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The laws and principles which predict how perceptual qualities can be extracted from the most
elementary visual signals were discovered by the Gestalt psychologists (e.g., Wertheimer, 1923;
Metzger, 1930, translated and re-edited by Spillmann in 2009 and 2012, respectively). Their
seminal work has inspired visual science ever since, and has led to exciting discoveries which have
confirmed the Gestalt idea that the human brain would have an astonishing capacity for selecting
and combining critical visual signals to generate output representations for decision making and
action. This capacity of selection and integration enables the perception of form and space, and the
correct estimation of relative positions, trajectories, and distances of objects represented in planar
images. The Gestalt laws and principles were initially aimed at answering a single all-encompassing
question: “Why does the world look the way it does.” They have subsequently been made
operational in experimental studies (for an illustration of on-going research see the international
METHUSALEM project, coordinated by Johan Wagemans, at www.gestaltrevision.be) aimed at
deepening our insights into the ways in which specific characteristics and qualities of visual
configurations may determine perceptual organization and behavior at various levels of processing.
Perceptual organization directly determines the ability of human observers to assess (1) which parts
of an image belong together to form a unified visual object or shape, and (2) which parts should be
nearer and which further away from the observer if the represented objects were seen in the real
world. This opinion paper argues that the Gestalt principle of Prägnanz and the Gestalt law of
good continuation address specific problems of perceptual organization with critical implications
for visual interface design, and the design of image-guided surgery platforms in particular.

The principle of Prägnanz relates to the general Gestalt postulate that objects in the visual field
will produce the simplest and most complete perceptual solution possible under the conditions
given. The Gestalt laws of perceptual organization, of which the law of good continuation is a
particular example, describe the conditions under which specific perceptual solutions (groupings)
are likely to occur. The question of how planar image structures are grouped into perceptual
representations of figure and ground is one of the study grounds theGestalt laws have been designed
for. Figure-ground representation is a perceptual solution that enables the observer to assess which
objects in the image would be likely to be nearer and which objects would be likely to be further
away in a real world configuration. It is mediated by specific image cues to shape and to relative
distance, involving local signals of contrast and orientation to fill in specific regions of an image and
thereby enabling the perception of surfaces. The associated perceptual sensations of local contrast
enhancement make visual objects in the image appear to stand in front of other objects represented
in the same plane. Such sensations are often deemed “illusory” because they have no physical origin,
i.e., there is no objective difference in local luminance that would explain the resulting percepts (e.g.,
Heinemann, 1955; Hamada, 1985; O’Shea et al., 1994; De Weert and Spillmann, 1995; Grossberg,
1997; Dresp and Fischer, 2001; Dresp et al., 2002; Guibal and Dresp, 2004; Devinck et al., 2006;
Pinna and Reeves, 2006; Dresp-Langley and Reeves, 2012, 2014). An essential aspect of this process
of figure-ground segregation is the perceptual assignment of border ownership (see the review
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by von der Heydt on this topic). The Gestalt theorist Rubin
(1921) was among the first to point out that a figure has distinct
perceptual qualities that make it stand out against the rest of
the visual field, which thereby acquires the perceptual quality
of ground (or background). A figure occludes the ground and,
therefore, owns the borders which separate it from the latter
(Craft et al., 2007; Zhang and von der Heydt, 2010). Zhou et al.
(2000) found neurons predominantly in V2 (but also V1) of the
monkey that respond selectively to the location of borders in the
visual field. Selective visual attention to the figure strengthens the
neuronal responses to its borders (Qiu et al., 2007).

The Gestalt psychologists also correctly presumed that, to
recover a representation of a whole from parts, the brain must
achieve the perceptual integration of visual information across
collinear space (e.g., Wertheimer, 1923; Metzger, 1930). The
visual integration of contrast information across collinear image
space plays a crucial role in form vision under conditions of
stimulus uncertainty and configurative ambiguity (e.g., Dresp,
1997; Grossberg, 1997). It is governed by the so-called law of
good continuation, and reflected by interactive effects between
co-axial stimuli in the visual field (Hubel and Wiesel, 1959,
1968; von der Heydt and Peterhans, 1989; Dresp and Bonnet,
1991; Peterhans von der Heydt, 1991; Kapadia et al., 2000;
Craft et al., 2007). Specific response activities of visual cortical
neurons are triggered by these co-axial interactions (cf. the first
observations byNelson and Frost, 1978; von derHeydt et al., 1984
in monkey visual cortex), revealing the functional properties of
brainmechanisms designed to complete physically discontinuous
contrast input across collinear visual space. Collinear spatial
integration is crucial for the detection of alignment, virtual
trajectories, and shape borders in a world where most objects
are seen incompletely. It enables a human observer to assess the
continuity of image fragments under conditions of diminished
visibility and heightened stimulus ambiguity. Experimental data
on collinear visual integration have shown that the perceptual
recovery of global representations of collinear space involves

FIGURE 1 | An image configuration will produce the simplest and most complete perceptual solution possible under the conditions given (Gestalt

principle of Prägnanz). In image-guided surgery, visual guidance is provided directly on the surgeon’s view of the patient’s anatomy by mixing real and virtual

images. Understanding which image conditions produce geometric configurations that will satisfy the most essential laws of Gestalt and ensure optimal Prägnanz for

decision will help increase the efficiency of rendered images (middle). The goal here is to facilitate interventional strategies with regard to specific regions of interest to

the surgeon. Visual tracking of the tooltip trajectories is important for evaluating skill evolution, the positional accuracy of the tooltips being critical (left). Technology

facilitating the positional accuracy of tool-tip movements by generating visual data for relative position, alignment, and trajectory anticipation (perceptual law of good

continuation) is urgently needed. The real-time computational analysis of deviations from critical alignments during interventions (right) is currently the “holy grail” in

this field of technological development.

many levels of visual processing, not a single one, from the
visual detection of local image detail to the perception of global
association fields (e.g., Dresp, 1993; Field et al., 1993; Polat and
Sagi, 1993, 1994; Kapadia et al., 1995; Polat and Norcia, 1996; Yu
and Levi, 1997, 2000; Wehrhahn and Dresp, 1998; Chen et al.,
2001; Chen and Tyler, 2001; Tzvetanov and Dresp, 2002; Dresp
and Langley, 2005; Chen and Tyler, 2008; Huang et al., 2012).
In complex images, some visible stimulus fragments appear
clearly aligned, others do not. Specific phenomenal conditions
of contour relatability (Kellman and Shipley, 1991; Shipley and
Kellman, 1992, 2001) need to be satisfied to enable collinear
interpolation in static 2D scenes. This process of interpolation
constrains the spreading of surfaces across unspecified regions in
the image. The contribution of past experience and perceptual
learning to early mechanisms of interpolation and grouping
needs to be taken into account given that specific memory data
about objects (Kimchi and Hadad, 2002) and their most likely
spatial configuration are likely to facilitate (or eventually interfere
with, depending on conditions) ongoing visual processing of an
image.

Although the recovery of veridical object properties was
not a major question in early Gestalt theory, its laws of
perceptual organization have generated a conceptual framework
for addressing it. Understanding which image conditions
produce geometric configurations that will satisfy the most
essential laws of Gestalt and ensure optimal Prägnanz for image
based decision making is similar to understanding the grammar
of well-formed sentences. Gestalt theory is as relevant as ever
in the context of visual interface technology for image-guided
surgery, for example. Image-guided surgery uses images taken
before and/or during the procedure to help the surgeon navigate.
The goal is to augment the surgeon’s capacity for decisionmaking
and action during the procedure (see Perrin et al., 2009, for
review). In augmented reality, the guidance is provided directly
on the surgeon’s view of the patient by mixing real and virtual
images (Figure 1). The perceptual qualities (color, brightness,
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salience e.a.) of the rendered images are essential for making
specific regions of interest to the surgeon optimally perceptible.
This includes the visual traceability of devices relative to the
patient, the registration and alignment of the preoperative model,
and optimized rendering and visualization of the preoperative
data. Visualization in this context means translating image data
into a graphic representation that is understandable by the user
(the surgeon), as it conveys important information for assessing
structure and function, and for making (the right!) decisions
during an intervention. The field has evolved dramatically in
recent years, yet, the most critical problem for image-guided
surgery is still the one of task-centered user interface design.
During a surgical intervention, the timing of the generation
of image data is absolutely critical, and to facilitate navigation
through large cavities with multiple potential obstacles, such
as within the abdomen, complex displays have been designed
to provide navigational aids. They combine surface renderings
of anatomy (Figure 1, middle) from preoperative imaging with
intra-operative visualization techniques. A common strategy here
is representing volumetric data as 2D surfaces with varying
opacity. The efficiency of renderings for facilitating decisions
of the human user can be evaluated in terms of the perceptual
salience of critical surfaces that represent regions of interest to
the surgeon.

Moreover, intra-operative imaging often provides further
diagnostic information and permits assessing risks as well as
perspectives of repair. In this context, image-guided instrument
tracking is a major challenge for current research and
development in this field (West and Maurer, 2004; Huang et al.,
2007). A critical problem for the surgeon is detecting and keeping
track of the relative positions of the surgical tools he/she is
using during the intervention (Figure 1, right). Visual tracking
of the tooltip trajectories is also a precious aid for evaluating
skill evolution in trainee surgeons, the positional accuracy of
the tooltips being critical during an intervention (e.g., Jiang
et al., 2015). The development and testing of new visual aids
to facilitate the detection of alignment, relative position and
trajectories (perceptual law of good continuation) is urgently
needed here. Ultimately, technology where the surgical tool
itself will become a genuine visual navigation aid in image-
guided surgery is to be developed in the near future and
psychophysical testing should have a major impact on these
developments.
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