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Multisensory processes are vital in the perception of our environment. In the evaluation

of foodstuff, redundant sensory inputs not only assist the identification of edible and

nutritious substances, but also help avoiding the ingestion of possibly hazardous

substances. While it is known that the non-chemical senses interact already at early

processing levels, it remains unclear whether the visual and olfactory senses exhibit

comparable interaction effects. To address this question, we tested whether the

perception of congruent bimodal visual-olfactory objects is facilitated compared to

unimodal stimulation. We measured response times (RT) and accuracy during speeded

object identification. The onset of the visual and olfactory constituents in bimodal trials

was physically aligned in the first and perceptually aligned in the second experiment. We

tested whether the data favored coactivation or parallel processing consistent with race

models. A redundant-signals effect was observed for perceptually aligned redundant

stimuli only, i.e., bimodal stimuli were identified faster than either of the unimodal

components. Analysis of the RT distributions and accuracy data revealed that these

observations could be explained by a race model. More specifically, visual and olfactory

channels appeared to be operating in a parallel, positively dependent manner. While these

results suggest the absence of early sensory interactions, future studies are needed to

substantiate this interpretation.

Keywords: multisensory integration, olfaction, visual-olfactory, race model, response time

1. Introduction

Olfactory and visual sensory information are continuously flooding the brain and are, therefore,
often experienced with a marked temporal overlap or even simultaneously. Both the smell and
visual appearance serve a vital function in the localization of food, the assessment of edibility, as well
as the identification of potential environmental hazards, thereby allowing for fast and appropriate
behavior not only limited to food-choice. The integration of redundant sensory information by
the neural system has been proven beneficial for perception and subsequent behavior: it speeds
up processing and improves accuracy. However, it is unclear whether this holds true for the
combination of olfaction and vision.

Recent studies have shown that odors modulate visual perception and performance, particularly
by directing attention to and influencing the saliency of a congruent visual object, e.g., during
attentional blink (Robinson et al., 2013), binocular rivalry (Zhou et al., 2010, 2012), spatial
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attention and visual search (Chen et al., 2013), and eye
movements (Seo et al., 2010). These effects occur even when
odors are task-irrelevant and suggest spontaneous binding
between visual and olfactory inputs (Zhou et al., 2012). In
contrast, odor perception is not only influenced by vision
(and the other senses), but odor identification also critically
depends on additional information because odors in isolation are
notoriously ambiguous (Cain, 1979). Observations that humans
have difficulties identifying and discriminating odors in the
absence of additional information (Davis, 1981) and that color
cues (Zellner et al., 1991), verbal labels (Herz and von Clef, 2001)
and images (Gottfried and Dolan, 2003) assist odor perception
corroborate this notion. Most previous studies investigated
modulatory effects of visual cues on olfaction and their
interaction at cognitive levels, when semantic representations
were available. It remains unknown whether sensory information
from the olfactory and visual modalities is in fact pooled at early
perceptual stages, that is, integrated.

1.1. How can we Investigate Whether
Multisensory Integration is Taking Place?
Multisensory integration has been mostly studied between
the non-chemosensory modalities vision, hearing, and
somatosensensation; these senses have been shown to interact
already at the level of the superior colliculi (Stein and Meredith,
1990). Classically, super-additive responses, i.e., more than the
sum of the parts, are considered an indication of multisensory
integration. Key aspects governing multisensory integration
are the so-called principles of spatial and temporal proximity:
stimuli presented at the same location and at the same time,
respectively, most likely belong to the same object and are
therefore more likely to be bound together to a unitary percept
(Stein and Meredith, 1993). Additionally, Meredith and Stein
(1986) found that cells in the superior colliculus produced
the strongest response amplification for the weakest stimuli, a
principal phenomenon called inverse effectiveness. While these
observations could be replicated on the behavioral level in
numerous studies, it has been suggested that these findings might
largely be statistical artifacts (Holmes, 2007). While imaging
studies have mostly focused on superadditive effects when trying
to identify functional correlates of multisensory integration, it is
unclear whether the results from single-neuron recordings can
be readily transferred to the cortical level (Laurienti et al., 2005)
and behavior.

1.2. Response Facilitation Can Serve as a
Possible Measure of Multisensory Integration
Stimulus detection, on average, is faster and more accurate in
situations where the target is presented redundantly, i.e., on
several sensory channels. In the multisensory literature, this
facilitation is commonly called redundant-targets effect (RTE)
or redundant-signals effect (RSE); both terms are largely used
synonymously. In the remainder of this paper, we will refer to
these effects of multisensory processing exclusively as redundant-
signals effects. The response speedup is commonly explained by
assuming that an internal decision criterion is reached faster
when multiple targets are presented simultaneously, compared

to the single-target situation. Similarly, redundant information
reduces stimulus ambiguity, hence allowing for a higher accuracy
of responses.

However, RSEs can result from statistical facilitation merely
due to probability summation alone. A popular probability
summation model was introduced by Raab (1962) with the idea
of a race between parallel single-target detection processes during
a multiple-target situation. The process finishing first “wins the
race,” elicits a response, and, therefore, determines the behavioral
response time. These so-called race models operate according to
a separate-activation model with a first-terminating stopping rule
(see e.g., Colonius and Vorberg, 1994). They implicitly assume
unlimited-capacity processing (Colonius, 1990), meaning that
the speed of one detection process is not influenced by other,
simultaneous, detection processes. For example, detection of a
unimodal target should happen at the same speed as detection
of the same target in a multimodal situation. Therefore, if RT
distributions of the single-target detection processes overlap,
the observed RTs in redundant-target trials will, on average, be
faster than the unimodal RTs. “Slow” responses of one single-
target detection process can be replaced by “faster” responses
of another, simultaneous detection process. The observed RT
speedup would thus be a statistical artifact only. In sum, an RSE
that can be fully accounted for by a race model does not provide
strong evidence for multisensory integration.

Nevertheless, integration can be inferred if RTs are faster
than predicted by race models. Specifically, Miller (1982) derived
an upper bound to the bimodal RT speedup possible in any
race model, the so-called race model inequality (RMI) or Miller
bound. It is based on the assumption of maximum negative
dependence between the channel processing speeds (Colonius,
1990), that is, if the participant detects a signal on one channel
at a given bimodal trial, the other channel will fail to detect
the target. Violations of this criterion, i.e., faster responses
than predicted by the RMI, support coactivation models. They
demand that processing of different sensory channels be pooled
prior to the decision stage and therefore refute all race models
in favor of “true” multisensory integration. Satisfaction of the
RMI, on the contrary, does not necessarily exclude coactive
processing.

Numerous studies have investigated response facilitation to
bimodal stimuli in the visual, auditory, and somatosensory
modalities (see e.g., Gielen et al., 1983; Miller, 1986; Forster et al.,
2002; Diederich and Colonius, 2004). Whether the combined
presentation of congruent (that is, redundant) visual-olfactory
information can likewise facilitate object perception remains
unclear and was investigated with the present study. Specifically,
we tested the hypothesis that bimodal visual-olfactory object
identification is facilitated compared to identification of either of
the unimodal constituents alone.

Furthermore, we examined whether facilitation is more
pronounced for perceptually aligned compared to physically
aligned stimuli. For this, we conducted two experiments in
which the bimodal constituents were either presented physically
(Experiment 1) or perceptually (Experiment 2) simultaneously.
We compared the observed RTs and response accuracies to the
predictions of different models of probability summation.
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2. Results

Seven participants smelled and viewed different food objects
presented either alone as unimodal visual (V) or olfactory
(O) stimuli or as congruent bimodal combinations (OV) and
performed a speeded two-alternative forced-choice (2-AFC)
object identification task. Stimulus strength was adjusted to
achieve approximately 75% accuracy. The biggest RSE for
response time (RT) can be observed when the RT distributions
of the unimodal constituents overlap largely (Hilgard, 1933;
Hershenson, 1962; Raab, 1962; Miller, 1986; Colonius, 1990;
Diederich and Colonius, 2004; Gondan, 2009). Therefore, we
conducted two separate experiments, in which OV stimuli
consisted of physically (Experiment 1; Figure 1, left) or
perceptually (Experiment 2; Figure 1, right) aligned unimodal
constituents. Perceptual alignment was achieved by introduction
of a stimulus-onset asynchrony (SOA) equal to the RT differences
between the unimodal stimuli.

For perceptually aligned OV stimuli (Experiment 2) we
observed a significant RSE for RTs [RSE = 54ms, t(6) = 3.05,
p = 0.02], that is a speedup of median RTs to bimodal OV
compared to the fastest unimodal stimuli (Figure 2A). No RSE
was found for physically aligned OV stimuli during Experiment 1
[RSE = 0ms, t(6) = 0.02, p = 0.98]. Accuracy showed no
RSE in either Experiment [Experiment 1: RSE = 1.8%-points,
t(6) = 0.73, p = 0.49; Experiment 2: RSE = −0.6%-points,
t(6) = −0.29, p = 0.78; Figure 2B].

Experiment 1 yielded a significant difference between
response times (RT) to unimodal V andO stimuli, indicating only
little overlap between the unimodal RT distributions; V stimuli
were perceived 362ms faster than O stimuli [t(6) = −4.72,
p < 0.01; Figure 3A]. By contrast, we could observe a markedly
reduced difference between the SOA-corrected unimodal RTs in
Experiment 2 of only 74ms [t(6) = −2.48, p < 0.05; Figure 3B],
indicating a strong overlap of unimodal RT distributions.

FIGURE 1 | Stimulus timing in unimodal and bimodal trials of

Experiments 1 and 2 (schematic). The start of a trial is marked with a small

vertical line and identifies the onset of the fixation cross. The visual and

olfactory constituents were presented physically simultaneously in the bimodal

trials in Experiment 1, and perceptually simultaneously in Experiment 2. The

SOAs employed in Experiment 2 were individually estimated for every

participant and object (banana and lemon, respectively) during Experiment 1.

Note that the depicted delayed presentation of the visual stimulus in

Experiment 2 caused the fixation cross to be displayed for a longer duration

before stimulus onset in the unimodal vision-only condition in order to ensure

context-invariance.

These performance differences were clearly reflected in the
cumulative RT distributions: While the bimodal distribution
mostly followed the visual distribution in Experiment 1, it was
shifted toward faster responses throughout its whole range in
Experiment 2 (Figures 3C,D).

We next tested whether the bimodal RT speedup could be
explained by statistical facilitation in a separate-activation model
with unlimited capacity (race model). The theoretical upper
performance limit was given by the Miller bound: If observed
responses were faster than this boundary at any time, all race
models could be ruled out at once, and the system would
be assumed to be super-capacity at this time (Townsend and
Nozawa, 1995; Townsend and Wenger, 2004). Additionally, we
compared our data to a lower performance bound proposed by
Grice et al. (1984b), referred to as Grice bound. It assumes that
responses in the bimodal situation should be at least as fast
as responses to the fastest unimodal constituents. If responses
were slower than this boundary, the system would be assumed
to be limited-capacity (Townsend and Wenger, 2004) at this
time. Both super-capacity and limited-capacity processing violate
the assumption of context-invariance, invalidating an essential
requirement of race models (Colonius, 1990). We found that the
observed bimodal RTs did not exceed the Miller or the Grice
bounds significantly in both experiments, indicating parallel
processing of the visual and olfactory channels (Figures 3E,F,
and Table 1). Our data could thus be attributed for by a race
model.

Colonius (1990) pointed out that the Miller and Grice
bounds can only be reached under the implicit assumption of
perfect negative and positive, respectively, dependence between
channel processing speeds. To gain further insight into the

FIGURE 2 | Mean redundant-signals effects in Experiments 1 and 2.

Positive values indicate a bimodal facilitation, negative values a bimodal

impairment relative to the unimodal constituents. (A) No redundancy gain in

response speed was observed for physically simultaneous bimodal stimulation

(Experiment 1), but it was clearly evident for perceptually simultaneous

stimulation (Experiment 2). (B) For both physically simultaneous (Experiment 1)

and perceptually simultaneous bimodal stimulation (Experiment 2), no

significant accuracy improvement could be observed. Data were calculated

individually for each participant and object, and subsequently averaged. Error

bars show standard error of the mean.
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FIGURE 3 | Comparison of observed response times (RTs) in the visual (V), olfactory (O), and bimodal (VO) trials. Visual RTs were corrected for SOA. (A) RT

distributions for V and VO appeared to be almost identical, with the O distribution shifted to much slower RTs and very little overlap with V, indicating that responses in

VO trials were mostly driven by the visual constituent. The crosses depict group means. (B) Individual timing adjustments by introduction of an SOA aligned the

unimodal distributions, suggesting perceptual simultaneity. (C,D) Empirical cumulative RT distributions. Quantile values were averaged across participants. In

Experiment 1, the VO distribution seemed to follow V up to the 55% quantile. Approximately at the same time, the fastest olfactory responses could be observed, i.e.,

the unimodal constituents were starting to perceptually overlap. Coincidentally, the VO distribution started to diverge from V, and shifted to faster responses. This

bimodal speedup is not reflected in the global (mean) RSE. In Experiment 2, the VO distribution was shifted to faster responses relative to both unimodal distributions

across its whole range. (E,F) Comparison of the unlimited capacity, independent, parallel (UCIP) model prediction with the observed bimodal data. The highlighted

area depicts the possible phase space under the assumption of separate-activation models with unlimited capacity and a first-terminating time rule, but possibly

dependent processing (i.e., possible race models would have to lie within this area); accordingly, the dashed line to the left shows the Miller and the right the Grice

bound (upper and lower performance limits, respectively).

underlying processing mechanisms, we compared our data to a
model assuming uncorrelated processing between the visual and
olfactory channels, the so-called unlimited-capacity, independent,
parallel (UCIP) model. The bimodal RTs were slower than
predicted by this model in the 75% quantile in Experiment 1
and from the 45% to the 85% quantiles in Experiment 2 (all
p < 0.05). However, only the deviation in the 75% quantile in
Experiment 2 survived Holm-Bonferroni correction for multiple
testing (pcorr = 0.03). All comparisons are summarized in
Table 1. Because the deviations of the observed data from the
model predictions are shifted in direction of the Grice bound,
i.e., toward perfect positive dependence, the results suggest a
race model with positively correlated channel processing speed
between the visual and olfactory channels (see Grice et al.,
1984a).

Next, the accuracy data (grand means shown in Figures 4A,B

for Experiments 1 and 2, respectively) were compared to models
of probability summation. We first adopted equivalents of the
Miller and Grice bounds to derive upper and lower performance
limits, respectively (Colonius, 2015). The upper bound was
at 100% accuracy in both experiments and therefore never
violated; observed accuracies were significantly below this bound
[Experiment 1: 1 = −13.5%-points, t(6) = −8.95, p < 0.001;
Experiment 2: 1 = −13.9%-points, t(6) = −6.76, p < 0.001].
The lower bound was never significantly violated [Experiment 1:
1 = 1.8%-points, t(6) = 0.73, p = 0.49; Experiment 2:
1 = −0.6%-points, t(6) = −0.29, p = 0.78. Note that the lower
bound was identical to the baseline used earlier to identify an RSE
for accuracy. These results suggest that probability summation
could in fact explain the observed bimodal accuracies.
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TABLE 1 | Each participant contributed one quantile value, following the procedure from Ulrich et al. (2007).

Experiment Quantile (%) VO–Miller bound VO–Grice bound VO–UCIP

1 (ms) t p 1 (ms) t p 1 (ms) t p

1 5 −20 −1.68 0.144 −20 −1.68 0.145 −20 −1.68 0.144

15 −11 −1.15 0.295 −13 −1.52 0.180 −11 −1.18 0.281

25 0 0.04 0.971 −13 −1.99 0.094 −2 −0.27 0.800

35 8 0.82 0.443 −8 −1.43 0.204 5 0.58 0.583

45 22 1.30 0.242 −4 −0.36 0.732 14 0.92 0.391

55 45 2.30 0.061 2 0.11 0.915 33 1.85 0.114

65 74 2.65 0.038 −6 −0.21 0.844 43 1.79 0.123

75 111 4.26 0.005 −33 −1.05 0.333 50 2.62 0.039

85 203 4.11 0.006 −118 −1.84 0.116 73 1.77 0.128

95 337 4.41 0.004 −72 −0.91 0.400 74 0.94 0.384

2 5 13 0.77 0.472 11 0.65 0.543 13 0.77 0.473

15 14 0.92 0.395 4 0.24 0.822 13 0.86 0.422

25 29 2.01 0.091 9 0.52 0.622 26 1.71 0.138

35 39 2.20 0.070 −13 −1.26 0.255 33 1.99 0.093

45 46 3.98 0.007 −46 −3.05 0.022 31 3.49 0.013

55 60 4.08 0.007 −69 −2.54 0.044 31 3.01 0.024

65 77 5.08 0.002 −83 −2.92 0.027 29 2.92 0.027

75 110 5.92 0.001 −112 −3.39 0.015 35 4.82 *0.003

85 179 6.16 0.001 −120 −2.39 0.054 64 3.47 0.013

95 293 4.89 0.003 −131 −2.09 0.082 54 1.37 0.218

Negative t-values for the Miller and positive t-values for Grice bound comparisons indicate violations of the respective bounds. Significant model violations in bold; the asterisk marks a

significant violation after Holm-Bonferroni correction for multiple testing.

The data were then compared to a model predicting
stochastic independence, equivalently to the UCIP model
employed for RTs (Stevenson et al., 2014). Bimodal accuracy
was lower than predicted by the model in both Experiment 1
[1 = −9.0%-points, t(6) = −5.97, p < 0.001; Figure 4C]
and Experiment 2 [1 = −10.6%-points, t(6) = −4.99,
p < 0.01; Figure 4D]. In line with the RT data, the accuracy data
indicate that the visual and olfactory channels are stochastically
dependent.

3. Discussion

The present study found a bimodal response facilitation for
perceptually, but not for physically aligned bimodal visual-
olfactory stimuli. The facilitation could be accounted for by
race models assuming probability summation across positively
dependent processing channels. Thus, the results yielded no
proof of coactivation.

The observation of a significant bimodal visual-olfactory
response speedup indicated by an RSE for perceptually, but
not for physically aligned unimodal constituents suggests
that temporal proximity subserves visual-olfactory response
facilitation. Increasing temporal parity amplifies multisensory
interactions in other sensory modalities, e.g., for visual-tactile
(Forster et al., 2002) or visual-auditory (Lovelace et al., 2003)
stimuli albeit the temporal binding window, i.e., the range of
inter-stimulus intervals over which multisensory stimuli are

integrated, is not universal. While multisensory binding windows
as large as several hundred milliseconds exist for example
in audio-visual speech perception (see e.g., van Wassenhove
et al., 2007), the effects of stimulus timing on visual-olfactory
perception are unknown. To our knowledge, this is the first study
demonstrating that perceptual, rather than physical, simultaneity
is vital to elicit an RSE for bimodal visual-olfactory objects.

However, the response speedup could be the result of
statistical facilitation alone and is not necessarily proof of
neural integration processes. Therefore, we examined whether
the present data could be explained by race models, or if we could
find evidence for coactivation.

Response time distributions never significantly exceeded the
Miller bound. We can therefore exclude coactivation as a possible
explanation of the observed RSEs. Further we can exclude strictly
limited-capacity processing over an extended period of time
because the Grice bound was never violated (Townsend and
Wenger, 2004). Taken together, the observed bimodal response
times are consistent with separate-activation models with a first-
terminating time rule and unlimited-capacity processing, i.e.,race
models (Miller, 1982; Grice et al., 1984a; Colonius, 1990).

Classically, it has been shown that violations of the Miller
bound are more easily produced in go/no-go tasks due to the
absence of “response competition” (Grice and Canham, 1990;
Grice and Reed, 1992). Yet, race models can successfully be
rejected in choice response time studies as well (see e.g., Miller,
1982; Hecht et al., 2008; Girard et al., 2011).
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FIGURE 4 | Comparison of observed accuracies in the visual (V),

olfactory (O), and bimodal (VO) trials. (A,B) Mean VO accuracy is higher

than either unimodal accuracy in both experiments, with mean V responses

being the least accurate. (C,D) Comparison of the unlimited capacity,

independent, parallel (UCIP) model prediction with the observed bimodal data.

The highlighted area depicts the expected bimodal accuracy range under the

assumption of separate-activation models with unlimited capacity, but possibly

dependent processing. The cross in the boxplots depicts group means.

No change in response accuracy was observed in the bimodal
conditions, compared to unimodal stimulation. This finding
is in contrast to previous reports of improved accuracy for
multisensory stimuli. A possible reason for this discrepancy
might be that olfaction and vision do not integrate in the same
way as other senses. However, it is also possible that we were
not able to observe improved accuracy simply for statistical
reasons due to the low number of trials (owing to the long inter-
trial intervals, ITIs, necessary for olfactory stimuli) and high
inter-subject variability.

Comparison of the observed bimodal response time
distributions to a more restrictive race model assuming
stochastic independence of channel processing speed (UCIP
model) revealed significantly slower responses than predicted
in both experiments, suggesting positively dependent channel

processing speeds between the visual and olfactory channels
(Grice et al., 1984a). Although only the deviation in one quantile
in Experiment 2 was significant after correction for multiple
testing, the additional finding of lower bimodal response
accuracies than predicted further corroborates the assumption of
a possibly positive stochastic dependence of visual and olfactory
processing.

In contrast, the bimodal combination of odor and taste
stimuli yielded faster responses than predicted by a UCIP model
in a recent study (Veldhuizen et al., 2010). Notably, odor
and taste perception are closely intertwined; evidence exists
for direct and indirect anatomical connections between the
primary gustatory and olfactory cortices (Rolls and Baylis, 1994;
Shepherd, 2006) as well as for convergence areas responding to
both smell and taste, for example in the orbitofrontal cortex
(OFC) (O’Doherty et al., 2001; de Araujo et al., 2003; Small
and Green, 2012), the anterior insula, and frontal and parietal
opercula (Small et al., 1999; Cerf-Ducastel and Murphy, 2001;
Poellinger et al., 2001). Perceptually, the combined odor-taste
experience typically exceeds the sum of the two chemosensory
modalities, being perceived as more Gestalt-like, intense and
rewarding, and yields superadditive activation in the frontal
operculum (Seubert et al., 2015). Although no monosynaptic
connection between the primary visual and olfactory cortices
has been found, the perirhinal cortex is a prime candidate as
a processing hub between the visual and olfactory modalities
due to its numerous reciprocal connections, particularly with
the inferior temporal cortex. The inferior temporal cortex is
involved in object perception (Grill-Spector and Weiner, 2014)
and associations of sensory representations, and a subdivision,
the rhinal cortex, has been proven critical for the association of
flavor with visual food objects in monkeys (Parker and Gaffan,
1998).

3.1. Conclusion
The present data are consistent with models of parallel
processing with unlimited-capacity and positive dependence
between the visual and olfactory channels. Notably, these
models do not refute the possibility of coactive processing.
Although odor perception is highly ambiguous and susceptible
to other sensory information (Herz and von Clef, 2001), the
olfactory stimuli may in fact have contributed to the bimodal
object identification by generating further perceptual evidence,
allowing an internal decision criterion to be reached faster.
This assumption is supported by the observation of positive
channel dependence, indicating that the identification of the
visual and olfactory constituents in bimodal trials co-occurs.
The objects used in the present study carried a semantic
meaning, which had to be decoded before mapping it to the
appropriate response button. Semantic representations emerge
only at later stages in the perception process (Olofsson,
2014). Further, no direct connections between the visual and
olfactory cortices have been discovered yet, questioning the
plausibility of early bimodal visual-olfactory interactions. Future
studies will have to show whether the present findings are
transferable to other stimulus objects, SOAs, and experimental
tasks.
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4. Materials and Methods

4.1. Participants
Eight participants completed the study; one participant was
excluded because his accuracy was far below chance level for the
unimodal olfactory lemon stimulus in both experiments (mean
accuracy was approx. 33%); data of seven participants (4 female;
age in years: 29.9 ± 2.4 SD, range: 26–32; all right-handed) are
reported here. Participants were recruited from the German
Institute of Human Nutrition and local universities; they gave
written informed consent and received compensatory payment.
They reported no neurological disorders or chronic diseases, in
particular no smell impairment, and normal or corrected-to-
normal vision. The study was conducted in accordance with the
requirements of the revised Declaration of Helsinki and had been
approved by the ethics committee of the German Society for
Psychology (DPGs).

4.2. Stimuli
4.2.1. Visual Stimuli
Six images (three different images of bananas and lemons,
respectively) with different complexities were selected from the
Food-pics database (no. 276, 282, 341, 379, and 415; Blechert
et al., 2014) or purchased online. Images displayed a food object
centered on a white background. They were resized to 1024 ×

1024 pixels and converted to grayscale. A Gaussian blur (order
0, σ = 3) was applied to remove sharp edges. The fast Fourier
transform (FFT) of all images was calculated and the phase space
was randomly scrambled. The inverse FFT of the image with the
scrambled phase yielded blurry images of the food objects with
superimposed cloud-like noise patterns. Noise-only images were
also derived for every object using the samemethod, yielding 2×3
target and 2× 3 noise-only stimuli in total. The spatial frequency
of those noise patterns was similar to the spatial frequency of
the original object. Images were presented on a TFT monitor
with a resolution of 1680 × 1050 pixels. The refresh rate was
set to 60Hz. Participants viewed the images at an eye distance of
approx. 60 cm, corresponding to an object size of approximately
12◦ of visual angle, embedded in visual noise of approximately27◦

of visual angle.

4.2.2. Olfactory Stimuli
Odorants were 10mL aliquots of isoamyl acetate (banana; Sigma-
Aldrich Chemie GmbH, Steinheim, Germany, CAS 123-92-2)
and lemon oil (lemon; same vendor, CAS 8008-56-8) diluted
with mineral oil (Acros Organics, Geel, Belgium, CAS 8042-47-
5) to produce solutions of 0.1% v/v concentration. The solvent,
pure mineral oil, served as neutral control. The odors were
congruent to the visual objects banana and lemon; odor intensity
was chosen to yield identifiable, yet weak stimuli based on a
pilot study (n = 7). Odorants were presented birhinally using
a custom-built 16-channel air-dilution olfactometer (Lundström
et al., 2010). Teflon tubes with an inner diameter of 1/16′′

delivered the odorous air via custom-made anatomically shaped
nose pieces into the participants’ nostrils. A constant flow of clean
air (approximately 0.5 L min−1) was present at all times to rinse
the tubing system and the nose. Stimuli were delivered with a flow

rate of approximately 3.0 Lmin−1, totaling to a flow of about 3.5 L
min−1 during stimulation. Stimulus timing wasmeasured using a
photo-ionization detector (PID; 200B miniPID, Aurora Scientific
Inc., Aurora/ON, Canada) and defined as the time point 254ms
after sending the trigger to the olfactometer. To ensure a constant
odor concentration and to reduce depletion of head space in the
odor jars in the course of the experiment, one of three identical
odor jars was used in sequential order from trial to trial.

4.3. Procedure
Participants completed two experimental sessions on separate
days. In the first session, a visual identification threshold
assessment was conducted, followed by a choice response time
(CRT) Experiment in which bimodal stimulus components were
presented physically simultaneous. A second CRT experiment
with perceptually aligned bimodal stimuli was conducted during
the next session. The experiments were carried out in a
sound-attenuated experimental booth. Participants were seated
centered in front of the screen. Responses were collected using
a button box (Serial Response Box, Psychology Software Tools,
Sharpsburg/PA, USA) connected to a USB port of the stimulation
computer via a serial-to-USB adapter. Timing accuracy was
verified to be better than 2ms. In-ear headphones delivered
Brownian noise during the CRT experiments at a volume chosen
such that the change in air flow at stimulation on- and offset was
inaudible. The stimulation was controlled using PsychoPy 1.79.01
(Peirce, 2009) running on a personal computer.

4.3.1. Visual Threshold Estimation
We adjusted the strength of the noise so that objects could
be perceived approximately on every second trial using a
QUEST staircase procedure (Watson and Pelli, 1983). The
Experiment started with a short practice block, in which all
target and noise-only images were presented once. Then, images
of objects + noise were presented interleaved with noise-only
images (equal proportions) for 900mswith a randomly varied ITI
between 1.5 and 2.0 s during which a white screen was presented.
Participants indicated by button press the detection of an object
within the noise. The staircase adjusted the strength of the noise
to yield a performance level of 50% correct object detection when
stimuli were present (false alarms on noise-only trials were very
rare, ranging from 0 to approx. 3%, with a grand mean of 1.3%.).
Separate staircases were run for each of the six different object
images. Overall, the threshold procedure entailed 240 trials, 20
repetitions of each of the six images and their respective noise-
only images (2 × 6 images × 20 repetitions). Participants were
allowed a short break; the procedure lasted about 12m. Note that
stimuli yielding 50% accuracy in this detection task are expected
to yield approximately 75% performance in the 2-AFC task as
used in the main experiment.

4.3.2. Bimodal CRT Experiments
During the CRT experiments, participants were to identify
the presented object (banana or lemon) as quickly as possible
(while avoiding anticipatory responses) by pressing either of two
buttons on the button box. Stimuli were either unimodal visual
(V) objects presented at individual 50% identification threshold,
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unimodal olfactory (O) objects, or bimodal visual-olfactory (VO)
objects. V stimuli were always paired with the neutral control
odorant. O stimuli were paired with a randomly assigned noise-
only image derived from a visual stimulus of the same object. OV
stimuli consisted of the combined presentation of congruent V
and O stimuli.

VO stimulus pairs were presented simultaneously in
Experiment 1. In Experiment 2, bimodal stimulus timing was
adjusted to achieve perceptual simultaneity by introducing
an SOA equal to the difference of unimodal median RTs
individually for each object and participant. The mean SOAs
were 330 ± 295ms SD for banana, and 395 ± 205ms SD for
lemon. Note that all SOAs were positive, i.e., delaying visual
presentation, except for banana in one participant, where the
odor had to be presented 182ms prior to the visual stimulus to
achieve perceptual simultaneity. To ensure context-invariance
in Experiment 2, we also adjusted the timing of the unimodal
stimulus presentations. Specifically, if the estimated SOA
indicated a delayed presentation of the visual constituent in
bimodal conditions, we also delayed the visual stimulation in
the unimodal conditions for the same amount of time (meaning
the fixation cross was visible for a longer duration before the
stimulus appeared; note that this was also true for the unimodal
olfactory stimulation, where the visual stimulus was noise-only).
The stimulus timing is illustrated in Figure 1.

Each trial started with a fixation cross centered on the screen,
which informed participants to prepare and to slowly inhale. At
the same time, the air flow through the neutral jar was initiated to
remove the tactile cue from the later stimulus presentation. After
a random period of 1–2 s, a stimulus (O, V, or VO) was presented
for 900ms. After stimulation, the neutral control odorant was
presented for 4.1 s to remove residual odor molecules. The ITI
was randomly varied between 20 and 21 s.

The experiments started after a short practice block in
which each stimulus combination was presented once. Each
Experiment consisted of six blocks during which all stimulus
combinations were presented twice and in pseudo-random order,
totaling to 216 stimuli (6 blocks × 2 repetitions × (6 V +

6 O + 6 VO)), and lasted 95–120 min. Participants were allowed
self-paced breaks in the middle of each block and between blocks.

RT measurement started with the onset of the image in V
trials and the physical onset of the odorant as determined by PID
measurements in O trials. In bimodal trials, RT measurement
started with the physical onset of the stimuli (Experiment 1,
physically simultaneous presentation), or with the onset of
the earlier stimulus (Experiment 2, perceptually simultaneous
presentation).

4.4. Data Analysis
Only trials with positive and correct identification responses
were analyzed. RT medians and standard deviations (SDs) of the
aggregated data were calculated for each of the six conditions (O,
V, VO for banana and lemon objects, respectively). All trials with
a reaction time deviating more than two SDs from the median
were discarded as outliers. In Experiment 1 and 2, 6.0% and 5.5%
of the trials were removed, respectively.

A short summary of the analyses will be given in the next
paragraph, followed by a detailed method description in the
remaining section.

Faster responses to bimodal, compared to unimodal, stimuli
indicate an RSE. Therefore, we first compared bimodal to
unimodal RTs by calculating the difference between the bimodal
and the faster of the two unimodal RTs (visual or olfactory).
Because this global RSE is relatively insensitive to effects that
are not present across the whole response time range, we next
estimated cumulative distribution functions (CDFs) from the
RTs. Analyses based on these CDFs can take into account the
whole RT distribution. We evaluated the CDFs at 10 quantiles.
Since an observed response speedup can be caused by statistical
facilitation alone, in a next step we calculated theoretical model
boundaries based on the unimodal CDFs under the assumption
of parallel processing of the visual and olfactory channels (race
model), that is the data range that could be explained by
statistical facilitation. Any observation exceeding these limits
would support the hypothesis of true integrative processing.
To examine whether the channels operated in a stochastically
independent manner, we additionally compared our data to a
very specific race model assuming stochastic independence of
the channel processing speeds (UCIP model). A very similar
approach was chosen in the analysis of the accuracy data,
although it was naturally based on mean accuracies and not
single-trial responses, i.e., no equivalent of a CDF could be
estimated.

4.4.1. Response Times
The RT distributions were heavily positively skewed; we therefore
used the median as measure of central tendency. This measure
is not without criticism (cf. Miller, 1988), but alternatives like
the commonly applied log-transformations are not universally
applicable approaches either (Feng et al., 2014).

Response times to unimodal V and O stimuli and their
bimodal VO combination are defined as non-negative random
vectors RTV , RTO and RTVO. Their respective expected values
shall be labeled E(RTV ), E(RTO) and E(RTVO), and their
distribution functions as F(RTV ), F(RTO), and F(RTVO). An RSE
can be observed if

E(RTVO) < min[E(RTV ),E(RTO)], (1)

i.e., if mean RTs for bimodal VO stimuli are faster than for either
unimodal component.

We calculated the difference between the medians
of the fastest unimodal and the bimodal RTs, i.e.,
min[E(RTV ),E(RTO)] − E(RTVO). Positive values indicate
a bimodal speedup, i.e., a facilitation in processing of bimodal as
compared to unimodal stimuli. Note that RSEs were calculated
separately for each object (banana and lemon) before collapsing
and submission to one-sample t-tests against zero to identify
bimodal facilitation.

To quantify the effect of in perceptually aligning the unimodal
constituents of bimodal trials in Experiment 2, we compared
the median RTs of the unimodal V and O conditions (collapsed
across objects) using paired t-tests for each experiment.
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Next, we tested whether the RT distributions fit probability
summation models. In bimodal trials, only the marginal
distribution F(RTVO), but not the distributions of the unimodal
constituents F(RTV ) and F(RTO) can be observed.

Probability summation models critically rely on the
assumption of context-invariance (Colonius, 1990), which
states that the processing speed of a channel is identical in
unimodal and bimodal stimulations, that is additional work load
on one channel does not influence processing speed in another
channel, suggesting unlimited capacity.

The unlimited capacity, independent, parallel (UCIP) model
makes the additional assumption that the processing speeds of
individual channels are uncorrelated and hence stochastically
independent (Raab, 1962; Meijers and Eijkman, 1977). According
to a UCIP model, the cumulative distribution function for the
bimodal stimulation is:

F(RTVO)(t) = F(RTV )(t)+ F(RTO)(t)− F(RTV )(t)× F(RTO)(t).
(2)

The last term is always equal to or greater than zero, i.e.,
F(RTV )(t)× F(RTO)(t) ≥ 0.

Miller (1982) discarded the assumption of stochastic
independence and instead assumed a maximally negative
dependence between the channel processing speeds (Colonius,
1990). This allowed him derive an upper bound for themaximum
achievable performance gain under any parallel processingmodel
called Miller bound or race model inequality(RMI), commonly
expressed as:

F(RTVO)(t) ≤ F(RTV )(t)+ F(RTO)(t) (3)

All parallel processing models have to satisfy inequality (3). If
the inequality is violated, the assumption of parallel processing
must be dropped, i.e., all race models are ruled out immediately,
and the results can only be accounted for by what Miller
called coactivation models (Miller, 1982)1. Similarly, a lower
performance bound was defined by Grice et al. (1984b),
implying perfect positive dependence (Colonius, 1990) between
the channels’ processing speeds:

F(RTVO)(t) ≥ max[F(RTV )(t), F(RTO)(t)] (4)

That is, performance in the bimodal conditions should be equal
to or faster than in the fastest unimodal condition.

In the case of asynchronous stimulation, i.e., by delaying the
presentation of the visual stimulus by the time τ , Equations (1),
(2), respectively, become (Miller, 1986):

E(RTVO(τ )) < min[(E(RTV + τ ),E(RTO)], and (5)

F(RTVO(τ ))(t) = F(RTV )(t − τ )+ F(RTO)(t)

− F(RTV )(t − τ )× F(RTO)(t). (6)

Note that the visual RT distribution F(RTV )(t−τ ) is shifted to the
right, which is the correct adjustment for the SOA. The adjusted

1However, it should be noted that the reverse is not true: Showing that the

observations can be described using a parallel processing model does not

necessarily exclude coactivation models.

Miller and Grice bounds from Equations (3), (4) can then be
expressed as:

F(RTVO(τ ))(t) ≤ F(RTV )(t − τ )+ F(RTO)(t), and (7)

F(RTVO(τ ))(t) ≥ max[F(RTV )(t − τ ), F(RTO)(t)]. (8)

We estimated empirical cumulative distribution functions
(CDFs) of the RTs using a Python implementation of the
algorithm suggested by Ulrich et al. (2007). The CDFs predicted
by the UCIP model denoted in Equation (6), as well as the
theoretical race model boundaries from Equations (7), (8) were
calculated based on the unimodal CDFs, resulting in six CDFs
per participant (unimodal O and V, bimodal VO, UCIP model,
upper and lower bound). All CDFs were then evaluated at ten
evenly spaced quantile points (0.05, 0.15, . . . , 0.95), which were
subsequently collapsed across both objects. The resulting values
were submitted to separate paired t-tests for every quantile to test
for deviations from the model predictions.

4.4.2. Accuracy
Similar to Equation (1), an RSE in accuracy can be observed if

E(ACCVO) > max[(E(ACCV ),E(ACCO)], (9)

i.e., if mean accuracy for bimodal VO stimuli is higher than for
the most accurate of the unimodal components.

We calculated the difference between the means of the most
accurate unimodal and the bimodal responses, i.e., E(ACCVO)−
max[(E(ACCV ),E(ACCO)]. Positive values indicate a bimodal
accuracy enhancement. Note that RSEs were calculated separately
for each object before collapsing to one-sample t-tests against
zero.

Following the assumption of the UCIP model, Equation (2)
can be applied to accuracy data and becomes (Stevenson et al.,
2014):

p(ACCVO) = p(ACCV )+p(ACCO)−p(RTV )×p(ACCO). (10)

Equivalents of theMiller and Grice bounds for bimodal accuracy
were proposed by Colonius (2015). Formulas (3) and (4),
respectively, then become

p(ACCVO) ≤ p(ACCV )+ p(ACCO), and (11)

p(ACCVO) ≥ max[p(ACCV ), p(ACCO)]. (12)

The model predictions and boundaries were calculated for
each Experiment and object separately. The results were
then collapsed across objects. The resulting values were then
submitted to paired t-tests to test for deviations from the model
predictions.
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