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It is well-established that our recognition ability is enhanced for faces belonging to
familiar categories, such as own-race faces and own-age faces. Recent evidence
suggests that, for race, the recognition bias is also accompanied by different
visual scanning strategies for own- compared to other-race faces. Here, we tested
the hypothesis that these differences in visual scanning patterns extend also to
the comparison between own and other-age faces and contribute to the own-
age recognition advantage. Participants (young adults with limited experience with
infants) were tested in an old/new recognition memory task where they encoded and
subsequently recognized a series of adult and infant faces while their eye movements
were recorded. Consistent with findings on the other-race bias, we found evidence of an
own-age bias in recognition which was accompanied by differential scanning patterns,
and consequently differential encoding strategies, for own-compared to other-age faces.
Gaze patterns for own-age faces involved a more dynamic sampling of the internal
features and longer viewing time on the eye region compared to the other regions of the
face. This latter strategy was extensively employed during learning (vs. recognition) and
was positively correlated to discriminability. These results suggest that deeply encoding
the eye region is functional for recognition and that the own-age bias is evident not only
in differential recognition performance, but also in the employment of different sampling
strategies found to be effective for accurate recognition.

Keywords: face age, age bias, eye movements, encoding, recognition, adult faces, infant faces

INTRODUCTION

It is well-known that our ability to recognize faces varies depending on certain facial dimensions:
individuals generally recognize human faces and faces from one’s own race more accurately and
faster than other-species (see review in Dufour et al., 2006) and other-race faces (see review by
Meissner and Brigham, 2001). Age as well is known to affect how faces are remembered. In
a seminal study by Bickman (1991), young adults recognized own-age faces more accurately
than other-age faces regardless of whether the faces were familiar (famous) or unfamiliar. This
original finding of an advantage in the processing of own-age compared to other-age faces (i.e.,
own-age bias, OAB) in young adults has been replicated in numerous studies investigating either
identity recognition (in eyewitness paradigms or old/new recognition tasks) or identity matching
(in delayed match-to-sample tasks) when performance for young adult (i.e., own-age) faces was
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compared to that for older adult faces (e.g., Anastasi and Rhodes,
2006; Wiese et al., 2008; He et al., 2011) child faces (Anastasi and
Rhodes, 2005; Kuefner et al., 2008; Harrison and Hole, 2009; Hills
and Lewis, 2011) or infant faces (Kuefner et al., 2008; Macchi
Cassia et al., 2009a,b; Yovel et al., 2012).

For all these dimensions, the faces that are more readily
recognized—that is, human faces, own-race faces and own-
age faces—when compared with their within-category
counterparts—that is, other-species faces, other-race faces
and other-age faces—are those with which participants have
accumulated abundant experience. Superior recognition of
faces from over-experienced categories has been attributed
to perceptual expertise as well as to social cognitive factors.
According to perceptual expertise accounts, extensive experience
with faces from a given category (e.g., own-race) results in
exquisite sensitivity to differences among faces in, for example,
the shape and spacing of facial features (e.g., Rhodes et al., 2009;
Tanaka and Pierce, 2009; Mondloch et al., 2010). According
to social cognitive accounts, adults encode faces of in-group
members at the individual level whereas they encode faces of
out-group members at the categorical level (Levin, 2000; Sporer,
2001; Ge et al., 2009). Recent proposals have argued for an
integrative framework in which social cognition and perceptual
expertise interact in determining an individual’s sensitivity to
individuating facial characteristics (Sporer, 2001; Young et al.,
2012).

Indeed, there is ample evidence that adults process faces from
different races differently, both in terms of the underlying neural
mechanisms and the associated visual processing strategies. For
example, electrophysiological studies have found that the face-
sensitive N170 is of larger amplitude in response to upright other-
race faces compared to upright own-race faces and face inversion
affects this component more for the latter than the former types
of faces. These results suggest that although configural/holisitic
information is extracted from faces of both racial groups, upright
other-race faces require increased processing demands (e.g.,
Caharel et al.,, 2011; Montalan et al., 2013). Although results are
not always consistent, several behavioral studies have suggested
that both configural/holistic information (e.g., Tanaka et al,
2004; Michel et al., 2006) and featural cues (e.g., Hayward et al.,
2008; Mondloch et al., 2010) are extracted more effectively from
own-race faces than other-race faces.

More recently, the question of whether, and to what extent, the
own-race bias in face memory is related to perceptual processing
differences has been productively addressed using eye-tracking
methodologies, which provide a direct measure of visual scanning
behavior through on-line recording of visual fixations on various
portions of the face with high temporal and spatial resolution.
When viewing faces, adults are found to spend more time
fixating the internal features, e.g., the eyes, nose and mouth (e.g.,
Janik et al., 1978; Walker-Smith et al., 2013), and this scanning
strategy is related to subsequent recognition (e.g., Henderson
et al, 2005). Given that eye movements are important for
face memory, several studies have explored whether recognition
deficits observed for faces belonging to less familiar race groups
can be related to non-optimal exploration of these faces during
encoding and/or recognition. Conflicting findings have been

obtained in the investigation of this hypothesis. Some recent
studies have shown how culture affects the way people view
faces: Western observers normally tend to look longer to the
eye region (reflecting the use of analytic perceptual strategies),
whereas East Asians tend to focus more on the nose region
(possibly reflecting the use more holistic perceptual strategies;
Blais et al.,, 2008; Caldara et al., 2010; Fu et al., 2012; Hills
and Pake, 2013). While some studies found that these cross-
cultural variations in scanning strategies do not differ for own-
compared to other-race faces (Blais et al., 2008; Caldara et al.,
2010; Hills and Pake, 2013), other studies showed that these
variations are modulated by face race (East Asian participants:
Fu et al., 2012; Hu et al., 2014; Western participants: Goldinger
et al., 2009; Wu et al., 2012; McDonnell et al., 2014). Western
participants were found to make more fixations on the eye
region of same-race faces compared to other-race faces, and to
fixate longer the nose and mouth region of Asian compared
to Caucasian faces (e.g., Goldinger et al., 2009); they are also
reported to make a larger number of shorter fixations while
exploring own-race compared to other-race faces, suggesting
the use of more active scanning strategies for the former than
the latter (e.g., Wu et al., 2012). The same pattern of scanning
behavior is observed during recognition, as the eyes of same-
race faces are sampled more often than those of other-race faces,
whereas the opposite occurs for the mouth (Nakabayashi et al.,
2012).

Unlike the own-race bias, investigations of how faces of
different ages are perceptually encoded and processed are limited.
The behavioral own-age recognition advantage is mirrored in
young adults by ERP responses, which show higher degree of
specialization for own-age faces (i.e., young faces) compared to
other-age faces (i.e., older faces; larger N170, VPP, frontocentral
P200 for older compared to young faces; larger occipital P200
for young compared to older faces; Wiese et al.,, 2008, 2012;
Ebner et al,, 2011). However, evidence of perceptual processing
differences between adult faces and faces belonging to other-
age groups comes mainly from studies comparing the disrupting
effects produced on the discrimination of those faces by stimulus
manipulations that are known to hinder configural and/or
holistic processing, like the face inversion effect (e.g., Kuefner
et al., 2008) and the composite-face effect (e.g., de Heering and
Rossion, 2008). These studies have shown that adults rely more
heavily on expert configural/holistic strategies when processing
own-age faces compared with elderly adult faces (Proietti et al.,
2013; Wiese et al., 2013), child faces (de Heering and Rossion,
2008; Kuefner et al., 2008, 2010), and infant faces (Macchi Cassia
et al., 2009a).

Critically, although this evidence clearly supports the
hypothesis of a perceptual processing advantage for younger
adult faces compared to a wide range of other-age face types,
investigations of how individuals visually scan own- and other-
age faces, and how differences in scanning behavior may relate
to different recognition performance are quite limited. To the
best of our knowledge, only three studies have addressed this
question by recording young adult participants’ eye movements
through eye-tracking methodologies, and all focused on the
comparison between young adult (i.e., own-age) and elderly adult
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faces (Firestone et al., 2007; He et al., 2011; Short et al., 2014).
Results converge in showing that young adults look longer at
own-age faces compared to older adult faces, both when faces
are presented in isolation (Firestone et al, 2007; He et al,
2011) and when they are embedded in naturalistic scenes and
the two face ages directly compete for attention (Short et al,
2014).

Among these studies, though, only Firestone et al. (2007)
actually investigated whether the distribution of eye movements
across various facial regions differed for young and older adult
faces, as Short et al. (2014) considered each face as a whole
region of interest, and He et al. (2011) only divided each face
into lower and upper half and found no difference in distribution
of looking time across the two regions between young and older
adult faces. Firestone et al.’s (2007) results confirmed the general
tendency of Caucasian observers to look longer at the eyes
region, followed by the nose and the mouth region. However,
although young (i.e., own-age) faces received more transitions
between facial regions compared to older adult faces, they also
received a decrease in sampling of the eyes, and an increase
in sampling of the nose and mouth compared to older faces.
Moreover, the authors found that, irrespectively of face age,
increased looking time on the nose region was associated to
successful subsequent recognition. The authors concluded that
patterns of eye scanning during the encoding of unfamiliar faces
are critically related to recognition. However, the finding that
looking at the nose, rather than at the eye region, mediated
correct identification is at odds with demonstrations that longer
looking at the upper facial regions (i.e., hair, eyes) results in
more accurate recognition of own-race faces (McDonnell et al.,
2014).

The aim of the present study was to extend available
evidence on the relationship between visual scanning behavior
and recognition performance for own- and other-age faces by
comparing eye movement scanning patterns exhibited by young
adult participants while encoding and recognizing adult and
infant faces within the context of an old/new recognition memory
task. Infant faces were chosen because, given that newborns
are very infrequently present in an adult’s typical everyday
environment, the amount of individual’s exposure to this specific
face category is very limited and can be estimated rather well. The
influence of experience with infant faces was controlled in the
study by selecting participants for having null or limited direct
contact with infants (i.e., infant novices), according to the same
criteria used in previous studies comparing discrimination and
processing abilities for adult and infant faces (Kuefner et al., 2008;
Macchi Cassia et al., 2009a,b; see also Yovel et al., 2012). In these
studies, infant novices showed better discrimination for young
adult faces compared to infant faces in a delayed two-alternative
forced choice matching-to-sample task, in which they were asked
to match a briefly presented target face to two simultaneously
presented test faces appearing after a short delay. Critically, adult
participants also showed an inversion effect that was selective for
young adult faces. Because it is well-established that at least a
portion of the inversion effect is related to configural processing
of upright faces (Mondloch et al., 2002), the authors interpreted
the complete absence of an inversion effect for infant faces as

evidence that configural processing was not engaged to any extent
for the recognition of these faces.

In light of this evidence, the present study had three main
goals: (1) to extend available evidence of a recognition bias for
adult over infant faces using an old/new recognition memory
task; (2) to investigate whether adults show differences in gaze
patterns while encoding and/or recognizing adult and infant
faces; (3) to test whether these differences in gaze patterns are
related to recognition performance. Based on the overarching
hypothesis that face recognition varies as a function of expertise
with different face categories (i.e., own- vs. other-age faces) and
that such improvement may be explained by differential visual
encoding strategies, we predicted that: (1) participants would
show an own-age recognition advantage as indicated by higher
recognition accuracy and/or lower response times (RTs) for adult
compared to infant faces; (2) looking behavior (looking time
and the dynamicity of visual exploration) would differ for adult
and infant faces; (3) recognition performance would vary as a
function of looking behavior, possibly with longer fixations on
the upper regions of the face being linked to more efficient
subsequent recognition.

MATERIALS AND METHODS

Participants

Participants were 27 female university students aged from 19
to 29 years (M = 23.89 years, SD = 2.05). They were asked
to participate if they had no offspring and had not acquired
extensive experience with infants (i.e., 2 years or younger). To
this end, potential participants were screened prior to testing via
a questionnaire that included specific inquiries aimed at assessing
whether, in the past 5 years, they had had nieces or nephews,
contact with infants of friends or acquaintances, and/or a job
that put them in contact with infants. Inclusion criteria were
identical to those of earlier studies investigating the own-age bias
in participants with little or no experience with infants (Macchi
Cassia et al., 2009a,b; i.e., less than 520 h of experience per year in
the past 5 years). Participants included in the sample had acquired
an average of 91.48 h (SD = 114.62, range = 0-520) of experience
per year over the past 5 years. All participants were Italian and
right-handed, and they all had normal or corrected-to-normal
vision. All procedures used in the current study complied with
the Ethics Standards outlined by the Declaration of Helsinki (BM]
1991; 302: 1194) and were approved by the Ethics Committee
of the University of Milano-Bicocca. All participants signed an
informed consent before testing and received formation credits
for their participation.

Stimuli

Twenty-four color photos of female adult faces and 24 photos
of infant (aged 3-5 months) faces were used as stimuli. Faces
were all Caucasian, frontal, and with neutral expression; an oval-
shaped occluder was placed on each face to conceal background
information (e.g., hair and ears; Figure 1). The hue and
brightness of the color face images (resolution 72 dpi) were
leveled out and were all normalized to be of the same width
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FIGURE 1 | Schematic representation of the experimental design.
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(306 pixel, 7.2 cm, 6.3° of visual angle). The height of the
stimuli and consequently of the occluder differed between the
two types of faces in order to maintain ecological validity (adult
faces = 10.6 cm, 9.3° of visual angle; infant faces = 7.94 cm, 7°
of visual angle). Faces in each age group were normalized to be
the same shape and size. Moreover the eyes, nose, and mouth
position were normalized to the locations of the eyes, nose, and
mouth of the average image computed on the 24 stimuli, so that
the major features of all face stimuli were located in the same face
regions.

Apparatus

All faces appeared on a light gray background at the center
of the 19 inches Samsung SyncMaster 1200 NF screen, with
a resolution of 1024 x 768 pixels. Stimulus presentation
and response collection were controlled by the E-prime 2.0
software. Participants’ eye movements were recorded using an
Applied Science Laboratories’ (ASL) Model 504 Eye Tracker
6 system. Participants had their head on a chin-rest and sat
about 65 cm from the eye tracker camera located at the base
of the presentation screen, which measured participants’ eye
movements at a sampling rate of 50 Hz.

Procedure

Participants were tested in an old/new face recognition task while
their eye movements were recorded. A manual calibration of gaze
position was conducted at the beginning of the testing session,
and repeated at the beginning of each experimental block, using a
nine-point fixation procedure. The calibration was validated and
repeated when necessary until the optimal calibration criterion
was reached.

Each trial started with a fixation cross at the center of the
screen, which participants had to fixate for 500 ms in order for
the target face to appear for 3000 ms. Participants were instructed
to inspect carefully and memorize a sequence of 12 adult and

12 infant faces presented in random order in the center of the
screen. Each face was spaced out by a 1000 ms gray noise mask
to reduce a possible retinal permanence effect, followed by the
500 ms fixation point (see Figure 1).

After the 24 trials of the learning phase, participants
performed a filler task used to create a temporal gap between the
learning and the recognition phase and to reduce any potential
recency effects. In brief, this filler involved an object search in
which participants were asked to identify a specific shape (e.g.,
a square) among other distractor shapes (e.g., triangles). Once
identified, a new trial would begin and this process would repeat
until 3 min had elapsed. Participants’ eye movements during
this filling task were not recorded and their performance was
not analyzed. Immediately afterward, the test phase began with
the presentation of the 24 familiar faces previously seen in the
learning phase plus other new 24 faces (12 adult and 12 infant)
randomly intermixed with the formers. Each trial started with a
fixation cross at the center of the screen, which participants had to
fixate for 500 ms in order to have the target face appear. The face
remained on the screen until the participant had classified the
face as familiar (already seen in the learning phase) or novel by
pressing one of two joystick buttons (Figure 1). The face images
presented in both the learning and test phases were counter-
balanced between participants, as was the response associated
with the joystick buttons.

RESULTS

Behavioral Performance

Three behavioral performance measures were computed for each
participant separately for responses to adult and infant faces
(sensitivity index -d’-, response bias -c- and mean correct RTs -
RTs-) and analyzed to test our first prediction that participants
would show an own-age recognition advantage as revealed by
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higher recognition accuracy and/or lower RTs for adult compared
to infant faces. Table 1 shows the mean and standard error
of the mean (SE) for each measure. To assess the own-age
bias on recognition data, we conducted paired sample t-tests to
compare each measure of performance between adult and infant
faces (Table 1). Participants performed more accurately in the
recognition of adult compared to infant faces, as indicated by
the significant difference emerged in the sensitivity index (d),
1(26) = 2.226, p = 0.035 (i.e., higher d’ for adult faces compared
to infant faces). The comparisons for response bias and mean
RTs did not reach statistical significance (c: p = 0.074; mean RTs:
p =0.094), although the pattern for mean RTs was in the expected
direction. It is not unusual to obtain a recognition bias on some
measures but not others in similar tasks (Meissner and Brigham,
2001; McDonnell et al., 2014), therefore our data reflected the
presence of an OAB.

Eye Movements

Participants’ eye movement scanning behavior was analyzed for
both the learning and the recognition phases in order to test
our second prediction that looking behavior would differ for
adult and infant faces. Three areas of interest (AOIs) were
defined for each face of the two age groups: the eyes (right
and left combined), the nose, and the mouth (see Figure 2).

TABLE 1 | Behavioral performance measures: means and SE of sensitivity
index (d’), response bias (c), mean correct response times (RTs) in
milliseconds for adult and infant faces.

Adult faces Infant faces Comparison
between adult and
infant faces
M (SE) M (SE) T p-value
d 1.48 (0.11) 1.24 (0.10) 2.226 0.035
c 0.23 (0.07) 0.06 (0.07) 1.861 0.074
RT 1664.86 (102.44) 1806.02 (149.15) —1.738 0.094

p-values in bold are significant (p < 0.05).

FIGURE 2 | Example of areas of interest (AOI) plots for adult faces (left)
and infant faces (right).

The three AOIs were equal in size and, together, covered 36
% of the total area of the face (each AOI covered 12% of
the face). Thus, the proportion of the face captured by the
AOIs was held constant for adult and for infant faces (see
Figure 2).

Two measures were derived from eye movement data:
percentage of total viewing time on each AOI and the number
of visits per unit time (second) across all AOIs. The first was
created to provide a measure of the relative amount of sampling
of each facial feature, while the second was created to index
the dynamicity of visual processing across the whole face. The
percentage of total viewing time was calculated for each trial
by dividing the total fixation time on each AOI by the total
fixation time on the whole face, and by multiplying the result
by 100. Percentages, rather than raw viewing time, were used in
order to directly compare viewing time across the learning and
recognition phase, which differed for trial duration (learning: 3 s,
recognition: until response, M = 1735.44 ms, SE = 127.47). It
should be noted that the total fixation time on the three AOIs
(eyes, nose, and mouth) did not add to 100% of the on-face
fixation time because some fixations may have fallen outside the
AOIs but still within the face area. Number of visits per second
was calculated for each trial by dividing the total number of visits
(number of times the gaze entered a specific AOI in a given trial)
received by each AOI by trial duration, in seconds, which was
fixed to 3 s for learning trials, and variable until response for
recognition trials. For this measure the left and right eyes were
considered as separate AOIs.

Different sets of analyses were performed for each eye
movement measure. A first set included eye movement data
from all the trials. Furthermore, to test our third prediction that
recognition performance would vary as a function of looking
behavior, a second and a third set of analyses were performed
separately for trials that triggered a correct response during the
recognition phase and those that were incorrectly recognized.
Separate analyses were performed for the two response measures
because, while all participants made at least one correct response
on both adult and infant trials, two participants did not have any
incorrect response in at least one of the two conditions. For all
sets of analyses, analyses of variance (ANOVAs) were conducted
on each of the eye movement measures using the factors face
age (adult, infant), phase (learning, recognition), and, for total

TABLE 2 | Mean and standard error of the percentage of total looking time
on each of the three AOI (eyes, nose, mouth) on the adult and infant face
during learning and recognition phase.

Learning Recognition
AOI Adult faces Infant faces Adult faces Infant faces
M (SE) M (SE) M (SE) M (SE)
All trials
Eyes 40.74 (4.03) 33.78 (3.53) 3268 (3.15) 28.28 (3.4
Nose 2528 (211) 26,79 (2.32) 29.19 (3.24) 3068 (3.77)
Mouth  11.12  (1.86) 13.16  (3.03) 9.69 (1.82) 11.07 (2.41)

Reported data refer to all the trials (correct and incorrect).
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viewing time, AOI (eyes, nose, mouth). All comparisons were
Bonferroni corrected.

Analyses on All Trials

Percentage of total viewing time

The mean and SE of the percentage of total viewing time on
each AOI for the adult and infant faces during learning and
recognition are shown in Table 2. The 2 x 2 x 3 ANOVA showed
a significant main effect of AOI, F(2,52) = 16.582, p < 0.001,
n? = 0.389. Bonferroni-corrected, multiple-comparison tests
revealed an overall smaller percentage of viewing time on the
mouth region (M = 11.26%, SE = 1.92%) compared to both the
nose region (M = 27.99%, SE = 2.39%), p < 0.001, and the eye
region (M = 33.87%, SE = 3.16%), p < 0.001. No differences
emerged between the eye and the nose regions (p > 0.74). The
AOI main effect was qualified by two significant interactions
between AOI and face age, F(2,52) = 6.999, p = 0.002, 1> = 0.212,
and AOI and phase, F(2,52) = 3.958, p = 0.025, 0> = 0.132
(see Figure 3). Post hoc pairwise t-tests showed that the only
significant difference between adult and infant faces across the
two phases concerned the percentage of viewing time on the eyes,
which was higher for adult faces (M = 36.71%, SE = 3.13%)
than for infant faces (M = 31.03%, SE = 3.36%), t(26) = 3.775,
p =0.003. The mouth region was the least fixated area of the three
AOIs for both adult and infant faces, ps < 0.01. Post hoc t-tests
also showed that participants looked significantly longer at the
eye AOI during learning (M = 37.26%, SE = 3.69%) compared to

recognition (M = 30.48%, SE = 3.01%), £(26) = 2.878, p = 0.024.
No other difference was found to be significant, ps > 0.14. Also,
in both the learning and recognition phase, the mouth region was
the least fixated area of the three AOIs, ps < 0.007.

Number of visits per second

The mean and SE of the number of visits for the adult and
infant faces during learning and recognition are shown in Table 3.
The 2 x 2 ANOVA with face age and phase as within-subjects
factors revealed main effects of both face age, F(1,26) = 33.370,
p < 0.001, n2 = 0.562, and phase, F(1,26) = 27.916, p < 0.001,
n? = 0.518, indicating that participants made more visits per

TABLE 3 | The mean and standard error of the number of visit per second
for the adult and infant face conditions separately for the learning and
recognition phases.

Learning Recognition
Adult faces Infantfaces Adultfaces Infant faces
M (SE) M (SE) M (SE) M (SE)
Al trials 166 (0.09 149 (0.09 211 (0.11) 1.83 (0.10)
Correct trial 165 (0.09 149 (0.09 214 (0.11) 1.85 (0.10)
Incorrect trials ~ 1.58  (0.11) 1.37 (0.11) 1.99 (0.11) 1.74  (0.10)

Mean and SE values refer to all the trials (first line), correct trials (second line) and
incorrect trials (third line).
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FIGURE 3 | Percentage of total viewing time recorded on all trials plotted as a function of AOIs (eyes, nose, and mouth) for: (A) adult and infant faces;
(B) the learning and recognition phase. Error bars represent the standard error of the means.
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. the nose region (M = 28.16%, SE = 2.29%), p < 0.001, and the

' @ learning phase eye region (M = 33.77%, SE = 3.08%), p < 0.001. Viewing time

& recognition did not differ between the eye and the nose regions (p > 0.75).

Tz 2 phase The AOI main effect was qualified by two significant two-way
S interactions with the factor face age, F(1,26) = 10.330, p < 0.001,
§1.s n? = 0.284, and phase, F(1,26) = 5.462, p = 0.007, n? = 0.174
2 (see Figure 5). The percentage of time that participants spent
2 viewing the eye region was higher for adult faces (M = 37.09%,
g 1 SE = 3.02%) compared to infant faces (M = 30.46%, SE = 3.31%),
£ t(26) = 4.455, p < 0.001, whereas there was no significant
205 difference between the two face ages on viewing time on the nose,
p = 0.155, and mouth, p = 0.137. For both face ages, the mouth

B AOI was the least fixated region, ps < 0.01. The AOI x phase

adult faces infant faces

FIGURE 4 | Number of visits per second recorded on all trials during
the learning and recognition phase for adult and infant faces. Error bars
represent the standard error of the means.

second while encoding adult faces (M = 1.89, SE = 0.09)
compared to infant faces (M = 1.66, SE = 0.09) and they
made more visits per second when recognizing faces (M = 1.97,
SE = 0.10) than during learning (M = 1.58, SE = 0.09; see
Figure 4).

Analyses on Correct Trials

Percentage of total viewing time

The mean and SE of the percentage of total viewing time on
each AOI for the adult and infant faces during learning and
recognition are shown in Table 4. The 2 x 2 x 3 ANOVA
revealed main effects of face age, F(1,26) = 5.07, p = 0.033,
n? = 0.163, and AOI, F(1,26) = 17.366, p < 0.001, n? = 0.400.
Participants spent longer looking at the three AOIs for adult faces
(M =24.92%, SE = 1.0%) compared to infant faces (M = 23.91%,
SE = 1.02%). Bonferroni-corrected, multiple-comparison tests
revealed an overall smaller percentage of viewing time on the
mouth region (M = 11.32%, SE = 1.97%) compared to both

TABLE 4 | The mean and standard error of the percentage of total looking
time on each of the three AOI (eyes, nose, mouth) on the adult and infant
faces separately for the learning and recognition phases.

Learning Recognition

AOI Adult faces Infant faces Adult faces Infant faces

M (SE) M (SE) M (SE) M (SE)
Correct trials
Eyes 4198 (8.97) 3324 (346) 3219 (3.03) 27.67 (3.50)
Nose 2399 (1.76) 2718 (2.32) 3023 (329 3124 (3.69)
Mouth 1146  (2.14) 13.00 (2.90) 9.69 (1.82) 1112  (3.4p)
Incorrect trials
Eyes 3548 (4.08) 3163 (4.26) 30.15 (349 2729 (3.39)
Nose 2768 (288 2499 (3.12) 2642 (3.52) 29.92 (4.63)
Mouth 9.42 (1.79) 12.67 (3.67) 9.73 (2.05) 1158 (2.62

Data are presented separately for correct and incorrect trials.

interaction was due to the fact that participants spent more time
viewing the eye region during the learning phase (M = 37.61,
SE = 3.601%) compared to the recognition phase (M = 29.93%,
SE = 2.97%), t(26) = 3.266, p = 0.021. Furthermore, in the
recognition phase both the eye and the nose regions were viewed
more than the mouth, ps < 0.001.

Number of visits per second

The mean and SE of the number of visits for the adult and infant
faces during learning and recognition are shown in Table 3. The
2 x 2 ANOVA with face age and phase as within-subjects factors
showed main effects of face age, F(1,26) = 37.836, p < 0.001.,
n? = 0.593, and phase, F(1,26) = 36.273, p < 0.001, n? = 582,
indicating that participants made more visits per second while
encoding adult faces (M = 1.89, SE = 0.09) compared to infant
faces (M = 1.67, SE = 0.09) and made more visits per second
when recognizing faces (M = 1.99, SE = 0.10) than when learning
faces (M = 1.57, SE = 0.09; see Figure 6).

Analyses on Incorrect Trials

Percentage of total viewing time

The mean and SE of the percentage of total viewing time on
each AOI for the adult and infant faces during learning and
recognition are shown in Table 4. The 2 x 2 x 3 ANOVA on
the distribution of viewing time across the different AOIs for
faces that were not correctly recognized during the recognition
phase revealed a main effect of AOI, F(2,48) = 13.223, p < 0.001,
n? = 0.355, with shorter dwell time on the mouth region
(M = 10.85%, SE = 1.95%) than on the eye (M = 31.14%,
SE = 3.10%) and the nose region (M = 27.25%, SE = 2.746%).
No other main effects or interactions attained significance,
ps > 0.23,

Number of visits per second

The mean and SE of the number of visits for the adult and infant
faces during learning and recognition are shown in Table 3. The
2 x 2 ANOVA with face age and phase as within-subjects factors
revealed only a significant main effect of phase, F(1,26) = 16.854,
p < 0.01, n? = 0.413, suggesting that participants made more
visits during the recognition phase (M = 1.87, SE = 0.10)
compared to the learning phase (M = 1.48, SE = 0.10) and a
main effect of face age, F(1,26) = 18.925, p < 0.01, n? = 0.441,
with more visits for adult faces (M = 1.79, SE = 0.09) compared
to infant faces (M = 1.55, SE = 0.09).
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FIGURE 5 | Percentage of total viewing time recorded on correct trials plotted as a function of AOIs (eyes, nose and mouth) for: (A) adult and infant
faces; (B) the learning and recognition phase. Error bars represent the standard error of the means.
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FIGURE 6 | Number of visits per second recorded on correct trials
during the learning and recognition phase. Error bars represent the
standard error of the means.

Relations between Behavioral Performance and Eye
Movements

To further explore the relation between scanning behavior and
recognition performance we correlated percentage of viewing
time on the eye and mouth region during the learning phase with
two measures of behavioral performance - i.e., d and mean RTs -
for adult and infant faces separately.

Percentage of total viewing time

Two-tailed Pearson correlation revealed that increasing
percentage of dwell time on the eye region increased the
likelihood of correct identification, as measured by d, for infant
faces r = 0.423, p = 0.028 (especially during learning, r = 0.497,

p = 0.008). The same correlation failed to reach significance
for adult faces, r = 0.315, p = 0.109. Percentage of viewing
time on the mouth region during recognition showed positive
correlation with mean RTs for correct recognition responses for
both infant, r = 0.449, p = 0.019, and adult faces, r = 0.376,
p=0.053.

Number of visits per second

For both adult and infant faces number of visits during
recognition was positively correlated with recognition accuracy
(d) (adult faces: r = 0.395, p = 0.041; infant faces: r = 0.385,
p=0.047).

DISCUSSION

The current study explored the impact of face age on the visual
processing strategies employed during encoding and recognition
of face stimuli.

In the only previous study investigating how face age
modulates behavior, Firestone et al. (2007) looked at how young
and older adults’ visual exploration strategies and recognition
performance differ for young and older adult face stimuli. Here,
we wanted to extend this first work by analyzing young adults
scanning behavior on young adult faces and on a more physically
distant and less experienced, face category, namely infant faces.

Analysis of our participants’ response performance provides
evidence for the presence of an own-age bias. Results from our
study confirmed the presence of the expected markers for the
own-age bias, with higher recognition accuracy (d’) for adult
compared to infant faces and a trend toward mean RTs being
faster for the former than the latter. Other studies using similar
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paradigms found a weaker or absent own-age bias (Firestone
et al., 2007). In spite of the methodological differences between
this study and previous studies (Kuefner et al., 2008; Macchi
Cassia et al., 2009b) comparing adults’ performance in the
processing of adult and infant faces, the current results suggest
that, in the absence of consistent experience with other-age faces,
young adults show an advantage in the recognition of own-age
compared to other-age faces.

Most interestingly, our eye movements data provide novel
evidence that adult and infant faces elicit different gaze patterns
in non-experienced adults. Both our variables of choice associated
with participants’ looking behavior (percentage of total viewing
time on each AOI and number of visits per second) significantly
differed for the two face categories considered, with adult
faces being associated with higher number of visits per second
and higher percentage of viewing time on the eye region
independently of the task participants had to perform (to
memorize or to recognize the face). The first variable (number
of visits per second) is indicative of the dynamicity of visual
exploration since we considered a visit to the area whenever a
fixation was performed in any of the AOIs preceded by a saccade
originating either from another AOI or from a region of the face
not included in any specific AOI Therefore, the higher number
of visit per second found in the processing of adult faces can be
considered as an index of more dynamic visual exploration of
these faces compared to infant faces.

Regarding the percentage of viewing time, the general pattern
of attention to facial features found was consistent with previous
research (Henderson et al., 2005; Flowe, 2011; Nakabayashi et al.,
2012; McDonnell et al.,, 2014) showing that participants fixate
more the eyes than other regions of the face. In addition, as
predicted, in our data there were differences in how participants
processed own-age vs. other-age faces. To this regard, our finding
of a higher percentage of viewing time on the eye region of
adult compared to infant faces seems to be at odds with what
found in the study by Firestone et al. (2007) where young
adults looked longer at the eye region of old faces compared to
young faces. There are at least two important methodological
differences between the current study and the Firestone et al.’s
(2007) study that may explain the conflicting results. First of all,
in Firestone et al.’s (2007) study participants’ eye movements were
recorded during an age judgment task; the longer fixation time
on the eye region of older adult faces compared to young adult
faces might be explained as a consequence of the specific task
demands. Participants had to focus on the age of the faces, and
it is conceivable that they would have fixated the region that
is more informative in that context, which is probably the eye
given the presence of wrinkles. Secondly, participants in Firestone
et al’s (2007) study were not controlled for the amount of
experience with older adult individuals and, as shown in previous
studies, amount of contact can make an important difference in
modulating perceptual strategies during the processing of older
adult faces (Proietti et al., 2013). Additional evidence would be
important to clarify if the inconsistency between our results and
those obtained by Firestone et al. (2007) is due to a real effect of
older adult faces as a peculiar face category or to the effect of task
demands (i.e., age judgments compared to recognition task).

Nonetheless, it is important to underline that the results
we obtained (higher percentage of viewing time on the eye
region for own-compared to other-age faces) are in line with
findings from studies on the race bias, showing that Caucasian
participants dwell longer on the eye region of own-race faces
compared to other-race faces (Goldinger et al., 2009; Wu et al.,
2012; McDonnell et al., 2014, but see Blais et al., 2008; Caldara
et al., 2010; Hills and Pake, 2013 for no differences in looking
beahaviour for own-race vs. other-race faces). Previous studies
have shown that adult participants rely on different perceptual
strategies when processing own- and other-age faces by looking at
phenomena such as the face inversion effect (e.g., Kuefner et al,,
2008) or the composite effect (Kuefner et al., 2010). The present
findings add to this earlier evidence by showing that part—
though probably not all—of the difference in how individuals
encode different categories of faces, being the differences related
to age or race, lies in their differential attention to discrete
facial features. At least in the case of Caucasian participants,
the exploration of the eye region is an effective strategy more
extensively employed in the processing of familiar face categories
compared to unfamiliar face categories.

A second important finding from the current study relates
to the difference in scanning strategies employed for encoding
and recognition. In fact, the majority of existing studies on
the age and race biases, analyzed participants’ looking behavior
during face learning (Firestone et al., 2007; Goldinger et al.,
2009). Our results suggest that scanning strategies change as a
function of the task participants have to perform (encoding or
recognizing a face). Specifically, results showed that regardless
of face age, participants tended to focus their attention more
on the eye region in the learning phase, while they tended
to use a less specific strategy in the recognition phase. These
findings seem to be at odds with those of an earlier study
by Henderson et al. (2005) that showed that the distribution
of looking time across face features becomes more restricted
from learning to recognition, with increasing dwell time on the
eye and nose regions and decreasing looking time to the other
features (e.g., mouth, chin, forehead). However, there are many
methodological differences that may explain inconsistency in
the results. For example, each participant in Henderson et al.’s
(2005) study was tested in two different learning conditions,
only one of which was a free viewing condition as in our
study. In the second condition participants had to keep their
gaze steady in the area directly between the eyes. It is possible
that this restricted viewing condition during learning has biased
participants to keep their gaze within the same region even
during recognition, thus restricting the distribution of fixations
across face features. In addition, in the learning phase of the
Henderson et al.’s (2005) study each face was presented for 10 s,
whereas in the current study we used much shorter presentation
duration (i.e., 3 s). It is possible that such a shorter presentation
duration induced participants to focus their attention more
on the most informative facial features (i.e., eyes), rather than
moving attention across features. In any case, our findings do
concord with those by Henderson et al. (2005) in pointing to the
dominance of the eyes as an important (based on our data, the
most important) feature for face learning.
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In addition to that, our data also indicate that participants
used a more dynamic strategy during recognition compared to
learning, which is reasonable if we consider that participants have
to explore all features in order to find the familiar cues coded
during learning. Even more important, the use of a more dynamic
strategy (higher number of visits) is functional to recognition,
as indicated by the positive correlation between number of visits
and recognition accuracy (d). This finding suggests that, during
the short time (M = 1735 ms) before the participant makes a
recognition decision and provides his/her response, a global and
more dynamic scanning of the whole face is more functional than
a more analytic exploration of the features, for both adult and
infant faces.

This conclusion is further supported by the finding that
the amount of sampling of the eye region during learning in
our data was, to some extent, associated with differences in
recognition performance. The analyses conducted separately for
correct and incorrect trials confirmed that the larger sampling
of the eye region compared to the other AOIs for adult
faces with respect to infant faces occurred only for those
faces that were subsequently correctly recognized. This again
suggests that the eyes are diagnostic to identity. This was
confirmed by correlation analyses showing that viewing time
on the eye region affected correct identity discrimination in
the subsequent recognition phase. Of note, this was especially
true for infant faces, whose eye region was viewed overall
less than the eye region of adult faces; in the adult face
condition, the overuse of the eye region may have masked the
effect and led to the absence of a direct association between
this exploration strategy and recognition accuracy. Therefore,
correlation results combined with results from corrected vs.
incorrect trials provide robust evidence of the relevance of the
exploration of the eye region in sustaining efficient identity
recognition.

Unlike the eye region, visual exploration of the mouth region
resulted to be dysfunctional for subsequent face recognition
as suggested by the fact that, for both adult and infant faces,
longer inspection of the mouth is related to longer RTs in the
identification of familiar faces. To the best of our knowledge,
the only studies showing that visual exploration of the mouth
region is important to face recognition are those using emotional
faces (Eisenbarth and Alpers, 2011); in these cases it is clear
that looking at the mouth represents an important strategy
to gather information about the face. Since the faces used in
the current study all posed a static, neutral expression, it is
reasonable to assume that the mouth region didn’t provide
any additional information diagnostic to identity recognition.
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