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The scope of this paper is to test the adoption of a statistical model derived from

Condensed Matter Physics, for the reconstruction of the structure of a social network.

The inverse Potts model, traditionally applied to recursive observations of quantum states

in an ensemble of particles, is here addressed to observations of the members’ states in

an organization and their (anti)correlations, thus inferring interactions as links among the

members. Adopting proper (Bethe) approximations, such an inverse problem is showed

to be tractable. Within an operational framework, this network-reconstruction method

is tested for a small real-world social network, the Italian parliament. In this study case,

it is easy to track statuses of the parliament members, using (co)sponsorships of law

proposals as the initial dataset. In previous studies of similar activity-based networks,

the graph structure was inferred directly from activity co-occurrences: here we compare

our statistical reconstruction with such standard methods, outlining discrepancies and

advantages.

Keywords: social network analysis, Potts model, network reconstruction, community detection, loopy belief

propagation, inverse problem, quantum structures

1. INTRODUCTION

A growing interest raised in recent years about policy networks in social and organizational studies:
the concept has flourished even in the absence of a widely agreed definition. Among the most
successful ones, we may quote (Börzel, 1997) and the concept of horizontal networks linking a
variety of actors, who share common interests about a policy, and cooperate toward its adoption.
Now, such a broad idea withstood critiques considering the policy network a mere metaphor,
more than a model capable of understanding the process of genesis and evolution of policies
(Dowding, 1995). A rich literature has adopted both qualitative and quantitativemethods to analyse
the network paradigm. In fact, in most study cases, the relations between the actors involved are
depicted as links between the corresponding nodes of a graph (the actors). Most discussions are
also driven by network analysis tools and methods (Besussi, 2006).

Among quantitative methods, for our case study we focused on the collaborative nature
of policy networks, dealing with vote behavior, an idea originally dating back to the “socio-
structural and interactional effects,” investigated since (Lazarsfeld et al., 1968). Here, however,
following a recent but well developed approach, sponsorships and endorsements of law proposals
are tracked in the dataset, rather than proper voting behavior when these proposals are
approved or rejected. Social Network Analysis (SNA) performed with co-sponsorships and other
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similar data in legislative bodies was started by Fowler (2006),
where the network structure and proximity measures among
the US Senate members were obtained. Further analyses were
also based on roll calls, but they focused upon the creation
and evolution of communities in the network (Porter et al.,
2007; Zhang et al., 2008). Retrieving the policy network
in a legislative body, and communities therein, using roll-
calls and co-sponsorship data, instead of final votes, is a
method embedding both advantages and disadvantages. A useful
discussion about the point can be found in Chiru and Neamu
(2012).

Main interest of this paper is the problem of preliminary
reconstruction of member-member networks, starting from the
member-activity affiliations, i.e., the roll-call votes data. Indeed,
when it comes to the network reconstruction, the preliminary
step of most SNA approaches is affected by the simplistic
assumption that: two people are related to each other if, and only
if, they perform simultaneously a (sub)set of activities, and the
strength of their interaction is measured directly counting (and
weighting) these co-occurrences.

Evidently, this standard method for network reconstruction
can be improved in its capability of finding hidden links,
or removing those due to noise and bearing no useful
information. Various strategies may contribute significantly in
this improvement: both those originated from SNA realm
itself (e.g., adopting homophily for the study of the network
structure); or from other fields (e.g., analysing covariates
generated by different observations of the network, making
use of random/mixed effects models, or checking covariance
data against pseudo-randomization in the samples, etc.). The
interested reader may find more details in specific papers. For
example, in Newman and Leicht (2007) it is performed the
reconstruction of the clusters inside a large-scale network via
mixture models, investigating similar structural connections
among the nodes. A mixture model in random graphs is used
also in Daudin et al. (2008), but this time enriching it with a
Bayesian approach, with the purpose to infer unknown classes
(Nowicki and Snijders, 2001). Finally, in Jedidi et al. (1997)
a general finite mixture structural equation model is built,
capable of dealing with heterogeneities in the network’s structural
equation models, and based upon a set of observed variables
(measured with error). In general, these approaches may adopt
finite mixture simultaneous equation models, finite mixture
confirmatory factor analysis, and finite mixture second-order
factor analysis.

Most statistical methods outlined above are a way to relax
the strong assumption that filters only those interactions due
to co-occurrences. Here, instead, it is discussed an approach
adopting the inverse Potts model, originated from Condensed
Matter Physics. Inverse models aim to infer and model the
interactions in an unknown network structure, starting from
recursive observations of the nodes’ states. As such, these
models are adapt to capture underlying quantum structures
in a decision making process, whenever the final decision
state can be deduced in terms of the observed actions (this
argument will be discussed in Section 2). Moreover, this paper
also envisages how a Q-states Potts model enables a much

better understanding and mimicking of the statistical features
of complex network structures, compared for example to a
more basic Ising modeling1. The approach is tested against a
policy network reconstruction, starting from co-sponsorship data
collected from the Italian Senate2.

It is worth to notice how Ising and Potts (direct) models have
already found a large number of applications also in the realm of
social sciences (Phani et al., 2004; Bordogna and Albano, 2007),
including policy networks (Liu et al., 2010), but always applied
to networks whose structure had been inferred previously by
other strategies. However, the inverse problem formulation has
been confined to the Ising model alone, and most of its interest
for non-physical problems has involved so far only biological
and neural sciences (Yamanishi et al., 2004; Ricci-Tersenghi,
2012), or image reconstruction tasks (Kiwata, 2012). To authors’
knowledge, this paper is the first using the inverse Potts problem
to reconstruct a network in social sciences, and it is in general the
first to apply a moment-based Loopy Belief Propagation (LBP)
method3 to solve the Potts inverse problem in the real world.

The paper will be structured as follows. In Section 2, we will
present how the Q-states Potts model intervenes in network
reconstruction, and our approach to solve it. Then, in Section
3, a reconstruction of the Italian Senate network is reported,
starting from data tracking co-sponsorships of law-proposals and
inferring interactions among the senators, according to their
decision patterns. Finally, in the Conclusions we will compare
the results with traditional SNA methods, i.e., not employing
statistical inference.

2. MODEL AND METHODOLOGY

The principle behind the approach described in this paragraph
is that (co-participation in) activities of an organization lead(s)
to two-body interactions among the organization members, and
these interactions can be captured by a networked structure. In
other words, a complete approach handling relations between
different realms (e.g., users and activities) must be able also
to examine relations within each realm, separately. Using
typical SNA nomenclature, this means computing a one-mode
network (represented by an adjacency matrix), starting from a
two-mode network (represented by an affiliation matrix, that
reports participations in the activities, by different organization
members). Currently, the standard approach to deduce the one-
mode matrix is based upon a mere counting and normalization
of co-occurrencies, according to some schemes: these include
matches-counting, covariance and correlation measures, cross-
products, up to Bonacich and Jaccard indexes (Hanneman and
Riddle, 2005). Each of these methods brings along some peculiar
features, and the Jaccard index in particular is widely adopted
(Borgatti, 2012), being well-suited for sparse affiliation matrices
that are very common in the real world.

However, none of these standard approaches resembles
probabilistic features, capable of taking into account noisy

1Adopted elsewhere in SNA literature for the same task.
2Publicly available at http://www.senato.it/leg/16/BGT/Schede/Attsen/Sena.html.
3See Section 2.
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signals, anti-correlations and co-occurrences of idle states4. This
issue highlights the chance to improve the reconstruction of
the corresponding one-mode networks, by a mapping to an
inverse statistical problem for pairwise Markov Random Fields
(MRF), as discussed in detail later. Especially for large systems,
inverse statistical problems are computationally expensive, and
approximate methods must be used. For the inverse Ising
problem are known: expansions in correlations and clusters
(Sessak and Monasson, 2009; Cocco and Monasson, 2011),
methods based upon the Bethe approximation (Ricci-Tersenghi,
2012), and pseudo-likelihood methods (Ekeberg et al., 2013).
Here, we will refer to the moment representation of the LBP
approach (MR-LBP), considered particularly advantageous for
solving this task (Horiguchi, 1981).

However, Ising models pose severe limitations for SNA
applications5, and it would be advantageous to switch to a more
general Q-state Potts modeling. A theoretical extension of MR-
LBP for this general inverse problem has been provided already
by Yasuda et al. (2012), making use of an expansion in Chebyshev
polynomials. This approach is briefly outlined in this paragraph,
before explaining how to match it with the specific needs of
our case. As the first, however, it is important to discuss at
an introductory level why inverse Potts (Ising) modeling are
considered adapt to deal with affiliation matrices, that may well
derive from quantum features of decision processes.

The starting point of the inverse Q-state Potts problem is a set
of M observations: D = {dµ ∈ {0, 1, ...Q − 1}n|µ = 1, 2, ...M}.
The task of the inverse problem is to reconstruct the (Potts)
model subtended to the observations6. In other words, each
observation in D can be considered a “snapshot” of the network
at a certain moment in time, where the (positive integer) state of
each node xi is observed as d

µ
i at the µ-th observation. Pairwise

states are indicated as x(i,j): = {xi, xj}, meaning that, at the time
of the same observation, the states of nodes xi and xj were found
to be as in x(i,j). In this study case, the allowed Q-states can be
interpreted as the possible decisions and thus positions (both
active or not), about a law proposal, which can be held by the
Senate members.

Now, among the fundamental principles of Quantum
Mechanics, there is the possibility that if an object can be in either
of two generic orthogonal7 states |φ〉 and |ψ〉, then, in general
it is also allowed to be in any linear superposition of the two:
α|φ〉 + β|ψ〉. Intuitively, however, when a measurement of the
object’s state is performed, the state must collapse into either one
or the other. This is also at the core of many models exploiting
quantumness in the cognitive realm (Haven and Khrennikov,
2013).Mapping this general statement into our specific study case
is equivalent to supposing that policy network agents perform
decisions according to the same scheme of a quantum state
measurement. Intuitively, this means that these agents do not

4To be intended as those states, that label nodes observed to be inactive, whereas

certain other activities are being performed by other nodes.
5E.g., the maximum number of allowed states is intrinsically limited to 2, while a

generic Q-states Potts model allows Q ∈ N , Q ≥ 2. Indeed, in Section 3, it will be

shown how an inverse Ising problem fails for our case study.
6To be specific, the observations are supposed to be sampled from a certain MRF.
7I.e., they cannot be observed simultaneously for the same object.

already “embed” a decision about what to do, before being asked
support for a roll-call. Only when they are confronted with the
decision making, they contextually choose one of the possible
alternatives to act: before that moment, it is possible to suppose
they were in a superposition of some (all) possible decisions.
I.e., they were considering also alternatives, before finalizing their
choice.

More formally, the generic decision state of each senator can
be mapped as a superposition state |Xi〉, in (some of) the Q-states
|χ〉 of the Potts model:

|Xi〉 =
Q

∑

χ=1

βi,χ |χ〉 (1)

and each observation of a node’s state can be understood as a
POVM of |Xi〉 in the basis of the states |χ〉, that are mutually
orthogonal. This underlies the plausible assumption that a single
member may desire—but not intend—more than one decision at
once, toward a certain law proposal: for example they cannot
simultaneously support and ignore the same roll call. Non-
classical effects of this superposition of states guiding the final
decision have already been discussed, e.g., in Aerts et al. (2012),
and a more complex quantum modeling of decision making has
been proposed in Bisconti et al. (2015).

It may be noticed that, when introducing at first the Potts
model in this paragraph, no explicit reference to quantum
states was made. In fact, this is because an effective treatment
of the quantum Potts model can be done within a classical
formalism: a more technical justification follows in the rest of
this paragraph. Indeed, a quantum Potts model introduces a
Hamiltonian characterized by two-body8 interactions as:

HPotts = −
∑

{i,j}
H(i,j)

∑

χ

P
χ
i P

χ
j (2)

where P
χ
i are projectors onto the |χ〉 state of the local space for

the i-th node. H is instead called the ferromagnetic coupling, and
it captures the intensity of interaction among the nodes.

It is known how any classical (finite-dimensional) spin model
on a lattice can be associated to a quantum model (Somma
and Ortiz, 2010), defined on the same lattice, by mapping every
classical state xi into measurement outcomes of the state |Xi〉 and
viceversa. Classically, the spin model has an energy functional
that is:

EPotts = −
∑

{i,j}
H(i,j)x(i,j) (3)

Therefore, the energy functional maps into the eigenvalues of
the Hamiltonian operator defined in Equation (2), and when
performing statistical inference from the observations of the
nodes’ states in the network, this correspondence allows us to
refer directly to the values of the classical variable xi. In the
following, therefore, the baseline assumption will be that a model
subtending a statistical treatment of the network reconstruction

8Here and in the following single-node terms are skipped for simplicity.

Frontiers in Psychology | www.frontiersin.org 3 November 2015 | Volume 6 | Article 1698

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Bisconti et al. Social networks’ reconstruction and spin models

problem, inspired by a quantum-mechanical counterpart, can be
far more efficient in revealing hidden links and patterns from
observations, inferring even those interactions that standard
methods are not capable of detecting.

2.1. The Inverse Potts Model
It has been seen how a statistical approach to the Potts problem,
dealing with classical variables xi, still implicitly underlines
an intrinsically quantum process of decision making, because
the likelihood of observing a certain value di for xi can be
interpreted in terms of projecting the generic quantum state
|Xi〉, onto the corresponding basis state |χ〉, where each of the
orthogonal basis states identifies a single possible decision. This
paragraph is devoted to a detailed explanation of the algorithm
inferring relationships among nodes, from the set of observations
performed: non-technical readers may skip it and move to the
considerations in Section 2.2.

It can be observed how the probability distribution—for
observations of the node states x—is clearly connected with the
energy functional in Equation (3):

P(x) ∝ exp



−
n

∑

(i,j)∈E
H(i,j)(x(i,j))



 (4)

and this closely resembles the probability distribution in general
pairwise MRF formalism. E defines here the set of connections
expected in the model, and therefore the condition (i, j) ∈ E
set in the summation can be understood as an explicit network
constraint, whereas in Equation (3) we had the generic {i, j}.
Now, in the inverse problem, the H(i,j) setting up the network

model are unknown9 and must be inferred by the probabilities
in Equation (4). In terms of the orthogonal set of Chebyshev

polynomials 8k(xi) and appropriate constants J
(k,l)
(i,j)

, it is possible

to write the two-body potential function H as:

H(i,j)(x(i,j)) =
1

√
Q

Q−1
∑

k=1

[

J
(k,0)
(i,j)

8k(xi)+ J
(0,k)
(i,j)

8k(xj)
]

+

+
Q−1
∑

k= 0

Q−1
∑

l= 0

J
(k,l)
(i,j)

8k(xi)8l(xj)+ constant (5)

where constant terms in the expansion (e.g., 80(xi)) have been
all included in the last constant term. Starting from Equation (5),
Yasuda et al. (2012) applied a moment representation of the LBP
scheme and message-passing rules to the MRF described so far.
Within the Bethe approximation, it was shown how it is possible
to approximately find the constants J frommarginal probabilities
of the observations:

J
(k,l)
(i,j)

= −
Q−1
∑

xi = 0

Q−1
∑

xj = 0

8k(xi)8l(xj) lnP(i,j)(x(i,j)|D) (6)

9And in particular, it is unknown which nodes in the interaction model E are truly

linked to each other, i.e., have a non-negligible interaction: (i, j) ∈ E ⇐⇒
H(i,j) ≇ 0.

thus minimizing the (Bethe) approximate entropy of the model:
theP probability values are used to reconstruct the parameters of
the Potts model.

The probabilities P , for observing in D, respectively values
xi and x(i,j), can also be expressed as sums of Chebyshev
polynomials:

Pi(xi|D) =
1

Q
+

Q−1
∑

k= 1

〈8k(xi)〉D8k(xi) (7)

P(i,j)(x(i,j)|D) =

1

Q2
+

1

Q

Q−1
∑

k= 1

[〈8k(xi)〉D8k(xi)+ 〈8k(xj)〉D8k(xj)]

+
Q−1
∑

k= 1

Q−1
∑

l= 1

〈8k(xi)8l(xj)〉D8k(xi)8l(xj) (8)

Here, the interesting advantage of using the LBP moment
representation is that all the quantities 〈...〉D can be derived by
averaging over an appropriate number of M observations D of
the network.

It can be both intuitively predicted, and numerical
experiments in Yasuda et al. (2012) confirmed it, that the
number of observations used is correlated with the quality of
the final network reconstruction obtained. It shall be observed
how in the original paper, numerical experiments were limited
to the case when the network structure underlying the inverse
problem was a non-periodic lattice (i.e., |i − j| /∈ {θ[min(i, j)
mod p], p} ⇒ (i, j) /∈ E ⇔ J(i,j) = 0, where θ the step function
and p the lattice period).

Considering that the main specific interest of this paper is
the reconstruction of the network, i.e., the pairwise interactions
among the nodes, here the key parameter in the Potts model
is indeed H(i,j), measuring the intensity of connection between
users i and j in the network. Equation (5) shows that H(i,j) is

directly related to the set of constants J
(k,l)
(i,j)

.

An interesting feature, that contributes to the sensitivity
of this approach compared to standard ones listed above, is
that 8k(xi)8l(xj)—used in Equation (6) for calculating J—is
in general different from 0, even when k 6= l. Therefore,
interactions are inferred also when simultaneous participation
in the same activity plays no role. The interpretation is that,
even if one expects no interaction to occur among users
because they tended to perform different activities10 in the
observation snapshots, this assumption is actually tested by the
reconstruction method against the observations, and indirect
(“out-of-diagonal”) correlations may be detected.

As better explained in Section 2.2, in most cases data
collected from social networks require caution before being
used as “observational data” in a Q-state inverse Potts problem.

10I.e., assuming that J
(k,l)
(i,j)

∝ δ(k, l), where δ(k, l) is the Kronecker delta. Indeed,

also in the pseudo-observational models defined below, the parameters α(i,j) act as

an initial guess for the interactions, based upon the assumption that interactions

shall be inferred only when simultaneous participation in activities occurs, but this

is tested against the observations.
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Therefore, it is interesting to mention the possibility to simulate
observations, whenever data about the probability distributions
are known to depend upon some parameter(s). For example,
observation samples may be reconstructed using one only
parameter α in a generative model: in this case probabilities of
observing a certain collective state x are computed according to
α, and it is possible to write down averaged functions (such as the
averages required by Equations 7 and 8):

〈f (x)〉D =
∑

x∈D
f (x)PGenMod(x|α) (9)

Clearly, because of the assumptions underlying the LBP inverse
problem approach, the most general choice for the generative
model (GenMod) must be a Q-state Potts model.

2.2. Data and Observations
It is left to explain how to employ an inverse Q-state Potts model
for the reconstruction of the Italian Senate network of members,
starting from data tracking law co-sponsorships by senators. In
the Italian legislative system, a law undergoes a few preliminary
steps before being discussed in the Senate. As the first, one or
more11 senators are responsible for writing it down, signing
and proposing it; these are very similar to the sponsors in US
legislative system. After that, other senators who are aware that
this specific law is being proposed for discussion, may co-sign
it, as an act of endorsement. They act as the US co-sponsors.
According to the Senate’s schedule, the law is then discussed
in detail and subjected (eventually) to a final vote. Therefore,
collecting (co)sponsorships’ data brings along a considerable
insight about patterns of collaboration and support among the
senators, and can be considered equivalent to other studies
performed with similar legislative bodies in other countries, as
cited in the introduction.

Our case study focuses on the first part12 of the XVI Italian
legislature, using co-sponsorship data for Senate roll calls in the
same period. We chose this period for two reasons. As the first,
one of the intents is to find communities (and their members) in
the network by automatic community detection algorithms, and
compare the resulting groups with the “official memberships in
political parties” of the senators. For this purpose, the beginning
of a legislature is ideal, because senators have just been elected as
members of a certain political party13. This makes it easy to refer
to these parties as their true memberships, whereas at later points
in time, several senators may have moved to different political
parties (e.g., because some parties have been dismantled), and
tracking these changes in a mindful way turns extremely difficult.
Moreover, the dataset of this study case is the most recent (thus

11Usually one or just a few. In some special cases, the law undergoes a peculiar path

where no initial senator is quoted for sponsoring the proposal.
12Corresponding to the first Cabinet.
13Indeed, when in the following there will be references to the “true” memberships

of the senators, these have been deduced by the participation of the senators to

political groups: a specificity of the Italian Parliament, that enables the tracking

of a senator’s loyalty to a party or group of parties. See http://www.senato.it/

leg/16/BGT/Schede/GruppiStorici/Grp.html. When, along with the period under

observation, a senator belonged to multiple groups, he/she was assigned to the

group where he spent most of the observation time.

eventually more interesting from a policy network point of view),
while referring at the same time to a past Legislature. This renders
available data “crystallized,” with less risk of updates to occur.

Usage of minimization procedures in Potts-like models for
legislative bodies is not fully new in the literature: for example,
in Liu et al. (2010), an Ising model had been used to model the
US Senate network starting from bill cosponsorships. However,
compared with this previous study, there are here a few
important differences.

• In Liu et al. (2010), the quantum Ising model is not used for
the network reconstruction, achieved by a simple weighted
interaction counts procedure. The Ising model intervenes
merely in a second phase, for the influence maximization
analysis.

• Because of the intrinsic political nature of the Italian VS the
US Senate, whereas a 2-state Isingmodel is perfectly adapted to
the strongly bipartite US case, it is rather limiting when used to
describe the multi-partite structure of its Italian counterpart,
that requires a more generic Q-states approach.

• Observing more closely the available data, US co-sponsorship
data of the 108th Congress (used for the network analysis
in Fowler, 2006 and derived ones) had in average 285 bills
(co)sponsored per legislator—against 62 bills/legislator for
Italian co-sponsorship data from the XVI legislation. Each
US bill was (co)sponsored in average by 4 legislators—while
8 legislators per bill was the average in the Italian case. The
total is of 4630 bills for 100 senators in the US case, and
3100 (M) law proposals for 338 (N) senators in the Italian
case. Summarizing, the US Senate was much more active
in sponsoring bills, and still proportionally more active in
co-sponsoring, when compared to the Italian counterpart.

The connectedness of the US legislative network, given by
the ratio cosponsorships/senators, and the reduced number of
communities therein, make it adapt of being treated with an
Ising 2-state model. Also standard methods may reproduce the
structure of that network in an acceptable way, given that its
high density may well represent14 the absence of hidden or
evolving links. This considerations, however, suggest that the
same approach may provide poor results for the Italian situation.

Here we intend to use a Q-state Potts model directly for
the network reconstruction, as outlined in Section ??. A naive
application of the model may involve two only possible states for
the nodes (senators).

1. An active state (xi = 1), corresponding to nodes sponsoring
or co-sponsoring a bill, when this is being proposed or
introduced. It is indeed intuitive to consider the request
for cosponsorships an observational event, measuring the
behavior of the nodes, and therefore the state they are in.

2. A passive state (xi = 0), when the nodes do not act as
(co)sponsors when a bill is introduced (i.e., they are detected
as inactive when they undergo “measurement”), and therefore
no endorsement is tracked in the data.

14Actually, a specular interpretation is that the mechanism used to track

interaction was poorly efficient, and therefore links in excess shall be excluded by

an inference scheme.
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This would be equivalent to an Ising model. In order to better
explain what follows, it is worth a parenthesis about the Italian
case. It was highlighted how each activity, i.e., the proposal for
each law in the Senate, was participated in average by about 8
people (NA). That is, for each of theM bills, the active community
was in average 2.5% of the whole Senate. Now, using a 2-state
Potts model as above implicitly generates correlations also among
senators often detected in passive states: Indeed, it is evident
how co-occurrences of inactive states would be assigned the same
importance, in principle, as co-occurrences of active states.

Is this meaningful? Consider the underlying phenomenon: co-
endorsing a law proposal presumes a much more intensive link
between two senators (as it obviously brings along the sharing
of the same political point of view, as well as some sort of
acquaintance with the senator who conceived the law itself),
compared to simultaneous abstaining from the endorsement
(which may be due to lack of chance to discuss and share
the law proposal; or to early abundance of cosponsors, making
worthless for other senators to join the cosponsoring group; etc.).
A simple abstinence from action is an ambiguous behavior, as
it supposes no direct opposition or lack of interest. Therefore,
it is intuitively necessary to find a mechanism that keeps these
inactive correlations15 less significant, compared to those due to
simultaneous observation of the same active state in two nodes16.

A first approach may be to still use Q = 2, while explicitly
ignoring inactive correlations when computing the interaction
parameters. This can be done by replacing:

xi(j) ∈ {0, ...,Q− 1} → xi(j) ∈ {1, ...,Q− 1} (10)

in the sums of Equation (6), where we supposed that xi =
0 corresponds to the only inactive state. However, this choice
will miss the chance of capturing hidden connections, due to
simultaneous occurrence of inactive states for some specific
reason, and particularly the hostility against the law proposal
under discussion.

An effective solution, but computationally expensive, is to pick
a high enough Q-value for the model, assigning different xi 6= 1
to members in inactive states. In particular, to avoid aprioristic
considerations about the level of interaction of people belonging
to the same faction, the random probability of assigning two
nodes to the same inactive state (pina) shall not be bigger than the
average empirical probability of two nodes being assigned to the
same active state (pact). Now: pina = N−NA

(Q+1)N
≤ pact ∼= 0.024,

which gives in turn: Q ≥ 40. Because of the computational
complexity of the procedure (O(Q2)), here for demonstrative
purposes it will be shown how the performance of the method
can change moving fromQ = 2 up toQ = 10. That is, we start by
assigning to inactive correlations the same importance as active
correlations, then we progressively reduce the importance of the
second compared to the first ones. The case with Q = 5 has
a specific underlying reason: community detection algorithms
revealed 5 clusters in the Senate network, when run against the
network, reconstructed with the standard Jaccard approach, see

15As we will call them in the following for simplicity.
16In the following for simplicity: active correlations.

Section 3. The intent is therefore to try using this information as
an initial guess for the LBP approach, introducing a number of
possible states corresponding to community membership (under
the reasonable assumption that such a membership strongly
influences the co-sponsorship decisions). However, it should be
emphasized here that partitioning the network in 5 communities
may be non-optimal. Indeed, along the period of the analysis
performed, it is true that the Parliament involved 4 major parties,
plus senators being independent, or belonging to small17 parties,
but the 4 major parties were actually joint in 2 different alliances,
thus reducing the number of effective communities to only 3.
This is an important consideration, therefore it will be discussed
again in the following.

There is still another feature in the procedure, left to discuss:
cleaning and eventually generating the observation samples. This
feature can be tuned as well, in order to introduce aprioristic
knowledge about the network structure. In general, there are at
least three different strategies to use properly the collected data:

1. a full generativemodel, where at first some standard method is
applied to reconstruct the network, this network is used as an
initial guess for the interactions among the nodes, allowing to
sample a set of observations;

2. a semi-observational model, where the observations collected
are used directly as samples, but sample averages are adjusted
against the network reconstructed via standard methods;

3. a pure observationalmodel, that is agnostic of any coarse-grain
network structure, and applies directly the LBP procedure to
the data: here sample averages are computed directly from the
data (that can thus be confused with the observation samples).

It is worth to notice how the first strategy replaces real data with
samples obtained according to some reasonable18 assumptions
about the strength of relationship among nodes, summarized as
αij elements19 of a preliminary adjacency matrix. For example,
in Liu et al. (2010) a count of co-occurrences of active states was
used:

αij =
∑

µ

δ(x
µ
i , x

µ
j , 1)

nµ
(11)

weighted with the number of cosponsors nµ, for each bill µ.
Even if a standard method is used for the preliminary

calculation of the interaction among the nodes, the LBP
procedure still intervenes in allowing to infer hidden
connections, not evident from the first step. The generative
approach is particularly useful whenever only a few or only
aggregate20 data are available for the analysis. However, this

17Here by small, we intend parties with a number of senators below the threshold

of 10, because this is the minimum number to constitute an official group in the

Italian Senate. Smaller parties are obliged to group in the so calledmixed group.
18E.g., frequency considerations, as those used in the following Equations (11) and

(13) for the semi-observational model.
19Used in a second step to calculate the probability of observations in the sample,

see Equation (12).
20I.e., there is no temporal allocation of the single observations, but only a global

count.
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strategy still introduces a manipulation of original data, in order
to make the network reconstruction possible or less noisy21.

The semi-observational strategy can be seen as a compromise
between the adoption of a generative model, and the direct usage
of data with no further adjustments. In this case, observation
data are used directly for each step of the network reconstruction,
except the calculation of averages. More technically, in this case
〈8k(xi)〉D and 〈8k(xi)8l(xj)〉D are not simple averages from the
samples’ set, but they are adjusted according to Equation (9). As
an example, the PGenMod probabilities of occurrence of the state x
may be chosen as:

PPotts(x|α) ∝ exp





1

2

N
∑

i=1

N
∑

j=1

αijδ(xi, xj)



 (12)

Generally speaking, the introduction of a subtending model as
in Equation (12) favors a reconstruction similar to the output
of the standard preliminary reconstruction method, because
the probabilities of observing configurations (not) matching the
standard reconstructions are increased (decreased), compared to
the probabilities calculated directly from the observations.

The α parameters were evaluated here in terms of frequencies
of matching activities, within the set of observations, according
to different approaches. One possibility is a pure frequentist
probability, for the two nodes i and j to be observed in the same
active state:

αij =
1

M

∑

µ

δ(d
µ
i , d

µ
j , 1)

nµ
(13)

with generalized Kronecker δ(i, j, k) = 1 ⇐⇒ i = j = k and
null otherwise, and the same weighting of Equation (11). This
strategy penalizes the interactions of those nodes having a poor
participation rate.

A second derivation for α, instead, was adjusted against the
number of times the two users were active:

αij =
1

∑

µ

(

δ(d
µ
i , 1)+ δ(d

µ
j , 1)

)

∑

µ

δ(d
µ
i , d

µ
j , 1)

nµ
(14)

thus reducing the bias of the previous formula toward active
nodes.

Finally, when a pure observational method is used, the
α parameter should play no role22, because no generative
model needs to be provided and all the averaged quantities are
computed as from the original set of data. Unfortunately, a pure
observational method with the considered dataset (characterized
by Q = 2, because of lacking information) intuitively requires
to omit the contribution of inactive correlations, such as in
Equation (10), in order not to overestimate their contribution.

21Indeed, once the preliminary model has been decided, samples can be drawn

from it in abundance, whereas a real sampling of a social network is clearly bound

to pragmatic constraints.
22For the case Q = 2, actually, it is advised to adopt a fictitious α = constant≪ 1,

because the critical value for the 2-state Potts model is α = 0.88, therefore the

calculation may turn unstable if averages are computed directly.

Whatever the strategy chosen to derive observation samples
from original data, the interactions H(i,j) will be calculated
replacing in Equation (5) the pairwise interactions J from
Equation (6).

3. RESULTS AND DISCUSSION

It was envisaged the importance of the LBP inference method,
for discovering non-evident links and connections among the
network members, as compared to traditional methods not
employing statistical inference. This paragraph illustrates the
first numerical application of a LBP procedure, to reconstruct a
generic graph Potts model. Previous simulations (Yasuda et al.,
2012), indeed, dealt only with lattice-like Potts models: the sums
in Equation (12) had a constant α instead of αi,j, and the allowed
indexes were only those compatible with the lattice structure
(i, j) ∈ E.

The first and most important results to be observed are in
Table 1 and in Figure 1. In the table are reported the main
network parameters for the various methods listed in Section
2. As a comparison, the network was also reconstructed via the
Jaccard index, a standard method particularly adapt to sparse
networks (Borgatti, 2009), such as the one analyzed in this paper
(the calculated density is indeed smaller than 0.01). For LBP-
reconstructed networks, we introduced an additional parameter,
the threshold (tm). In fact, after normalizing the intensity of
connections (i.e., 0 ≤ H(i,j) ≤ 1), the density of these networks
was close to 1 in most approaches. This is an effect of the
sensitivity of the LBP method, prone to reproduce in the final
adjacency matrix also links due to noise. In order to exclude the
weakest links, we set a threshold value tm = 0.5, thus comparing
the residual links with the standard network. It is evident how
in all cases, also the LBP-reconstructed social network displays
many more connections compared to the Jaccard one. These
hidden connections would be hard to identify without referring
to an inference statistical method, and this is a novelty of the
approach. In the pure observational case, because off-diagonal
interactions were neglected (i.e., the case in Equation 10), also
noisy connections tend to occur in a small range, thus producing
still a very high density at tm = 0.5. Because of the increased
difficulty to filter properly this noise, the pure observational
model will be omitted from analyses in the following. Also the
average strength of all the links detected “Avg. H(i,j)” has an
interesting behavior: it is strongly affected by the initial guess for
the network structure, that the LBP method tries to reproduce,
and considerably less, instead, by the value chosen for Q.

In Figure 1, instead, it is performed amore systematic analysis
of the relation between the number of links in the network,
against the threshold parameter23. A few interesting features are
evident. As the first, all statistical methods tend to saturate the
network at low values of tm. Moreover, a smoothing effect in
the dependency of the number of links on the threshold value is
observed, both when increasing Q or decreasing the average αij.
The higher the smoothing, the closest are the data to the expected

23Clearly, the density and thus the number of links detected in the Jaccard network

is independent from any threshold chosen.
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TABLE 1 | Collection of fundamental model and network parameters, for a set of network reconstruction methods, and basic metrics resulting from the

analysis.

Method # Samples Q Avg. α Density of reconstructed network (tm = 0.5) Avg. H(i,j) (normalized)

Jaccard index 3100 NA NA 0.00202 0.04901

Generative 100,000 5 0.65984−04 (Equation 13) 0.01554 0.16336

100,000 10 ′′ 0.01907 0.16938

Semi-observational 3100 2 0.65984−04 (Equation 13) 0.00540 0.17612

3100 5 ′′ 0.00936 0.13385

3100 5 0.01650 (Equation 14) 0.48623 0.50464

Pure observational 3100 2 0.01* 0.99275 0.98301

The analysis with Q = 10 required to artificially generate more samples than the direct observations from data, for the results to be reliable, therefore it is listed only within the Generative

case. *For numerical convergence reasons, in the Pure observational case, it was set αij = constant = 0.01.

FIGURE 1 | Number of links detected by the Potts-LBP approach in the

original graph, against the tm threshold parameter, for some of the

reconstruction approaches discussed in the text. The dashed red line

indicated the number of links detected with the Jaccard method.

exponential decay in the number of detected links24. Several
possible explanations for this conclusionmay be proposed. As the
first, preliminary community detection analyses with networks
reconstructed via standard methods identified 5 groups25 in the
Italian Senate network. This suggests how the observation of
only 2 states with the roll calls tends to produce distortions
and artifacts. In fact, results are improved also by randomly
introducing states other than the observed (non)sponsoring.
Smaller values of α, instead, allow the method to compute the

J
(k,l)
(i,j)

not in proximity of critical values ln(1 +
√
Q) of the Potts

model, thus improving the stability of the results.
A different analysis was focused about the capability of the

method not only to reconstruct pairwise interactions, but also to
better identify the clusters inside the network, to be interpreted
as communities of members. In Figure 2 it is investigated how

24This can be inferred by recalling that the probability to observe a certain

collective state x has the form in Equation (4).
25Here and in the following, communities are always detected with a very

successful method based upon random graph theory, the Clauset-Newman-Moore

(CNM) method (Clauset et al., 2004). Only communities whose sizes are bigger

than 3 nodes will be considered, while isolated nodes and dyads will be omitted.

FIGURE 2 | Number of communities detected in the network via the

CNM algorithm, applied to various LBP reconstructed networks.

the number of such communities depends on tm: the plot shows
that when a small tm is taken into account26, LBP reconstructed
networks have a cluster structure involving 2–3 groups. A
plausible interpretation is that, if hidden links are considered,
slight differences in the policy approach by the Senate members
are swiped out in the analysis, and the CNM algorithm tends
to detect only the fundamental communities: the ones related
with the party(ies) participating in the Cabinet, and the group
of parties opposing the first ones (plus eventually a third group
which may be considered as composed by neutral senators).
As the threshold is increased, and the graph becomes more
disconnected, also clustering features are emphasized, and the
number of detected communities increases. In particular, when
a high number of possible states is allowed (high Q), and at
the same time weak interactions are hypothesized (αij is small
in average), the number of communities tends to “explode.”
However, excluding this extreme case, detected communities are
otherwise stable, ranging between 3 and 6. It is also evident how,
when links in the network are filtered and the cluster structure
emerges, the network assuming Q = 2 totally fails to reproduce
a plausible number of communities: this is clearly due to the

26Preserving more links, indeed, leads to the discovery of weak interactions.
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artifact of imposing a naturally bipartite network in the model,
which does not correspond, though, to the expected network
structure.

Finally, we investigated if—and how much—the LBP
algorithm is able to improve the assignment of senator-nodes
to the “right” political community: i.e., the one identified by
the same political party, the senator officially belonged to. The
figure of merit will be a sort of a false discovery rate (FDR),
that is, the ratio between the number of senators assigned
by the CNM algorithm to wrong communities, and the total
number of senators analyzed. In order to emphasize the role of
hidden links, the focus will be the capability of the algorithm to
classify the senators as belonging to the group supporting the
government, the opposition group, or the mixed independent
group.

Referring to Figure 3, the reconstruction of the network
via a simple Jaccard coefficient in this case is already capable
of reproducing accurately the true membership of the nodes,
scoring only about 15% of nodes classified. The case of LBP with
Q = 2, instead, is very inefficient: almost half of the nodes is
misclassifiedm, even if the target number of communities is close
enough to allowed values of Q. This result shows the importance
of extending the Ising model used elsewhere in analyses of
policy networks: even when a subtended bipartite interaction is
tracked (i.e., sponsoring VS abstaining in a roll call vote), in
the end this is a projection of a more complex state, each agent
in the network is before performing the voting action. From a
modeling perspective, such a gap between model and reality can

be reduced by a full quantum Ising model (as showed by Liu
et al., 2010), or by semi-classical approaches with a Q-state Potts
model. In fact, results with Q = 5 display a great improvement
compared to the case with Q = 2. Especially when tm has a
value in the range where the number of detected communities
is stable, the percentage of nodes classified in the wrong group
almost matches, or even outperforms the Jaccard one (13%),
without assuming a-priori that indirect correlations among the
networkmembers are negligible. Interestingly, the best results are
achieved for values of the threshold, corresponding to intervals
where the number of comunities detected is stable (compare with
Figure 2).

Moreover, it must be remembered how this analysis is affected
by an important bias. States other than the active state (i.e.,
xi = 1 for node i) are assigned randomly, therefore favoring
communities of homogeneous cardinality: some misclassified
nodes originally belonged to mid-size communities, but at their
expense, these nodes where assigned to smaller groups. Networks
obtained with very low thresholds are particularly prone to
this effect. Some other misclassifications are due to a specular
effect: similarly to the “rich gets richer” phenomenon, discovery
of hidden links increases the size of the major communities
at the expense of the smallest ones, as it is expected when
modularity-based community detection algorithms are applied to
very dense networks. Indeed, in all LBP-reconstructed networks
the group of senators members of the party leading the Cabinet
was always (mistakenly?) bigger than expected. This effect is
evident comparing Figure 4with Figure 5, where the last one has

FIGURE 3 | Percentages of senators mistakenly classified in the “wrong” Senate political community (FDR, see Section 3), for different network

reconstruction methods. Jaccard-reconstructed network is reported for reference. Parameters used for each case are in the Legend.
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FIGURE 4 | Plot of the clusters obtained via the CNM algorithm, for the network reconstructed using the standard Jaccard method. Thick lines

connecting the quadrants indicate the global cumulative strength of inter-community links. Dark blue dots indicate the community interpreted as “loyal to the Cabinet,”

light blue dots are connected with the “opposition,” green dots are to be interpreted as “indipendent senators.”

FIGURE 5 | Plot of the clusters obtained via the CNM algorithm, for the network reconstructed using a semi-observational LBP approach, with

parameters Q = 5 and tm = 0.35. It is evident how the bigger community (dark blue dots) is overestimated compared to standard approaches (see also Figure 4),

at the expense of underestimating minor communities. As stated in the text, this effect can be reduced by lowering tm.

been indeed obtained with LBP and a relatively high tm = 0.35.
The specular consideration above suggests how to compensate
this artifact, by lowering opportunely the threshold tm (the
corresponding network graph is omitted for brevity). In any case,
it shall be remembered how major Senate groups were actually
bigger at the beginning of the legislature, compared to its end
(when a few independent groups had been founded). By inferring
weak links, it can be thus argued how LBP algorithms thus proved

more efficient in merging communities into a few principal
components, compared to forcing modularity algorithms to split
the network in 2–3 groups (i.e., forcing the CNM algorithm
to merge further the 5 communities detected as optimal by its
modularity maximization procedure, leading to the results in
Figure 3).

On the other side, further increasing the value of Q required
to rely upon a Generative model, in order to have a number of
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samples sufficient for the analysis (100 k samples), whereas the
reduced number of original data was prone to cause difficulties27

in the numerical simulations. As envisaged in Section 2.2,
moving from a (Pseudo-)Observational to a Generative approach
produced a degradation in the results, because of losing the
temporal information of the available data. In conclusion, an
approach with higher Q, but still low enough to be based
upon observational data, seems to produce the best and more
stable results for both hidden links and community detection
purposes.

4. CONCLUSIONS

Along the paper, a method based upon Q-state Potts
inverse problem and Bethe-LBP approximation for network
reconstruction was elucidated. Several possible ways were
disclosed, to use the method for inferring links among the
nodes of a generic networked social structure, under the
hypotheses that: (i) actions like roll call sponsorships resemble
decision-making processes and (ii) that these processes can be
modeled efficiently by methods used for inferring the structure
of an ensemble of quantum states, observed repeatedly over
time.

The LBP-based resolution of the inverse problem was applied
for the first time to reconstruct a generic graph structure. More
specifically, in the Social Sciences realm, this work has been the
first to use a Q-state model (instead of Ising model) to infer the
structure of a real network. The study case chosen was the Italian
Senate, analyzed starting from a dataset tracking law proposal co-
sponsorships. This allowed to evaluate the power of the method
in detecting those links, that cannot be retrieved via standard
reconstruction methods. Also the role of the diverse modeling
choices—and peculiar parameters employed—was thoroughly

27The simulation for high values ofQ requires limited precision in the intermediate

values calculated, to reduce the memory space required.

discussed, finding how the maximal value of Q permitted by the
Potts model can introduce crucial differences in the quality of the
results, alongside with aprioristic knowledge about the network
structure.

It was investigated, as well, the capability of the model to
reproduce the community structure of the network and the
single memberships of the senators: it was found that the present
method must be carefully reviewed, compared to standard ones,
in order to produce a reliable output. In fact, a naive application
without any further assumption may lead to completely wrong
conclusions. The reason is that the Potts-LBP method is much
closer to an ab-initio approach, therefore it originally embeds
no information such as the weight to be assigned to inactive
vs. active states, or direct vs. indirect correlations, or how
weak connections shall be considered noisy, ... In turn, this
higher flexibility allows to explore the role (and therefore the
plausibility) of several assumptions made when reconstructing
the network.

The authors envisage how interesting directions for further
investigation may be the adoption of a full quantum treatment
of the Potts model, as well as the possibility to apply this
extended method to cases where data retrieved for the network
do exhibit natively non-bipartite features, thus allowing a more
direct application of generic Q-state Potts models.
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