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Deficits in basic numerical abilities have been investigated repeatedly as potential risk
factors of math anxiety. Previous research suggested that also a deficient approximate
number system (ANS), which is discussed as being the foundation for later math
abilities, underlies math anxiety. However, these studies examined this hypothesis by
investigating ANS acuity using a symbolic number comparison task. Recent evidence
questions the view that ANS acuity can be assessed using a symbolic number
comparison task. To investigate whether there is an association between math anxiety
and ANS acuity, we employed both a symbolic number comparison task and a non-
symbolic dot comparison task, which is currently the standard task to assess ANS
acuity. We replicated previous findings regarding the association between math anxiety
and the symbolic distance effect for response times. High math anxious individuals
showed a larger distance effect than less math anxious individuals. However, our results
revealed no association between math anxiety and ANS acuity assessed using a non-
symbolic dot comparison task. Thus, our results did not provide evidence for the
hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a
deficient ANS does not constitute a risk factor for the development of math anxiety.
Moreover, our results suggest that previous interpretations regarding the interaction
of math anxiety and the symbolic distance effect have to be updated. We suggest
that impaired number comparison processes in high math anxious individuals might
account for the results rather than deficient ANS representations. Finally, impaired
number comparison processes might constitute a risk factor for the development of
math anxiety. Implications for current models regarding the origins of math anxiety are
discussed.
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INTRODUCTION

Mathematics anxiety has been defined as feelings of tension, apprehension, or fear which interfere
with math performance in various contexts such as school but also everyday and professional life
(e.g., Richardson and Suinn, 1972; Ashcraft, 2002). Thus, negative consequences of math anxiety
are serious and far-reaching. On the psychological level, math anxiety was found to be associated
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with reduced motivation for math and lower self-concept
as regards math (Hembree, 1990). On the behavioral level,
math anxiety was related to a tendency to avoid mathematics
(Hembree, 1990). Additionally, math anxiety was also found
to be associated negatively with math performance (see
Hembree, 1990; Ma, 1999, for meta-analyses). This latter point
is particularly worrying, because numerical abilities are key
competences in our society today, which predict individual
scholastic and professional prospects (Bynner and Parsons, 2006;
Hudson et al., 2009). Due to this wide range of negative effects
associated with math anxiety, it is important to understand the
factors leading to the development of math anxiety.

Currently, there are several approaches accounting for the
development of mathematics anxiety (e.g., see Maloney and
Beilock, 2012, for a review). The most comprehensive model
by Ashcraft et al. (2007) postulates three risk factors for the
development of math anxiety: (1) inadequate math skills, (2)
insufficient motivation, or (3) poor working memory. All these
three factors can lead to deficits in math performance which
increase the probability of developing math anxiety (see also
Ashcraft and Moore, 2009 for a detailed description of the
model). In combination with negative learning experiences (e.g.,
negative feedback of teachers and parents) these risk factors may
also lead to negative attitudes toward math and increase self-
focused attention and rumination, which in turn may contribute
to the development of math anxiety.

Ashcraft and Moore (2009) proposed that the risk factor
‘inadequate math skills’ may also include deficits in basic
numerical competencies such as counting or number knowledge.
In line with this, Maloney et al. (2010) found that high math
anxious individuals indeed presented with deficient counting
abilities. Moreover, Maloney et al. (2011) proposed that a
deficient representation of numerical magnitude (i.e., a deficient
approximate number system; ANS) might contribute to the
development of math anxiety (see also Núñez-Peña and Suárez-
Pellicioni, 2014). The ANS is assumed to represent numerical
magnitude information (i.e., numerosity) in an approximate
manner (e.g., Cantlon et al., 2009). In particular, it was suggested
that numerosities are represented in the ANS by overlapping
Gaussian tuning curves. These tuning curves reflect the activity
of neurons showing a maximum neural activation for a specific
magnitude and an attenuated activation for adjacent magnitudes
(e.g., see Feigenson et al., 2004, for a review). Importantly, the
ANS was proposed to constitute a building block for later more
complex numerical/mathematical abilities (Dehaene, 2001). In
line with this, ANS acuity was found to predict later math
performance (e.g., Mazzocco et al., 2011; Libertus et al., 2013).

Supporting the idea of math anxiety being caused by
a deficient ANS, Maloney et al. (2011) found a larger
distance effect for high math anxious individuals than for
low math anxious individuals (see Núñez-Peña and Suárez-
Pellicioni, 2014, for similar results). The distance effect describes
the finding that response time (RT) and error rates (ERs)
increase as the numerical distance between two to-be-compared
numbers decreases (Moyer and Landauer, 1967). For instance,
participants’ RTs and ERs are larger when comparing 3 vs. 4 than
when comparing 2 vs. 8. This effect can be explained by a larger

overlap of the ANS representations for less distant magnitudes
according to ANS theory (e.g., Dehaene et al., 1998). Additionally,
Núñez-Peña and Suárez-Pellicioni (2014) observed a marginal
significant interaction between the size effect and math anxiety.
In their study, high math anxious participants showed a larger
size effect than low math anxious participants. The size effect
refers to the observation that the processing of numbers becomes
more difficult as the size of the numbers to be processed increases
(see Zbrodoff and Logan, 2005, for a review). Also the size effect
can be explained by ANS theory (e.g., Dehaene et al., 1998). It
is assumed that the overlap between the ANS representations
increases with numerosity (Feigenson et al., 2004). Thus, it should
be more difficult to discriminate between larger magnitudes (e.g.,
8 vs. 9) than between smaller magnitudes (e.g., 1 vs. 2; i.e., the size
effect, e.g., Parkman, 1971).

Both studies assessed ANS acuity using a symbolic Arabic
number comparison task (Maloney et al., 2011; Núñez-Peña
and Suárez-Pellicioni, 2014). However, this procedure was based
on the common assumption that magnitude representations
in the ANS are abstract, this means modality independent
(e.g., Libertus et al., 2007; Piazza et al., 2007). Hence, the
ANS may be assessed using either Arabic number symbols
or non-symbolic stimuli such as dot patterns. However,
there is accumulating evidence questioning the notion of an
abstract, modality-independent magnitude representation (see
Cohen Kadosh and Walsh, 2009 for a review). Only recently,
for example, Bulthé et al. (2014) found no representational
overlap for symbolic and non-symbolic magnitudes. Moreover,
Lyons et al. (2015) showed that symbolic and non-symbolic
magnitudes are coded fundamentally differently. These recent
results question the assumption that ANS acuity may be
measured validly using a symbolic number comparison task.
This in turn challenges the conclusion of Maloney et al. (2011;
see also Núñez-Peña and Suárez-Pellicioni, 2014) that the
association between math anxiety and the symbolic distance
effect found in previous studies should be driven by a deficient
ANS.

Moreover, it was also questioned recently whether the
distance and/or the size effect – derived from a symbolic
number magnitude comparison task – are valid indices of ANS
acuity (e.g., Verguts et al., 2005; Van Opstal et al., 2008). For
instance, Van Opstal et al. (2008) observed that the distance
effect measured in a symbolic number magnitude comparison
task does not necessarily imply an overlap of the magnitude
representations of individual numbers as suggested by the ANS
theory. Instead, the distance effect might be driven by response-
related processes. Furthermore, Verguts et al. (2005) provided
an alternative explanation for the size effect. In a computational
modeling study, they showed that the size effect depended on the
differential frequency of the individual numbers during learning
(i.e., the lower frequency of larger numbers). In line with this
result, Dehaene and Mehler (1992) found that the frequency
of numbers in daily life decreased with increasing numerical
magnitude, which might cause the size effect. These alternative
explanations for the distance and size effect further question the
conclusions of previous studies that modulations of the distance
effect and the size effect by math anxiety are associated with
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ANS acuity, because both effects may not necessarily reflect ANS
acuity.

Hence, in the present study, we examined whether ANS
acuity is indeed related to math anxiety and, consequently,
may represent a risk factor for the development of math
anxiety. To do so, we employed the current standard task
to assess ANS acuity: the non-symbolic dot comparison task
(see De Smedt et al., 2013; Dietrich et al., 2015, for reviews).
Recently, there has been an increasing amount of research
concentrating on cognitive processes involved in the solution
process of a dot comparison task (e.g., inhibitory control,
Gilmore et al., 2013) and methodological factors influencing
task performance. For instance, task performance was found
to be influenced by visual stimulus parameters (e.g., Szűcs
et al., 2013), presentation duration (Inglis and Gilmore, 2013)
and set size (Clayton and Gilmore, 2015; see Dietrich et al.,
2015, for a detailed discussion about the reliability/validity of
ANS tasks as well as methodological aspects relevant for the
design of an ANS task). Therefore, we designed the non-
symbolic dot comparison task considering these methodological
aspects in order to assess ANS acuity as reliably and as
validly as possible. Moreover, several measures were used
to index ANS acuity. However, recent studies question the
assumption that all indices can be used interchangeably, although
this issue is not fully resolved yet (Lindskog et al., 2013;
Inglis and Gilmore, 2014). To account for this methodological
issue we considered several indices to reflect ANS acuity:
ER, mean RT, the distance, the size effect as well as the
Weber fraction. The latter is assumed to be the most direct
index of ANS acuity (reflecting the width of the Gaussian
tuning curves, i.e., the precision of the ANS representations;
Pica et al., 2004). If a deficient ANS indeed underlies math
anxiety, this should be reflected by a reliable association
of math anxiety and these measures. However, a significant
correlation might be present not for all measures, because
previous research found considerable differences regarding the
reliability of these measures (Lindskog et al., 2013; Inglis
and Gilmore, 2014). To allow for a direct comparison of
our results with previous findings, we also administered a
symbolic number comparison task. We expected to replicate the
findings of Maloney et al. (2011) and Núñez-Peña and Suárez-
Pellicioni (2014) who found a (marginally) significant positive
association between math anxiety and the distance and the size
effect for RTs in the symbolic number magnitude comparison
task.

MATERIALS AND METHODS

Participants
Sixty-one undergraduates (37 female, 3 left-handed, mean
age = 24.7 years, SD = 3.3 years) participated in the experiment.
All participants were informed about the experimental procedure
before they provided written consent to participate. Participation
was compensated with 8€ per hour. The study was approved
by the local ethics committee of the Leibniz-Institut für
Wissensmedien.

Materials
The Abbreviated Math Anxiety Scale (AMAS)
The AMAS is a nine-item scale to assess math anxiety.
Participants are asked to indicate on a 5-point Likert scale from
1 (low anxiety) to 5 (high anxiety) how anxious they feel in
various math-related situations. Adequate internal consistency
(Cronbach’s α = 0.90), test-retest reliability (r = 0.85) and
construct validity have been reported for this instrument (Hopko
et al., 2003). In the current study the internal consistency of
the AMAS was similar to the results of Hopko et al. (2003;
Cronbach’s α = 0.92). The AMAS score was calculated by adding
up participants responses on the Likert scales.

Symbolic Number Comparison
In the symbolic number comparison task, two single digits
were presented simultaneously, one above the other on a 19
inch monitor with a resolution of 1024 pixel × 768 pixel
and 75 Hz. Participants had to single out the larger of the
two digits. When the upper digit was the larger one, they
should press the “Z” key on a standard QWERTZ keyboard
with their right index finger. When the lower digit was the
larger one, they should press the “B” key with their left index
finger. The digits remained visible on the screen until the
participants pressed one of the response buttons. Each number
pair was preceded by a fixation point, which was presented
for 500 ms. All possible combinations of the single digits 1
to 9 (i.e., 72 different digits pairs) were presented five times
resulting in a total of 360 experimental trials. Participants
completed five practice trials before the experimental trials
started. Digits were presented using font “Courier New” with font
size set to 60 at the x/y coordinates 512/484 and 512/284. The
internal consistency of the symbolic number comparison task was
Cronbach’s α = 0.92 and Spearman-Brown corrected split-half
reliability was r = 0.87.

Non-symbolic Dot Comparison
In the non-symbolic dot comparison task, two dot sets were
presented simultaneously – one set on the left and one set
on the right side of the screen. Both sets were separated by
a black vertical line. Participants were instructed to indicate,
which of the two sets contained more dots, by pressing the
corresponding key (i.e., press the left Ctrl key when the left
set is larger or the right Ctrl key when the right set is larger).
Position of the larger dot set was counterbalanced across screen
sides. Dot sets included black dots against a white background
and were presented on the screen for 200 ms. Afterward a white
screen was presented, which remained visible until participants
pressed one of the response keys. Each trial started with a
fixation sign (i.e., a black square) displayed for 500 ms. Dot
sets contained between 10 and 40 dots. The ratios between
the two to-be compared dot sets were 0.5, 0.6, 0.7, 0.8, and
0.9. There were 80 trials per ratio resulting in a total of 400
experimental trials. Before the experimental trials started, five
practice trials were presented. To control for visual properties,
dot sets were created with the MATLAB script of Gebuis and
Reynvoet (2011). In half of the trials convex hull (i.e., area
in which the dots can appear) and item size (i.e., average
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diameter of the dots in one set) were larger for the more
numerous set, whereas in the other half of the trials, convex
hull and item size were smaller for the more numerous set.
The internal consistency of the non-symbolic dot comparison
task was Cronbach’s α = 0.96 and Spearman-Brown corrected
split-half reliability was r = 0.91.

Procedures
All participants were tested individually. First, they had to
complete the AMAS followed by the magnitude comparison
tasks. The order of the symbolic number comparison task and the
non-symbolic dot comparison task was counterbalanced across
participants.

Analysis
We analyzed RTs as well as ERs. We included all responses
in the analysis of RTs (correct and incorrect responses).
This procedure was chosen, because in the non-symbolic
comparison task the percentage of errors was quite high, which
would have reduced the number of observations considerably.
However, the same analyses including only RTs of correct
responses did yield the same pattern of results. A trimming
procedure excluded RTs deviating more than 3 SD from
the individual mean. This outlier analysis reduced the data
set of the symbolic number comparison task by 1.63% and
the data set of the non-symbolic dot comparison task by
1.77%.

Response times were analyzed using linear mixed effects
models (LME). For the analysis of ER, generalized linear mixed
effects models (GLME) with a binomial error distribution and
the logit as link function were employed. All statistical analysis
were run using R (R Core Team, 2015) and the R package
lme4 for the (G)LME (Bates et al., 2014). The p-values for
LME were calculated using the Satterthwaite approximation
for degrees of freedom available via the R package lmerTest
(Kuznetsova et al., 2015). The p-values for GLME were derived
via likelihood ratio tests using the R package afex (Singmann
et al., 2015).

Fixed effects in our analyses (LME and GLME) were
distance (i.e., the distance between the to-be-compared
numbers/numerosities), size (i.e., the sum of the two
numbers/dots in both sets), the AMAS score and the interaction
between distance and AMAS score as well as between size
and AMAS score. The predictors distance and size were
z-transformed prior to data analysis and the AMAS score was
centered.

In line with the suggestion of Barr et al. (2013), we first
attempted to fit the LME for RT data using the maximum random
effects structure. Thus, we included the fixed effects distance and
size also as random effects as well as a random intercept for
participants in the analysis of the symbolic and the non-symbolic
comparison task and a random intercept for items in the analysis
of the non-symbolic comparison task. In the GLME (ER data) for
the symbolic comparison task, we included a random intercept
for participants. In the GLME (ER data) for the non-symbolic
comparison task, we also included a random intercept for items to

account for the fact that we included only a sample of all possible
items.

Additionally, we estimated the Weber fraction indicating the
acuity of the ANS representation using the following formula
(Pica et al., 2004):

facc(r,w) = 1 − 1
2
erfc

( |r − 1|√
2w

√
r2 + 1

)

The formula describes the probability f acc of correctly
comparing two numerosities with a given ratio r (i.e., the ratio
between the larger and the smaller numerosity) for a participant
with an internal Weber fraction w using the complementary
Gauss error function erfc. Individual Weber fractions were
fitted using the Gauss–Newton algorithm for non-linear least
squares fit on the mean accuracy for each ratio and the R
package pracma for the erfc function (Borchers, 2015). For
eight participants, the fitting function did not converge or the
Weber fraction was not a reliable predictor of mean accuracy of
participants. Thus, we included 53 participants in the analysis
containing the Weber fraction. To investigate, whether math
anxiety is related to ANS acuity indexed by the Weber fraction
we conducted a linear regression analysis with AMAS score
as dependent variable and the individual Weber fraction as
independent variable. Null effects were validated using a Bayesian
model selection approach, which investigates whether the null
hypothesis or the alternative hypothesis is more supported by
the data (Masson, 2011). We calculated the posterior probability
that the data favor the null hypothesis and the complement
that the data favor the alternative hypothesis. According to
the classification of Raftery (1995) a posterior probability of
>0.75 provides positive evidence in favor of the investigated
hypothesis.

RESULTS

An overview of the descriptive statistics of the variables is given
in Table 1. Additionally, Table 2 shows the relationships between
all these variables.

TABLE 1 | Mean, standard deviation (SD) and range of all variables.

Variable Mean SD Minimum Maximum

Abbreviated Math
Anxiety Scale
(AMAS) score

22.03 8.11 10 39

ER symbolic
comparison task

3.82% 2.95% 0.28% 16.94%

ER non-symbolic
comparison task

32.92% 9.02% 17.25% 50.75%

RT symbolic
comparison task

664.75 ms 80.64 ms 514.45 ms 899.44 ms

RT non-symbolic
comparison task

681.87 ms 199.22 ms 304.52 ms 1278.52 ms

Weber fraction 0.60 0.40 0.24 2.74

Higher AMAS scores reflect higher math anxiety and vice versa. Smaller Weber
fractions reflect a more precise ANS. ER, error rate; RT, response time.
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TABLE 2 | Spearman correlation coefficients between all variables.

(1) (2) (3) (4) (5) (6)

(1) AMAS score 1

(2) ER symbolic
comparison task

−0.10 1

(3) RT symbolic
comparison task

0.16 −0.53∗∗∗ 1

(4) ER non-symbolic
comparison task

0.11 0.13 0.16 1

(5) RT non-symbolic
comparison task

−0.10 −0.37∗ 0.39∗ −0.38∗ 1

(6) Weber fraction 0.09 0.13 0.18 0.99∗∗∗ −0.36∗ 1

∗p < 0.05, ∗∗∗p < 0.001; p-values were adjusted for multiple testing using the
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). ER, error rate;
RT, response time; AMAS, Abbreviated Math Anxiety Scale.

Response Times
First, we investigated separately for the symbolic and the non-
symbolic comparison task whether math anxiety (reflected by
the AMAS score) influences overall RT as well as the distance
and the size effect for RT. A possible influence of math anxiety
on overall RT would be indicated by a significant main effect of
the AMAS score. Furthermore, an influence of math anxiety on
distance or size effects for RT would be reflected by a significant
interaction between AMAS score and distance or size. The results
of the LME for RT data are given inTable 3, both for the symbolic
number comparison task and the non-symbolic dot comparison
task. We observed reliable effects of numerical distance and size
for both tasks. For the symbolic comparison task, RT decreased
with numerical distance between the two digits and increased
with their numerical size. Similarly, the significant distance
effect in the non-symbolic dot comparison task indicated that
participants’ RT decreased with numerical distance between the
two dot sets. However, in contrast to the symbolic comparison
task, we found that RT decreased with numerical size for the
non-symbolic dot comparison task. Importantly, we observed
a reliable interaction between AMAS score and distance in the
symbolic comparison task. As shown in Figures 1 and 2, the
interaction indicated that participants with a higher AMAS score
showed a larger distance effect than participants with a lower
AMAS score. However, we did not find a significant interaction
between AMAS score and distance in the non-symbolic dot
comparison task. For both, the symbolic and the non-symbolic
task there was no significant interaction between size and AMAS
score. Moreover, there was also no reliable effect of the AMAS
score on RT. An analog analysis with a categorical predictor
(i.e., low vs. high math anxious group) instead of a continuous
predictor for the AMAS score revealed an identical pattern of
results (see Table A1 in the Supplemental Material).

Error Rates
Second, similar to the analysis for RT, we investigated the
influence of math anxiety (i.e., AMAS score) on overall
performance as well as distance and size effects based on ERs.
Again, an influence of math anxiety would be indicated by either
a significant main effect of AMAS score or a reliable interaction

between AMAS score and distance or size. The results for ER
data are summarized in Table 4. In line with the results for RT,
we found reliable distance and size effects for both tasks. For the
symbolic task, we observed that ER decreased as the numerical
distance between the numbers increased (log odds = −0.349;
in %: −0.64%), whereas they increased with the size of the
numbers (log odds = 0.148; in %: 0.34%). The same pattern
was observed for the non-symbolic task. ER also decreased with
the numerical distance between dot sets (log odds = −0.070;
in %: −1.45%) and increased with their size (log odds = 0.009;
in %: 0.18%). There were no significant interactions between
the AMAS score and distance or size neither in the symbolic
nor in the non-symbolic task. Hence, we could not find an
analog pattern for ER as for RT, where we found a significant
interaction between the AMAS score and the distance effect
for the symbolic comparison task. The missing interaction for
ER might be explained by a ceiling effect for the symbolic
comparison task. The ERs were very low, which might have
reduced the variance and, hence, the effect. Moreover, there was
no significant effect of the AMAS score on ER. An analog analysis
with a categorical predictor for the AMAS score revealed an
identical pattern of results (see Table A2 in the Supplemental
Material).

Weber Fraction
Finally, we investigated whether the Weber fraction, which is
assumed to be the most direct measure of ANS acuity, was
related to the individual AMAS score. A linear regression analysis
predicting AMAS score from individual Weber fraction revealed
no significant effect [B = 3.119, β = 0.148, t(51) = 1.07,
p = 0.292]. Moreover, the model accounted for only 2.18% of the
variance in AMAS score [F(1,51) = 1.14, p = 0.292]. This null
effect was further investigated using a Bayesian model selection
approach. The posterior probability for the null hypothesis was
0.80 providing positive evidence for the null hypothesis (i.e., no
relationship between AMAS score andWeber fraction) according
to Raftery (1995).

DISCUSSION

In the present study, we investigated whether ANS acuity is
related tomath anxiety andmay, therefore, constitute a risk factor
for the development of math anxiety. Complementing previous
studies (Maloney et al., 2011; Núñez-Peña and Suárez-Pellicioni,
2014) we used not only a symbolic number comparison task but
also a non-symbolic dot comparison task to assess ANS acuity.
Additionally, we employed not only the distance and the size
effect as indices of ANS acuity, but also evaluated ER, mean
RT, and the Weber fraction. The latter is assumed to reflect the
precision of the ANS representations directly (e.g., Pica et al.,
2004). We replicated the significant association between math
anxiety and the distance effect based on RT for the symbolic
number comparison task. However, we did not observe an
association of size effect and math anxiety. Furthermore, we did
not observe a relationship between math anxiety and any of the
ANS measures based on the non-symbolic dot comparison task.
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TABLE 3 | Estimates of fixed effects (ms) for response times.

Task Effect Estimate (SE) df t p 95% CI

Symbolic comparison Intercept 665.063 (10.07) 61.00 66.03 <0.001 [645.32, 684.80]

Distance −16.111 (0.75) 60.99 −21.36 <0.001 [−17.59, −14.63]

AMAS 1.848 (1.25) 61.00 1.48 0.145 [−0.61, 4.30]

Size 4.157 (0.44) 60.90 9.52 <0.001 [3.30, 5.01]

Distance × AMAS −0.230 (0.09) 60.99 −2.46 0.017 [−0.41, −0.05]

Size × AMAS 0.040 (0.05) 60.85 0.74 0.461 [−0.07, 0.15]

Non-symbolic comparison Intercept 682.048 (25.28) 61.35 26.99 <0.001 [632.51, 731.59]

Distance −1.876 (0.57) 93.23 −3.28 0.001 [−3.00, −0.75]

AMAS −1.880 (3.14) 61.00 −0.60 0.551 [−8.03, 4.27]

Size −1.117 (0.22) 98.06 −5.13 <0.001 [−1.54, −0.69]

Distance × AMAS −0.056 (0.06) 60.79 −0.88 0.380 [−0.18, 0.07]

Size × AMAS −0.004 (0.02) 60.85 −0.18 0.859 [−0.05, 0.04]

95% CI based on the estimated local curvature of the likelihood surface.

FIGURE 1 | Illustration of the estimated distance effects for
participants with low math anxiety [Abbreviated Math Anxiety Scale
(AMAS) score = 10, the smallest AMAS score in our sample], middle
math anxiety (AMAS score = 22, mean of AMAS scores in our sample)
and high math anxiety (AMAS score = 39, the largest AMAS score in
our sample).

In the following, we will first discuss the implications of these
results for the proposed association of ANS acuity and math
anxiety before elaborating conclusions for symbolic number
processing and math anxiety and theoretical implications for
models on the origins of math anxiety.

ANS Acuity and Math Anxiety
Recently, it was suggested that a less precise ANS might
contribute to the development of math anxiety (Maloney et al.,
2011; Núñez-Peña and Suárez-Pellicioni, 2014). These studies,
however, did not measure ANS acuity using a non-symbolic dot
comparison task, which represents the standard task to assess
ANS acuity (e.g., Halberda et al., 2008; De Smedt et al., 2013;
Gilmore et al., 2014; Inglis and Gilmore, 2014; Dietrich et al.,
2015), but used a symbolic number comparison task instead.

FIGURE 2 | Relationship between symbolic distance effect for
response times (RTs) and Abbreviated Math Anxiety Scale (AMAS)
score. Dark blue line reflects slope of the interaction between distance effect
and AMAS score, dotted dark blue lines indicates 95% CI, dots reflect
individual distance effects and AMAS scores. Higher AMAS scores reflect
higher math anxiety and vice versa.

The use of the symbolic number comparison task to assess ANS
acuity is valid when assuming that numerical magnitudes are
represented in the ANS in an abstract, modality-independent
manner. In this case only ANS acuity can be assessed using
either symbolic or non-symbolic magnitude comparison tasks.
However, recent studies challenged the assumption of such an
abstract representation of numerical magnitude (Bulthé et al.,
2014; Lyons et al., 2015), and therewith also question conclusions
regarding the association of ANS acuity and math anxiety
reported so far.

The ANS is assumed to support the comparison and
estimation of numerosities (Dehaene, 2001, 2009) and
should, therefore, be involved in the solution of a dot
comparison task. Importantly, evidence for this assumption
was provided by numerous studies with several methodological
approaches. Single-cell recordings with monkeys revealed
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TABLE 4 | Estimates of fixed effects (log odds) for error rates.

Task Effect Estimate (SE) χ2 p 95% CI

Symbolic comparison Intercept −3.788 (0.107) − − [−3.998, −3.579]

Distance −0.349 (0.244) 242.58 <0.001 [−0.397, −0.302]

AMAS −0.012 (0.013) 0.83 0.363 [−0.038, 0.014]

Size 0.148 (0.010) 234.34 <0.001 [0.128, 0.168]

Distance × AMAS 0.001 (0.003) 0.03 0.868 [−0.006, 0.007]

Size × AMAS <0.001 (0.001) 0.01 0.926 [−0.002, 0.003]

Non-symbolic comparison Intercept −0.840 (0.071) − − [−0.980, −0.700]

Distance −0.070 (0.008) 70.18 <0.001 [−0.085, −0.054]

AMAS 0.005 (0.008) 0.47 0.493 [−0.010, 0.020]

Size 0.009 (0.003) 7.21 0.007 [0.002, 0.015]

Distance × AMAS <0.001 (<0.001) 0.05 0.818 [−0.001, 0.001]

Size × AMAS <0.001 (<0.001) 1.56 0.212 [>−0.001, <0.001]

P-values were obtained via likelihood ratio tests (df = 1). 95% CI are based on the estimated local curvature of the likelihood surface.

numerosity-selective neurons in the prefrontal and intraparietal
cortex responding with a maximum activity to a specific
numerosity (i.e., number of dots in a set; Nieder et al., 2002;
Nieder, 2012; see also Ditz and Nieder, 2015, for a similar finding
in songbirds). However, the neurons fired not exclusively for
a specific numerosity, but they were also but less activated by
adjacent numerosities. This pattern fitted well to the postulated
overlapping Gaussian tuning curves of ANS representations,
which increase in their width (i.e., imprecision) as the
numerosities increase (Nieder, 2005). Further evidence comes
from human brain-imaging studies (e.g., Piazza et al., 2004,
2007; Harvey et al., 2013). For instance, in line with ANS theory
Lyons et al. (2015) showed that non-symbolic numerosities are
represented by overlapping tuning curves, whereby the neuronal
overlap increases with increasing numerosities. Moreover, the
pattern of overlapping ANS representations was also reflected by
behavioral performance in humans in a delayedmatch-to-sample
task, as the percentage to judge a numerosity matching a sample
was highest for the exact match and decreased as the distance
between the numerosity of the stimulus and the sample increased
(Merten and Nieder, 2009). Hence, several studies evaluating the
validity of dot comparison tasks provided conclusive evidence
that the dot comparison task assesses ANS acuity (both on a
neuronal and a behavioral level). Nevertheless, there are also
studies indicating that other cognitive processes are involved
in the dot comparison task (e.g., inhibitory control, Fuhs and
McNeil, 2013; Gilmore et al., 2013; Clayton and Gilmore, 2015).
Moreover, the performance in the dot comparison task was
found to be influenced by methodological aspects (e.g., task
design, Price et al., 2012; presentation duration of the stimuli,
Inglis and Gilmore, 2013; visual parameters, Szűcs et al., 2013).
However, our results support the view that the non-symbolic dot
comparison task used in our study (also) assessed ANS acuity, as
we found both a significant distance and size effect. These effects
are considered a result of the imprecise ANS representations and
so far there are no alternative explanations for the occurrence
of a distance or size effect in non-symbolic comparison tasks.
Hence, the distance/ size effects indicate that the ANS was
involved in the solution of the task (e.g., Dehaene et al., 1998).

Additionally, we were able to fit the Weber fraction to the results
of a vast majority of the participants. The Weber fraction is
assumed to directly reflect the width of the ANS representations
(Pica et al., 2004). Using a non-symbolic dot comparison task, we
did not observe a significant association between several indices
of ANS acuity and math anxiety. Thus, ANS acuity was not
impaired in individuals being more math anxious. Importantly,
we not only used the distance and size effect as measures of
ANS acuity but also the Weber fraction, which is thought to be
the most direct measure of the ANS acuity (Pica et al., 2004).
However, comparable to the results for the distance and the size
effect, which were already used as measures of ANS acuity in
previous studies on the relationship between ANS acuity and
math anxiety, we did not find an association between the Weber
fraction and math anxiety as well. Moreover, also our Bayesian
analysis revealed positive evidence for the null hypothesis.

Taken together, we did not find a reliable association between
ANS acuity and math anxiety – independent of the measure used
to assess ANS acuity. Therefore, our results are not in line with
the conclusion of previous studies (Maloney et al., 2011; Núñez-
Peña and Suárez-Pellicioni, 2014) that low ANS acuity is related
to and may thus contribute to the development of math anxiety.

Symbolic Number Comparison and Math
Anxiety
Our results suggest that ANS acuity does not seem to be related
to math anxiety. This raises the question of how to interpret
previous and the present results revealing an association of
the symbolic distance effect (or size effect) and math anxiety
(Maloney et al., 2011; Núñez-Peña and Suárez-Pellicioni, 2014).
So far, these results have been explained by less precise magnitude
representations in the ANS. However, our results based on
the non-symbolic dot comparison task revealed no association
between the acuity of the ANS and math anxiety questioning this
explanation.

We did not find an overall relationship between math anxiety
and performance (i.e., RT and ER) in the symbolic number
comparison task. Thus, high math anxious individuals did not
per se perform worse and/or slower than less math anxious
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individuals. However, we found a significant association of the
distance effect based on RT and math anxiety replicating the
findings of previous studies (Maloney et al., 2011; Núñez-Peña
and Suárez-Pellicioni, 2014). Higher math anxious individuals
presented with a larger distance effect than those with lower math
anxiety. As we did not find a relationship betweenANS acuity and
math anxiety, this effect cannot be interpreted as being due to less
precise magnitude representations in the ANS. Thus, this finding
has to be reinterpreted.

There is evidence that the distance effect for symbolic
number comparison can be explained by comparison processes
(i.e., the connection between the symbolic representation
and the response, Van Opstal et al., 2008). In line with
this explanation for the distance effect in symbolic number
comparison, the association between the distance effect in
symbolic number comparison and math anxiety might be
due to impaired comparison processes rather than impaired
magnitude representations in high math anxious individuals. The
connection between the representation and the “which numeral
is larger” response might weaker be due to less training of
this connection, for example, when math anxious children are
not motivated to operate with numbers or avoid working with
numbers.

In the present study, we did not find a significant interaction
between the size effect for RT and math anxiety. Núñez-Peña
and Suárez-Pellicioni (2014) found a tendency for a larger size
effect in high math anxious individuals compared to low math
anxious individuals. Moreover, compared to our results, the size
effect was generally larger in the study of Núñez-Peña and Suárez-
Pellicioni (2014). These differences might be due to differences
in the design. First, Núñez-Peña and Suárez-Pellicioni (2014)
instructed the participants to respond as fast as possible, whereas
in the present study the instruction stressed not only speed
but also accuracy. Second, in the study by Núñez-Peña and
Suárez-Pellicioni (2014) symbolic stimuli were presented for only
300 ms, whereas in the present study stimuli remained visible
until a response was given. These two aspects might have induced
larger variance in the responses observed by Núñez-Peña and
Suárez-Pellicioni (2014), which in turn might have resulted in a
larger size effect allowing for a better chance to find a (marginally)
significant association of the size effect and math anxiety.

Theoretical Implications
From a theoretical point of view, our results allow for a
specification of themodel by Ashcraft et al. (2007) who postulated
that inadequate basic numerical competencies might constitute
a risk factor for the development of math anxiety (Ashcraft
and Moore, 2009). According to our findings this risk factor
might include deficits in symbolic number comparison. More
precisely, our results indicate that comparison processes seem
to be impaired in high math anxious individuals, because math
anxiety was associated with the symbolic distance effect (Van
Opstal et al., 2008). Further evidence for our conclusion that
deficits in symbolic number comparison might indeed constitute
a risk factor for the development of math anxiety [as suggested
by Ashcraft et al. (2007)] comes from studies indicating a general
relationship between the distance effect in symbolic number

comparison and math performance (e.g., Holloway and Ansari,
2009). One mechanism for the development of math anxiety
according to the model of Ashcraft et al. (2007) is that inadequate
math skills lead to math performance deficits, which in turn
support the development of math anxiety. Thus, deficits in basic
numerical abilities such as the comparison of symbolic numbers
should be associated with lower math performance. In line with
this suggestion De Smedt et al. (2009) found that the symbolic
distance effect for RTs predicted latermath performance, whereby
a larger distance effect was associated with lower later math
performance. In turn, according to the model of Ashcraft et al.
(2007) lower math performance contributes to the development
of math anxiety. And thus, a more pronounced distance effect
should be associated with higher math anxiety, which is exactly
what we found (see also Maloney et al., 2011; Núñez-Peña and
Suárez-Pellicioni, 2014).

However, it remains an open question what causes the larger
symbolic distance effect in more math anxious individuals. When
interpreting this effect as impaired comparison processes this
might be explained by less trained connections between the
symbolic representation of the number and the response. This
finding might be due to an insufficient motivation of the children
to work with the numbers. Insufficient motivation is another risk
factor according to the model of Ashcraft et al. (2007). Thus, both
risk factors inadequate math skills and insufficient motivation
might be strongly inter-related. Additionally, the less trained
connections might also reflect the tendency to avoidworking with
numbers. Due to the low difficulty of the task the lower practice
of working with numbers might solely be reflected in the more
difficult trials (i.e., trials with small distance between the two
numbers).

Moreover, we specifically investigatedwhether a deficient ANS
(assessed using a non-symbolic dot comparison task) may be
a risk factor according to the model of Ashcraft et al. (2007).
However, we found that ANS acuity was not associated with
math anxiety. Thus, our results did not provide evidence for
the hypothesis that a deficient ANS might be a risk factor for
the development of math anxiety. Similarly, our results do not
support the hybrid model of Maloney et al. (2011) who postulate
that a less precise ANS plays a role in the development of math
anxiety, since we did not find a relationship between ANS acuity
and math anxiety.

CONCLUSION

Taken together, our findings question the previous conclusion
that a less precise ANS is associated with higher math anxiety.
Our results revealed that ANS acuity – when being measured
by the standard ANS task (i.e., a non-symbolic dot comparison
task) – was not associated with math anxiety at all. However,
we replicated the association of the distance effect for symbolic
number comparison and math anxiety. Thus, impaired processes
in symbolic but not non-symbolic magnitude comparison seem
to underlie math anxiety. Generally, this finding fits nicely in the
model of Ashcraft et al. (2007), who proposed that inadequate
basic numerical competencies constitute a risk factor for
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the development of math anxiety. According to our results
this risk factor might also include impaired symbolic number
comparison processes.
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