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Most research investigating how the cognitive system deals with arithmetic has focused
on the processing of two addends. Arithmetic that involves more addends has specific
cognitive demands such as the need to compute and hold the intermediate sum.
This study examines the intermediate sums activations in intentional and automatic
calculations. Experiment 1 included addition problems containing three operands.
Participants were asked to calculate the sum and to remember the digits that appeared
in the problem. The results revealed an interference effect in which it was hard to identify
that the digit representing the intermediate sum was not actually one of the operands.
Experiment 2, further examined if the intermediate sum is activated automatically when
a task does not require calculation. Here, participants were presented with a prime of
an addition problem followed by a target number. The task was to determine whether
the target number is odd or even, while ignoring the addition problem in the prime.
The results suggested that the intermediate sum of the addition problem in the prime
was activated automatically and facilitated the target. Overall, the implications of those
findings in the context of theories that relate to cognitive mathematical calculation is
further discussed.

Keywords: arithmetic problems, numerical cognition, inhibition, automaticity and control, addition problems,
intermediate sum

Introduction

Arithmetic is a branch of mathematics that deals with numbers and their addition, subtraction,
multiplication, and division. Children learn arithmetic as part of the school curriculum and both
children and adults encounter and process simple arithmetic tasks, such as calculating change, in
everyday life activities. Arithmetic is such a basic operation that there is evidence that even infants
can solve simple arithmetic problems (Wynn, 1992; McCrink andWynn, 2004).

Simple arithmetic processing can occur automatically, without a specific instruction to perform
the task. For example, Lefevre et al. (1988), LeFevre and Kulak (1994) investigated the automaticity
of arithmetic processing. In their experiment an arithmetic problem containing a pair of digits (e.g.,
4 + 3) was presented, followed by a target digit. The participants’ task was to determine whether
the target digit was one of the digits that appeared in the initial pair (they were not requested to
solve the arithmetic problem). When the target digit was the sum of the preceding pair of digits
(e.g., the target 7 preceded by the pair 4 + 3) rejection times were longer than when the target
digit was not the sum of the preceding pair of digits (e.g., the target 9 preceded by the pair 4 + 3).
This difference in response time (RT) between the two conditions is the interference effect, and
noticeably, it occurred automatically, where there was no need to solve the arithmetic problem
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(participants simply had to remember and then match numeric
symbols). A similar interference effect was also found with
multiplication facts (Thibodeau et al., 1996).

In another study, Jackson and Coney (2005, 2007) found
evidence of facilitation and inhibition effects in a numerical
priming task. In that study a target number appeared on
the screen (e.g., 14) and participants were asked to name it.
Each target was preceded by a prime that was composed of
an arithmetic problem. The sum of the problem was either
congruent to the target (e.g., 6 + 8), incongruent (e.g., 2 + 3),
or neutral (e.g., X + Y or 0 + 0). RT in the congruent condition
was faster than in the neural condition and RT in the incongruent
condition was slower than in the neutral condition.

A recent study that investigated unconscious human
semantic processing boundaries, found that humans can also
unconsciously solve complex arithmetic equations that require
multiple steps (e.g., 9–3–4; Sklar et al., 2012).

For the last couple of decades, neuro-cognition researchers
have been trying to investigate how the cognitive system deals
with arithmetic and how arithmetic knowledge is organized
and accessed in the brain. Most models describe the solving
of simple arithmetic problems by skilled adults as a process
of fact retrieval from memory (Ashcraft, 1982; Dehaene and
Cohen, 1995). For example, in Ashcraft’s associative network
retrieval model arithmetic facts are stored in a network of stored
associations. The arithmetic problem addends and their matching
result are presented as nodes. Retrieval of arithmetic facts (e.g.,
2+ 5= 7) occurs by spreading activation from the number nodes
that appear in the problem (e.g., 2 and 5) through associative links
to related number nodes such as the sum (e.g., 7). It is assumed
that the process of spreading activation from the presented nodes
to the related nodes is automatic.

Not all arithmetic involves direct accessing of arithmetic facts
in long term memory, especially when the arithmetic problem
is less familiar or when it is a complex one. Examples of these
kinds of calculations are the multi addends arithmetic task
(e.g., 3 + 4 + 7) and the multi-digit arithmetic task (e.g.,
16 + 26), which are performed via a procedural process in
which the calculation is performed while holding, changing, and
manipulating information in the mind. It has been suggested
that in these kinds of calculations the intermediate sum might
be temporarily stored in the working memory (DeStefano and
LeFevre, 2004). Research investigating the procedural process
of composite arithmetic tasks that involve two serial operations
which share an intermediate result (that should be passed from
the first operation to the second), found that participants are
unable to maintain the serial flow of operations. That is, the
second operation starts ahead of time and is executed partially
parallel to the first operation, with the task stimulus instead of
the intermediate result as input (Sackur and Dehaene, 2009).

However, most research investigating how the cognitive
system deals with arithmetic has focused on the processing of
two addends (e.g., 3 + 2). Little is known about the exact nature
of calculation in arithmetic problems with three addends (e.g.,
3+ 2+ 7) and how the cognitive system handles the intermediate
sum in those calculations. The current study aims to shed a light
on some aspects of this calculation. The current study consists of

two experiments; the first experiment examines activation of the
intermediate sum in intentional serial calculations and the second
experiment examines it in automatic calculations.

Experiment 1

Experiment 1 investigates the activation of the intermediate
sum when participants perform intentional serial calculations
of addition problems with three addends. When performing
an intentional three addend arithmetic task, it is reasonable
to assume that the intermediate sum might be activated. For
example, when calculating the serial addition problem with three
addends: 3 + 2 + 7, the intermediate sum 5 might be activated.
If this temporary sum is indeed activated, what is the nature
of this activation? Does this serial calculation also involve serial
inhibitions? In other words, when one sum is calculated (e.g.,
the total 12) does it overwrite and inhibit the existing irrelevant
intermediate sums (e.g., 5)? On the other hand, it is also possible
that after the final sum is calculated the intermediate sum remains
activated (although at this stage it is irrelevant and has the
potential to interfere with other processes). If the intermediate
sum remains active, is it activated in a way that will actually cause
a confusion between it and the real problem addends (e.g., 3, 2,
7)? The current experiment will explore these questions.

In this experiment participants were presented with three
addends (e.g., 4, 2, 9). Then they were asked to perform two tasks:
(a) calculate the sum of these addends (e.g., identify that the sum
is 15) and (b) identify whether a certain digit was one of the
addends in the problem displayed on the screen (e.g., identify that
only the digits 4, 2, and 9 appeared on the screen as addends of
the problem). For correct sum calculations (task a), RT and error
rate for detecting that certain digits were not displayed (task b)
were measured in two conditions of interest. In the first condition
the absent digit was the intermediate sum (e.g., participants were
supposed to detect that 6, which is the intermediate sum of 4 and
2, was not an addend in the addition problem). In the second
condition, the absent digit was a neutral digit (e.g., participants
were supposed to detect that 7 was not an addend in the addition
problem; see Figure 1).

If the irrelevant intermediate sum is still activated after
completing the addition problem, and if the activation is in a
similar form to the other real problem addends, then interference
by the intermediate sum digit might be observed. Namely, when
participants will need to decide that a target digit did not appear
on the screen, RT and/or error rate might increase when the
target digit is the intermediate sum in comparison to some other
neutral digits.

Materials and Methods
The study was approved by the ethical committee of University
of Haifa, Israel and was conformed to those standards. Written
informed consent was obtained from all participants.

Participants
Nineteen adults, all females, with no diagnosed learning
disabilities or attention deficits participated in the experiment.
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FIGURE 1 | A schematic representation of the experimental paradigm along with the various conditions are displayed. Three addends are presented one
after the other and are followed by two tasks. The first task is to identify whether a specified number is the sum of the addends. The second task is to identify
whether a specified digit is one of the addends of the problem. (A) Condition 1 (the absent digit is the intermediate sum). Task a: correct response: “yes,” Task b:
correct response: “no.” Note that in this condition the intermediate sum (6) is the digit that one needs to identity as NOT one of the addends. (B) Condition 2 (the
absent digit is a neutral digit). Task a: correct response: “yes,” Task b: correct response: “no.”. Note that in this condition a neutral digit (7) is the digit that one needs
to identity as not one of the addends. (C) A filler condition. Task a: correct response: “yes,” Task b: correct response: “yes.” (D) A filler condition. Task a: correct
response: “no,” Task b: correct response: “yes.”

One participant was excluded due to low performance rate (she
had only 53.13% correct trials). The age of the remaining 18
participants was between 23 and 33 (M = 27.34, SD = 2.87).

In return for participating, participants received course credit
points, or a payment of NIS 20 (around $5).

Material
The stimuli displays consisted of a sequence of three digits which
created an addition calculation problem set. In total there were 32
addition problem sets and each appeared twice in the experiment
(see Appendix A). The addends in the addition problems were
created such that each addend had a value of between two and
nine, the intermediate sum was smaller than or equal to eight,
and the total sum did not exceeded fifteen. In addition, the same
digit didn’t appear more than once in the same problem and
the intermediate sum didn’t share the same digit with either the
addends or the total sum (e.g., problem set 2 + 4 + 6 with
intermediate sum of 6 was excluded because it shares the same
digit 6 with one of the addends). The intermediate sum differed
from the addends and total sum by more than one and the order
of the addends was balanced such that in half the problems the
smaller of the first two addends appeared first and for the other
half the larger of the first two addends appeared first.

The number presented for the sum question task could be
either the correct sum (75%) or the correct sum ±1 (25%).
The digit presented for the addends identifying task could be
the intermediate sum (33.3%), the intermediate sum ±1 (33.3%,

divided equally between plus and minus 1), or one of the addends
(33.3%). All stimuli appeared in black in the center of a white
screen. The digits and letters in the display had an approximate
size of 0.5 cm × 0.5 cm.

Procedure
The experiment was constructed on the E-Prime 2.0 program.
An HP Compaq computer with an Intel core i7-2600 central
processor was used for presentation of stimuli and collection
of data. Stimuli were presented on a Samsung 22 inch monitor,
while participants sat about 60 cm from the screen. A keyboard
on which the participants pressed their answer was placed
on a table next to the screen. Each participant was tested
individually and the experiment took about 10–15 min in
total.

The participants were instructed to perform the following task:
(a) Identify whether a given number is the sum of the three
addends; (b) Identify whether a specified digit was one of the
addends. The participants were asked to respond as quickly and
accurately as possible. To ensure that participants performed the
complex addition task, they were told that for identifying the sum
question correctly they would earn two points and for identifying
the appearance of a digit in the problem they would earn one
point. They were also told that the participant that attains the
highest score would receive a monetary bonus. The monetary
bonus was a payment of NIS 20 (around $5). For a response of
“no,” participants pressed the letter “Q” on the keyboard with
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their left index finger, and for a response of “yes” they pressed
the letter “P” with their right index finger.

The experiment began with a practice block that contained
eight trials presented randomly. Then the experimental block
began.

At the beginning of each of the trials (practice and experiment)
a blank screen appeared for 500 ms. Then the digits appeared on
the screen one after the other and each remained for 900 ms. The
digits were separated from one another by a 200 ms blank screen.
Then two questions were presented, one after the other. The
questions were composed of the messages “Is the following the
sum” and “Is the following a digit in the problem.” Each question
remained on the screen for a maximum of 3500 ms or until the
participants responded. The questions were separated from one
another by a 200 ms blank screen. The order of the questions was
counterbalanced, half of the participants were first asked about
the appearance of a digit and the other half were first asked about
the sum. RT and accuracy were measured by the computer.

Results
For correct sum calculations (task a), mean RT and error rate for
detecting the absence of a digit in the addition problem (task b)
were calculated for each participant in two conditions of interest:
the absent digit was the intermediate sum or other neutral digit
(the intermediate sum ±1).

Trials in which the participants did not answer correctly
regarding the sum of the addition problem (5.56% of the group
that received the digit question first and 3.82% of the group with
the sum question first) were not included in the analysis. Analysis
of RT for detecting the absence of a digit in the addition problem
was calculated only in trials where the participants answered
the two questions correctly (86.81% of the group with the digit
question first and 84.72% of the group with the sum question
first).

A two-way analysis of variance was applied to the RT data
with type of digit (the intermediate sum or neutral) as a within
participant factor and the order of questions as a between
participant factor.

The results revealed that when participants had to identify that
a digit was not one of the addends, RT was slower when the digit
was the intermediate sum (1348 ms, SD = 274.76) than a neutral
digit (1125 ms, SD = 244.54), [F(1,16) = 34.67, p < 0.001] (see
Figure 2). This effect did not significantly interact with the order
of the questions [F(1,16) = 2.27, p = 0.152].

Similar results were revealed in the error analysis. Participants
mademore mistakes in trying to identify that a digit didn’t appear
in the addition problem when the digit was the intermediate sum
(18.01%, SD = 17.75) than when it was a neutral digit (1.79%,
SD = 3.66), [F(1,16) = 17.09, p < 0.01] (see Figure 3). This
effect did not significantly interact with the order of the questions
(F < 1).

Overall, the results demonstrate an interference effect that
results from activation of the intermediate sum. In this task,
participants were asked to decide if a certain digit was one of
the addends. The results suggest that participants tend to make
more mistakes and claim more times that a digit was one of the
addends (when actually it was not) in the case of the intermediate

FIGURE 2 | Mean response time (RT) for rejecting a digit representing
the intermediate sum versus a neutral digit. Error bars represent standard
error mean.

FIGURE 3 | Mean error rate for rejecting a digit representing the
intermediate sum versus a neutral digit. Error bars represent standard
error mean.

sum than in the case of a neutral digit. Additionally, even for
correct trials, it took participants more time to identify that the
intermediate sum was not one of the addends in comparison to
the time it took them to identify that a neutral digit was not
one of the addends. Therefore, both the statistical analyses that
compare RT and accuracy between the intermediate sum and a
neutral digit suggest that there is a clear tendency to confuse
between the identity of the intermediate sum and the identity
of the addends, and that participants find it hard to distinguish
between the intermediate sum and the real addends.

Experiment 2

The results of the first experiment suggest that the intermediate
sum remains activated even after the calculation process has been
concluded. Participants find it difficult to distinguish between
the intermediate sum and the addends of the addition problem.
As noted, previous studies suggest that the presentation of a
simple addition arithmetic problem with two addends leads
to automatic activation of the total sum of the problem. This
occurred although the task does not require participants to solve
the addition problem, and in two addend addition problems the
total sum is activated automatically even with a short exposure
(Lefevre et al., 1988; LeFevre and Kulak, 1994; Jackson and Coney,
2005, 2007). Will the intermediate sum in three addend addition
problems, that is, the sum of the first two addends, be activated
according to the same rule? On one hand it is possible that the
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activation of intermediate sums is a core characteristic of the
human calculating system and it is activated automatically even
with a short exposure. Then again, when the task does not require
calculating the exact sum of the multi addends problem, it is not
clear whether a serial computation that includes activation of the
intermediate sum is actually performed. There is evidence that
conscious access is required for multi-step arithmetic operations
in order to control the flow and passing of the information
(e.g., intermediate sum) from one operation to the other (Sackur
and Dehaene, 2009). Therefore, serial processes involving serial
addition and transmission of the intermediate sum from one
step to the other are not necessarily how the cognitive system
automatically refers to multi step arithmetic problems. The
cognitive system might process the stimuli by coding the overall
statistics (“ensemble coding”) of the information, which might
act as a parallel process. This might be similar to how the
mean of objects is calculated (Chong and Treisman, 2005). In
line with this possibility is evidence that ensemble statistics
can be extracted from a set of abstract symbolic stimuli (e.g.,
arabic numbers) without awareness (Van Opstal et al., 2011).
The human mind has also been shown to have the ability of
fast approximate addition calculation which does not require
serial processing (El Yagoubi et al., 2003), which could also
be what the cognitive system does automatically when briefly
presented with a multi step arithmetic task. Hence, these options
will not necessarily result in calculation of the complete sum
of the multi addend problem and the intermediate sum, and
therefore the intermediate sum will not be activated in those
cases.

The current experiment examined whether the activation
of intermediate sums is a core characteristic of the human
calculating system using a priming procedure with an addition
problem as the prime and an intermediate sum or an incongruent
number as the target. In the current experiment, participants
were presented with a prime of an addition problem with two
or three addends. Following the prime a target number was
presented. The participants’ task was to determine whether the
target number is odd or even, while ignoring the addition
problem. For the two addend addition problem the target could
be either congruent with the sum of the problem (e.g., prime:
2 + 5 and target: 7) or incongruent (e.g., prime: 2 + 5 and
target: 13). In the three addend addition problem, the target could
be either congruent with the intermediate sum of the problem
(e.g., prime: 8 + 3 + 4 and target: 11) or incongruent (e.g.,
prime: 8 + 3 + 4 and target: 6) (see Figure 4). Note that here
the intermediate sum in three addend addition problem is the
sum of the first two addends. A faster RT for the intermediate
sum (the congruent target) as opposed to an incongruent target
indicates automatic activation of the intermediate sum even if the
calculation is irrelevant to the task.

Materials and Methods
The method of Experiment 2 was similar to Experiment 1
with the following changes. Twenty four adults including 1
male and 23 females took part in the experiment. In return
for participating, participants received course credit points, or
a payment of NIS 20 (around $5), but no monetary bonus for

FIGURE 4 | Schematic representations of the experimental paradigm
along with the various conditions are displayed. An addition task of two
or three addends is presented for 150 ms followed by a target number. The
task is to determine whether the target number is odd or even, while ignoring
the arithmetic addition problem. (A) The intermediate sum of two addends in a
prime of a three addend problem is congruent with the target. Correct
response: “odd” (B) The intermediate sum of two addends in a prime of a
three addend problem is incongruent with the target. Correct response:
“even.” (C) The sum of two addends in a prime of a two addend problem is
congruent with the target. Correct response: “odd.” (D) The sum of two
addends in a prime of a two addend problem is incongruent with the target.
Correct response: “odd.”

high achievements has been proposed since it was an easier
task than Experiment 1. One female participant was excluded
from the analysis due to computer failure during the experiment.
The age of the remaining 23 participants was between 22 and
33 (M = 26.7, SD = 2.64). A prime of an arithmetic addition
problem was presented, followed by a target number. The
participants’ task was to determine whether the target number
is odd or even while ignoring the arithmetic addition problem
that appeared on the prime. They were asked to use their left
index finger to press the letter “W” (for an “odd” response) and
their right index finger to press the letter “O” (for an “even”
response). The prime was an addition problem with two or three
addends. For the addition problem with two addends the target
could be either congruent with the sum of the problem (e.g.,
prime: 2 + 5 and target: 7; 16.66% of all trials) or incongruent
(e.g., prime: 2+ 5 and target: 13; 16.66% of all trials). In the three
addend addition problem the target could be either congruent
with the intermediate sum of the problem (e.g., prime: 8 + 3 + 4
and target: 11; 16.66% of all trials) or incongruent (e.g., prime:
8 + 3 + 4 and target: 6; 16.66% of all trials). Another option
was that of a target that is congruent with the total sum of the
problem (e.g., prime: 6 + 2 + 7 and target: 15; 16.66% of all
trials) or incongruent (e.g., prime: 6 + 2 + 7 and target: 11;
16.66% of all trials). The two latter acted as fillers. In total there
were 204 addition problems (see Appendix B). The values of the
addends in the addition problems were between two and nine,
and the total sum was 16 or smaller. The following restrictions
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FIGURE 5 | Mean RT as a function of the different experimental conditions. Error bars represent standard error mean.

were made: the same digit didn’t appear more than once in the
same problem. In addition, the intermediate sum, total sum,
and addends didn’t have the same unit digit (e.g., problem set
2 + 3 + 7 with total sum of 12 was excluded because the unit
digit of the total sum is identical to one of the addends). Also, the
congruent and incongruent targets didn’t have the same unit digit
as the addends, intermediate sum, or total sum (e.g., problem set
2+ 7+ 5 with incongruent target 4 was excluded because the unit
digit of the total sum 14 is identical to the incongruent target).
Another constraint on the incongruent target was that it couldn’t
be the result of the first two or all three addends using a different
operation (e.g., problem set 3 + 2 + 9 with incongruent target 6
was excluded because the incongruent target could be the result of
multiplying the first two addends 3 × 2). To account for the split
effect, which refers to a problem with an incorrect answer that is
closer to the correct answer, requiring more time for rejection (see
Ashcraft, 1992 for a review), incongruent targets differed from the
intermediate sum and the total sum by at least three and from the
addends by more than one.

Moreover, the total sum of the difference between incongruent
and congruent targets (the total sum for the two addends
condition and the intermediate sum for the three addends
condition) was balanced at zero and the congruent and
incongruent targets were balanced by range, the amount of times
each number was used, and the amount of odds and evens.
Finally, the order of the addends was also balanced such that in
half the problems the smaller of the first two addends was placed
on the left side and for the other half the larger of the first two
addends was placed on the left side.

The approximate size of each digit was 0.4 cm × 0.4 cm.
The experiment took about 20 min to complete. The experiment
began with a practice block that consisted of eight trials
presented randomly. Then an experimental block began. This
block contained 204 trials presented at random order. At the
beginning of each of the trials (practice and experiment) a fixation
point of 600 ms appeared, followed by a 150 ms blank screen.
Then the addition problem appeared on the screen and remained
for 150 ms. The following was 500 ms of blank screen and then
the target number appeared and remained on the screen for
a maximum of 3000 ms or until the participant responded by
pressing the appropriate letter key. Finally, there were 2000 ms
of blank screen between trials.

Results
Trials in which the participants did not answer the even/odd
question correctly (1.42%) or trials with an RT of less than 300ms
or more than 1,500 ms (0.78%) were not included in the analysis.

For the remaining trials, for each participant in each condition
of interest the mean RT was calculated. A two-way analysis of
variance was applied to the mean RT data with prime-target
congruency (congruent, incongruent) and sum type (overall sum
of two addends, intermediate sum of two addends in a three
addend problem) as a within participant factor.

The results for the mean RT data revealed a significant effect
for the prime-target congruency condition [F(1,22) = 13.43,
p < 0.01]. There was no significant main effect for the sum type
condition [F(1,22) = 1.99, p = 0.17]. The interaction between
the two conditions failed to reach significance (F < 1). Further
analysis revealed that for the two addends condition it took more
time to respond to the prime-target incongruent target (583 ms
SD = 92.26) than to the prime-target congruent target (569 ms,
SD = 94.54), t(22) = −2.55, p < 0.025. Similarly, in three addend
problems, it took more time to respond when the intermediate
sum of the first two addends in the prime was incongruent with
the target (590ms, SD= 107.52) than when it was congruent with
the target (576 ms, SD = 96.62), t(22) = −2.17, p < 0.05, (see
Figure 5). Due to the overall low error rate (1.42%), the error rate
was not further analyzed.

Overall, the results in this experiment replicate previous
research findings regarding automatic activation of the overall
sum in two addend addition problems. Moreover, interestingly,
the results suggest that the intermediate sum of two addends is
also automatically activated with short exposure when it is part of
three addend addition problems.

General Discussion

In summary, Experiment 1 found that in an intentional serial
three addend summation problem, the intermediate sum is
activated. This intermediate sum representation is activated to
such a degree that participants tend to confuse the intermediate
sum with the actual addends in the problem. Note that the
cognitive system still succeeds most of the time to distinguish
between the intermediate sum and the actual addends. However,
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even in those cases the system still pays the price of longer RT to
make this distinction compared to the neutral stimuli.

The fact that the intermediate sum remains activated even
though the calculation has been completed and there is no
need for the temporary intermediate sum contrasts with the
calculation performed by an artificial tool such as a calculator.
In a calculator for example each intermediate result runs
over the preceding one and only the final result is kept and
presented. In addition, Experiment 2 found that activation of
the intermediate sum is a core and important feature in solving
complex mathematical problems. Even when three addend
addition problems are presented with short exposure and no
calculation is needed, the intermediate sum of the first two
addends is automatically activated (note that we do not preclude
the option that it is possible that in addition the cognitive
system automatically activates the sum of two other random
addends that appeared in the addition problem). Also note that
in automatic calculations the intermediate sum is activated even
though the cognitive systems theoretically have the ability to
perform parallel computations such as ensemble coding (Van
Opstal et al., 2011) or approximate calculations (El Yagoubi et al.,
2003) which do not require serial processing (and consequently
do not require activation of the intermediate sum).

Intermediate sum activation has both advantages and
disadvantages. On the one hand, multi step arithmetic that is
performed serially requires activation of intermediate results.
Loss of that information before the total sum is computed would
result in calculation errors (Hitch, 1978). Additionally, note that
the automatic intermediate sum activation found in Experiment
2 possibly enables the cognitive system to reduce the cognitive
load from complex arithmetic problems and might result in
faster and more efficient processing. In fact, studies investigating
individual differences in arithmetic found that skilled individuals
show more efficient automatic access and retrieval of arithmetic
facts (LeFevre and Kulak, 1994; Jackson and Coney, 2007). On the
other hand, high uncontrolled activations that result from either
automatic or intentional processes might also have a negative
effect as they might generate a significant load on the cognitive
system when it is irrelevant. These kinds of activations have a
strong potential to interfere, as observed in the current research
where participants presented tendency to confuse between the
input data of the arithmetic problem and the intermediate results.
It is expected that an intermediate sum that is temporary and
no longer relevant for further processing once the calculation
has been completed, will be de-activated or at least that its

activation will be to a degree that will not strongly interfere with
distinguishing between the temporary calculation and the actual
operands of the problem. In order to practice math, one has
to be able to distinguish between addends of the problem and
intermediate calculations, and inability to efficiently distinguish
between them might explain some errors and difficulties. It
is currently unclear how the cognitive system handles and
resolves these interferences and further research of this issue is
required.

Another issue that different calculation models need to
address, based on the current findings, is how parallel processing
can theoretically be possible. In the introduction we noted that
when a task does not require calculating the exact sum of the
multi addends problem, the approximate sum of the addends can
potentially be estimated concurrently. The cognitive system has
a remarkable ability to conduct statistical summary perception
(SSP), which relates to the ability to immediately perceive
summary properties (e.g., average size) from a set of objects
(Ariely, 2001; Chong and Treisman, 2005; Alvarez and Oliva,
2008). Hence, theoretically it is also possible for the approximate
sum of several addends to be processed simultaneously, similar
to the calculation of these statistical summaries (Van Opstal
et al., 2011). Although this parallel option is interesting, more
development is needed to show how this option can be possible.
Specifically, if as found in the current work the intermediate sum
is activated automatically even when no calculation is needed,
then why is this extra activation of the intermediate sum not
added to the total parallel sum as well?

Finally, we would like to note that the current study describes
behavioral effects in the context of the intermediate sum of three
addend arithmetic problems. Although the processes involved
in two addend arithmetic problems have been studied over the
past years, only few studies have directly addressed the unique
problems involved in more complex arithmetic problems. The
lack of sufficient research in this field is in contrast to the complex
arithmetic problems one experiences in daily life or at school. The
more studies are conducted in this field, the better we will be able
to understand the human calculation system.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.01512
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