation (or sets thereof) decide
whether to (a) terminate the exploration phase and continue
to the final incentivized draw, (b) continue sampling from
the currently investigated payoff distribution, or (c) terminate
sampling from the currently investigated payoff distribution and
to start (or continue) to sample from another payoff distribution.
A model class appropriate to capture these intuitions is offered
by the theory of (partially observable) Markov decision processes
(Wiering and Otterlo, 2012). A valuable future contribution
would be the explicit comparison of the numerical sample size
predictions offered by the MEU and POMDP frameworks under
identical prior, utility, and sampling cost assumptions.

Finally, we note that (Vul et al., 2014) have recently addressed
the question of optimal decisions based on sampling and related
their work to the DFE literature. However, as Vul et al. (2014)
point out, their considerations address a different (postulated)
phenomenon to that commonly considered in DFE studies and
the current manuscript: Vul et al. (2014) address—inspired
by sampling-based approximate Bayesian inference techniques
such as Gibbs sampling—the postulated cognitive “internal”
sampling of the decision maker’s posterior distribution over
states of the world pe(s|z). They conclude that a few samples
from the posterior distribution can suffice for an agent to
make “optimal” decisions in a given choice ecology. At present,
because of the fundamental difference of which distribution
is being sampled, their approach is not easily related to the
MEU framework and such an analytical treatment is beyond
the scope of the current manuscript. However, their approach
is of high relevance for the formulation of alternative generative
models for experimental DFE inference by focusing on “optimal
decisions” rather than “optimal sample sizes,” as we do in the
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current manuscript. Future analytical studies may shed light on
the precise relationship between the MEU framework considered
here and the work by Vul et al. (2014).

In summary, a broad empirical literature on DFE has
developed over the last decade in behavioral psychology, which
has shown that human choice behavior can remarkably differ
depending on how information is presented and sampled for
uncertain choices with economic consequences. However, so
far few attempts have been made to study the quantitative
nature of human sampling behavior in DFE by means of
computational modeling. Specifically, no normative benchmark
has been developed that would allow to judge whether
and when the observed sample sizes drawn by human
observers are “reasonable.” In this study, we related the DFE
sampling paradigm to the classical and modern literature
on statistical decision making and reviewed and extended
a framework based on which such a normative benchmark
can be developed. Specifically, we have shown how, under
a probabilistic inference assumption, the optimal sample size
in DFE can be quantitatively related to the decision maker’s

preferred type of inference, prior beliefs about the payoff
distributions at hand, and utility assigned to the inference’s
precision. Because of its quantitative nature, the framework
introduced here has yielded directly testable predictions for the
behavioral study of DFE. Moreover, given the strong conceptual
similarity between the DFE sampling paradigm and evidence
accumulation schemes as prevalent in research on perceptual
decision making, we believe that the current study addresses
key theoretical aspects of decision making under dynamic
subjective uncertainty. Finally, we believe that the current study
lays an important foundation for future theoretical efforts on
the computational description of human behavior in the DFE
sampling paradigm and provides a useful basis towards their
experimental validation.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.01342
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