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Prediction or expectancy is thought to play an important role in both music and language
processing. However, prediction is currently studied independently in the two domains,
limiting research on relations between predictive mechanisms in music and language.
One limitation is a difference in how expectancy is quantified. In language, expectancy
is typically measured using the cloze probability task, in which listeners are asked to
complete a sentence fragment with the first word that comes to mind. In contrast,
previous production-based studies of melodic expectancy have asked participants to
sing continuations following only one to two notes. We have developed a melodic cloze
probability task in which listeners are presented with the beginning of a novel tonal
melody (5–9 notes) and are asked to sing the note they expect to come next. Half of the
melodies had an underlying harmonic structure designed to constrain expectations for
the next note, based on an implied authentic cadence (AC) within the melody. Each such
‘authentic cadence’ melody was matched to a ‘non-cadential’ (NC) melody matched in
terms of length, rhythm and melodic contour, but differing in implied harmonic structure.
Participants showed much greater consistency in the notes sung following AC vs.
NC melodies on average. However, significant variation in degree of consistency was
observed within both AC and NC melodies. Analysis of individual melodies suggests that
pitch prediction in tonal melodies depends on the interplay of local factors just prior to
the target note (e.g., local pitch interval patterns) and larger-scale structural relationships
(e.g., melodic patterns and implied harmonic structure). We illustrate how the melodic
cloze method can be used to test a computational model of melodic expectation. Future
uses for the method include exploring the interplay of different factors shaping melodic
expectation, and designing experiments that compare the cognitive mechanisms of
prediction in music and language.
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INTRODUCTION

Recent years have seen growing interest in cognitive and neural relations between music and
language. Although there are clear differences between the two— for example, language can convey
specific semantic concepts and propositions in a way that instrumental music cannot (Slevc and
Patel, 2011) — they share several features. For example, both language and music involve the
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generation and comprehension of complex, hierarchically
structured sequences made from discrete elements combined in
principled ways (Patel, 2003; Koelsch et al., 2013), and both rely
heavily on implicit learning during development (Tillmann et al.,
2000).

While neuropsychology has provided clear cases of selective
deficits in linguistic or musical processing following brain
damage (e.g., Peretz, 1993), several neuroimaging studies of
healthy individuals suggest overlap in the brain mechanisms
involved in processing linguistic and musical structure. One
early demonstration of this overlap came from event-related
potential (ERP) research, which revealed that a component
known as the P600 is observed in response to syntactically
challenging or anomalous events in both domains (Patel et al.,
1998). Later research using MEG and fMRI provided further
suggestions of neural overlap in structural processing, e.g., by
implicating Broca’s region in the processing of tonal-harmonic
structure (e.g., Maess et al., 2001; Tillmann et al., 2003;
LaCroix et al., 2015; Musso et al., 2015; though see Fedorenko
et al., 2012). To resolve the apparent contradiction between
evidence from neuropsychology and neuroimaging, Patel (2003)
proposed the shared syntactic integration resource hypothesis
(SSIRH). The SSIRHposits a distinction between domain-specific
representations in long-term memory (e.g., stored knowledge
of words and their syntactic features, and of chords and their
harmonic features), which can be separately damaged, and
shared neural resources which act upon these representations
as part of structural processing. This “dual-system” model
proposes that syntactic integration of incoming elements in
language and music involves the interaction (via long-distance
neural connections) of shared “resource networks” and domain-
specific “representation networks” (see Patel, 2013 for a detailed
discussion, including relations between the SSIRH and Hagoort’s
(2005) “memory, unification, and control” model of language
processing).

The SSIRH predicted that simultaneous demands on linguistic
and musical structural integration should produce interference.
This prediction has been supported by behavioral and neural
research (for a review, see Kunert and Slevc, 2015). For example,
behavioral studies by Fedorenko et al. (2009) and Slevc et al.
(2009) have shown that it is particularly difficult for participants
to process complex syntactic structures in both language and
music simultaneously (see also Hoch et al., 2011; Carrus
et al., 2013; though cf. Perruchet and Poulin-Charronnat, 2013).
Additionally, Koelsch et al. (2005) conducted an ERP study
that observed an interaction between structural processing in
language and music, as reflected by effects of music processing
on the left anterior negativity (LAN, associated with processing
syntax in language) and effects of language processing on the
early right anterior negativity (ERAN, associated with processing
musical syntax).

In addition to structural integration, it has been suggested
that prediction may be another process that operates similarly in
language and music (Koelsch, 2012a,b; Patel, 2012). Prediction
is increasingly thought to be a fundamental aspect of human
cognition (Clark, 2013), and is a growing topic of research in
psycholinguistics (Van Petten and Luka, 2012; see Kuperberg

and Jaeger, in press for a recent review). It has become clear
that we regularly use context to predict upcoming words when
comprehending language (Tanenhaus et al., 1995; Altmann and
Kamide, 1999; Wicha et al., 2004; DeLong et al., 2005). This
has been demonstrated using ERPs, a brain measure with
millisecond-level temporal resolution that allows one to study
cognitive processing during language comprehension. Recent
evidence from ERP research has suggested that prediction in
language processing occurs atmultiple distinguishable levels (e.g.,
syntactic, semantic, phonological) (Pickering and Garrod, 2007;
Kuperberg and Jaeger, in press).

Strong lexical predictions for a specific word occur when
multiple types of information within a linguistic context
constrain strongly for the semantic features, the syntactic
properties, and the phonological form of a specific word. For
example, the sentence “The piano is out of ____” leads to a
strong expectation for the word “tune”, so one can refer to this
as a high lexical constraint sentence. It is well established that
unexpected words following these contexts evoke a larger N400
ERP component (occurring 300–500 ms after the presentation of
the final word) than expected words (Kutas and Hillyard, 1980;
Kutas and Hillyard, 1984; Kutas and Federmeier, 2011). Such
unexpected words do not necessarily need to be anomalous to
produce an N400: predictions can also be violated with words
that are perfectly coherent and non-anomalous. For example, if
the final word delivered in the above sentence is “place” (i.e.,
“The piano is out of place”) this word still violates a lexical
prediction for the highly expected word “tune.” As in the previous
example, the N400 elicited by “place” would be larger than that
elicited by “tune,” as it is less expected. Moreover, in recent
ERP research, violations of specific lexical predictions with other
plausible words have also been observed to elicit a late anteriorly
distributed positive component. This late frontal positivity has
been observed at various time points after the N400, often
peaking around 500–900 ms after the presentation of a critical
item (Federmeier et al., 2007; Van Petten and Luka, 2012).
Importantly, unlike the N400, the late frontal positivity is not
produced by words that follow non-constraining contexts, when
comprehenders have no strong prediction for a particular word
(e.g., “place” following the context, “After a while, the boy saw
the...”).

Predictions in language are not always at the level of specific
lexical items: they can also be generated at the level of semantic-
syntactic statistical contingencies that determine the structure
of an event (‘who does what to whom’) (Kuperberg, 2013). For
example, at a certain point in a sentence wemight expect a certain
syntactic category of word, like a noun-phrase, with certain
coarse conceptual features, such as animacy. For example, in the
sentence “Mary went outside to talk to the ____” there is no strong
indication of which word will come next, but it is clear that it
must be an animate noun-phrase (Mary would likely not talk to
an inanimate object like a truck). Violations of these semantic-
syntactic structural predictions have been observed to elicit a
different neural response from the anterior positivity discussed
above, namely the P600 (a late posterior positivity, peaking from
around 600 ms after onset of the violating word; see Kuperberg,
2007 for a review). This provides evidence that distinct neural
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signatures may be associated with violations of strong predictions
at different representational levels (e.g., a late anterior positivity
evoked by violations of strong lexical predictions, Federmeier
et al., 2007; a late posterior positivity evoked by violations
of strong semantic-syntactic predictions, Kuperberg, 2007; see
Kuperberg, 2013 for discussion). The functional significance of
these late positivites (both frontal and posterior) evoked by strong
prediction violations remains unclear. One possibility, however,
is that they reflect the neural consequences of suppressing the
predicted (but not presented) information and adapting one’s
internal representation of context in order to generate more
accurate predictions in the future (e.g., see Kuperberg, 2013;
Kuperberg and Jaeger, in press, for discussion).

Turning to music, expectation has long been a major theme of
music cognition research. Meyer (1956) first suggested a strong
connection between the thwarting of musical expectations and
the arousal of emotion in listeners. In recent years, theories of
musical expectation have been brought into a modern cognitive
science framework (e.g., Margulis, 2005; Huron, 2006; Huron and
Margulis, 2010; Pearce et al., 2010), and expectation has been
studied empirically with both behavioral and neural methods
(e.g., Steinbeis et al., 2006). It is increasingly recognized that
multiple sub-processes are involved in musical expectation
(see Huron, 2006, for one theoretical treatment). Empirical
research has shown that predictions are generated for multiple
aspects of music, such as harmony, rhythm, timbre, and meter
(Rohrmeier and Koelsch, 2012). Such expectations are thought
to be automatically generated by enculturated listeners (Koelsch
et al., 2000; Koelsch, 2012a).

Here, we focus on melodic prediction, and specifically on
expectations for upcoming notes in monophonic (single-voice)
melodies based on implicit knowledge of the melodic and
harmonic structures of Western tonal music (Tillmann et al.,
2000). For those interested in relations between predictive
mechanisms in music and language, melodic expectancy provides
an interesting analog to linguistic expectancy in sentence
processing. Like sentences, monophonic melodies consist of
a single series of events created by combining perceptually
discrete elements in principled ways to create hierarchically
structured sequences (Jackendoff and Lerdahl, 2006). Sentences
and melodies have regularities at multiple levels, including local
relations between neighboring elements and larger-scale patterns,
e.g., due to underlying linguistic-grammatical or tonal structure.

In order to study relations between the cognitive mechanisms
of prediction in sentences andmelodies, it is necessary tomeasure
prediction in these two types of sequences in comparable ways.
In sentence processing, lexical expectancy has typically been
measured using the cloze probability task, in which participants
are asked to complete a sentence fragment with the first word
that comes to mind (Taylor, 1953). For a given context, the
percentage of participants providing a given continuation is
taken as the “cloze probability” of that response. The cloze
probability of an item is therefore a straightforward measure of
how expected or probable it is. In addition to measuring the
cloze probability of a particular word in relation to its context,
it is also possible to use the cloze task to measure the ‘lexical
constraint’ of a particular context by calculating the proportion

of participants who produce a given word (see Federmeier et al.,
2007). For example, a sentence such as “The day was breezy so
the boy went outside to fly a . . .” would likely elicit the highly
expected continuation “kite” from most participants, and thus be
a ‘strongly lexically constraining’ context. In contrast, a sentence
such as “Carol always wished that she’d had a . . .” would elicit
a more varied set of responses, and thus be a ‘weakly lexically
constraining’ context.

While expectancy in music has been measured in various
ways over the years, to date there has been nothing comparable
to the standard cloze probability method in language, i.e., a
production-based task in which a person is presented with
the beginning of a short coherent sequence and then asked
to produce the event she thinks comes next.1 Most behavioral
studies of expectancy in music have used perceptual paradigms,
such as harmonic priming paradigms or ratings of how well a
tone continues an initial melodic fragment. Harmonic priming
paradigms consist of a prime context followed by a target
event, in which the degree of tonal relatedness between the
two is manipulated. Typically, harmonically related targets are
processed faster and more accurately than unrelated targets
(Tillmann et al., 2014). These studies have shown that chords
that are more harmonically related to the preceding context
are easier to process, while there is a cost of processing chords
that are less related or unrelated to the context (Tillmann
et al., 2003). Another genre of priming studies has shown
that timbre identification is improved when a pitch is close in
frequency to the preceding pitch and harmonically congruent
with the preceding context (Margulis and Levine, 2006). In
studies using explicit ratings of expectancy, listeners are asked
to rate how well a target note continues a melodic opening,
e.g., on a scale of 1 (very bad continuation) to 7 (very good
continuation) (e.g., Schellenberg, 1996). More recently, a betting
paradigm has been used in which participants place bets on a
set of possible continuations for a musical passage, and bets
can be distributed across multiple possible outcomes (Huron,
2006). The betting paradigm has the advantage of providing a
measure of the strength of an expectation for a specific item.
However, like the “continuation rating” task, this task requires
post hoc judgments, and is therefore not an online measure
of participants’ real-time expectations. ERPs and measures
of neural oscillatory activity can provide online measures of
expectation in musical sequences (e.g., Pearce et al., 2010; Fujioka
et al., 2012), but such studies have focused on perception, not
production.

A handful of studies have used production tasks to measure
musical expectancy, but they differ in important ways from the
standard linguistic cloze probability task. Some studies have used
extremely short contexts, in which participants are asked to sing a
continuation after hearing only a single two-note interval, or even
a single note (Carlsen, 1981; Unyk and Carlsen, 1987; Povel, 1996;
Thompson et al., 1997; Schellenberg et al., 2002). Lake (1987)
presented two-note intervals after establishing a tonal context

1Waters et al. (1998) used what they refer to as a “musical ‘cloze’ task,” but theirs
was amultiple-choice task where participants selected one of several pre-composed
sections of musical notation.
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consisting of major chords and amusical scale. However, no prior
singing-based study of melodic expectation has used coherent
melodies as the context (some studies using piano performance
have used very long contexts, in which pianists have been asked
to improvise extended continuations for entire piano passages,
Schmuckler, 1989, 1990). Also, in all of these studies (and unlike
in the linguistic cloze probability task), participants were asked to
produce continuations of whatever length they chose in response
to brief stimuli. The closest analog to a musical cloze task comes
from a study of implicit memory for melody, in which listeners
first heard a set of novel tonal melodies and then heard melodic
stems of several notes and were asked to “sing the note that
they thought would come next musically” (Warker and Halpern,
2005). However, the structure of the melodic stems was not
manipulated, and the focus of the study was on implicit memory,
not on expectation.

In order to advance the comparative study of prediction
in language and music, it is necessary to develop comparable
methods for studying prediction in the two domains. To this
end, we have developed a melodic cloze probability task. In this
task, participants are played short melodic openings drawn from
novel coherent tonal melodies, and are asked to sing a single-
note continuation. In an attempt to manipulate the predictive
constraint of the melodies, the underlying harmonic structure of
each opening (henceforth, ‘melodic stem’) was designed to either
lead to a strong expectancy for a particular note, or not (see
Materials and Methods for details). For each melodic stem, the
cloze probability of a given note is calculated as the percentage
of participants producing that note. The predictive constraint
of a melodic stem is determined by examining the degree of
agreement between participants’ responses. For example, if all
participants sing the same note after a particular stem, the stem
has 100% constraint. On the other hand, if the most commonly
sung note is produced by 40% of the participants, then the stem
has 40% constraint.

The melodic cloze probability method allows the cloze
probabilities of notes to be quantitatively measured, and
thus provides a novel way to study how different structural
factors (e.g., local melodic interval patterns vs. larger-scale
harmonic structure) interact in shaping melodic expectation.
As demonstrated below, the method can also be used to test
quantitative models of melodic expectation, such as Narmour’s
(1990) “Implication-Realization” model, using naturalistic
musical materials. In the future, the method can facilitate the
design of studies comparing predictive mechanisms in language
and music, e.g., by systematically manipulating constraint
and cloze probabilities across linguistic and musical stimuli
in behavioral or ERP studies of expectancy (cf. Tillmann and
Bigand, 2015).

MATERIALS AND METHODS

Participants
Fifty participants (29 female, 21 male, age range 18–25 years,
mean age 20.3 years) took part in the experiment and were
included in the data analysis (eight further participants were

excluded due to difficulties with singing on pitch; see “Data
Analysis”). All participants were self-identified musicians with no
hearing impairment who had a minimum of 5 years of musical
experience within the past 10 years (playing an instrument,
singing, or musical training); 22 (44%) reported “voice” as one of
their instruments. Participants had received a mean of 9.0 years
of formal musical training on Western musical instruments
(SD = 4.8) and reported no significant exposure to non-Western
music. Participants were compensated for their participation and
provided informed consent in accordance with the procedures of
the Institutional Review Board of Tufts University.

Materials
The stimuli consisted of 45 pairs of short novel tonal melodies
created by the second author (JCR), a professional composer.
Stimuli were truncated in the middle, creating “melodic stems.”
The melodies ranged across all 12 major keys and employed
variety of meters (3/4, 4/4, and 6/8 time signatures). Each stem
was 5–9 notes long (M = 8.38 notes, SD = 0.83), and was
played at a tempo of 120 beats per minute (bpm). Note durations
varied from eighth notes (250 ms) to half notes (1000 ms).
Stems contained no rests, articulation indications, dynamic
variability, or non-diatonic pitches. All stimuli were created
using Finale software with sampled grand piano sounds. Across
all melodies, the highest and lowest pitch were A5 (880.0 Hz)
and D3 (146.8 Hz), respectively, and the mean pitch was near
E4 (329.6 Hz). On average, stems had a pitch range of 11.4
semitones (distance between the highest and lowest pitch in the
stem, SD = 3.2 st). Male participants heard the melodic stems
transposed down one octave. The average stem duration was
5.02 s (SD = 1.23).

Each stimulus pair consisted of two stems in the same musical
key: one was an “authentic cadence” version, which was designed
to create a strong expectation for a particular note, and the
other was a “non-cadence” (NC) version, which was designed
to not generate a strong expectation for a particular note. AC
stems ended preceding a strong beat within the meter on the
2nd, 5th, or 7th scale degree and with an implied AC that
would typically be expected to resolve to a tonic function. NC
stems ended with an implied IV, iv, or ii harmony, with the
last presented note never on the 2nd or 7th scale degree and
rarely on the 5th. The two stems in each pair were identical in
length, rhythm, and melodic contour; they differed only in the
pitch of some of their notes, which influenced their underlying
harmonic structure (see Figure 1 for an example). On average,
the two stems of anAC-NCmelodic pair differed in 48.3% of their
notes (SD = 28.5%). When notes of an AC-NC pair differed, they
remained close in overall pitch height, on average 1.90 semitones
apart (SD = 0.38).

The extent to which the two groups of stems projected a
sense of key was compared using the Krumhansl-Schmuckler
key-finding algorithm (Krumhansl, 1990). This model is based
on “key-profiles” of each potential key, which represent the
stability of each pitch in the key, i.e., how well it fits in a tonal
context (Krumhansl and Kessler, 1982). The pitch distribution of
a given melody, weighted by duration, is compared to the key-
profile of each key, and a correlation value is calculated. When
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FIGURE 1 | (A) Authentic cadence (AC) and (B) Non-cadence (NC) versions of one melodic pair (see text for explanation). The figure shows the AC and NC stems in
Western music notation. Shown beneath each stem is a possible interpretation of the underlying implied harmonic progression (e.g., D, G, D, A chords in the AC
stem), and harmonic functions (I, or tonic chord; IV, or subdominant chord; V, or dominant chord; vi or submediant chord). The stems of a pair are identical in length,
key, rhythm, and melodic contour, and each consists of a single stream of notes with no accompaniment. In this pair the stems differ only in the identity of the final
two notes, which are slightly lower in the second stem. Crucially, this small physical change alters the underlying harmonic progression.

correlations with the profiles of each potential key were calculated
for each stem, the mean correlation with the correct key for AC
stems [r(22) = 0.70] did not differ significantly from the mean
correlation with the correct key of NC stems [r(22) = 0.73],
t(44) = 1.24, p = 0.22 (averaging and statistics were performed
on Fisher transformed correlation coefficients). The two groups
of stems therefore did not differ in the degree to which they
projected a sense of key.

Procedure
Stimuli were played to participants over Logitech Z200 computer
speakers at a comfortable listening volume within a sound
attenuated room. The experiment was presented using PsychoPy
(v1.79.01) on a MacBook Pro laptop, and sung responses were
recorded as .wav files using the computer’s built-in microphone.

Each participant was instructed that s/he would hear the
beginnings of some unfamiliar melodies and would need
to “sing the note you think comes next.” Participants were
asked to continue the melody—not necessarily complete it—
on the syllable “la.” Each trial began when the participant
pressed a button to hear a melodic stem. Immediately after
the end of the last note of each stem, the word “Sing”
appeared on the screen and participants were given 5 s to
sing the continuation, after which they rated their confidence
in their response on a 7-point Likert scale (1 = low,
7 = high).

Each participant was presented with 24 AC and 24 NC
melodic stems (only one version from each AC-NC pair) in
one of eight randomized presentation orders. (Three pairs
were removed from analysis due to differences in the melodic
contours of the two stems, hence data from 45 pairs was
analyzed.) At the beginning of the experiment, each participant
completed a pitch-matching task in which they heard and
were asked to sing back a series of individual tones (F4,
A4, B3, G#4, A#3, D4, C#4, and E�4 [corresponding to
349.2, 440.0, 246.9, 415.3, 233.1, 293.7, 277.2, 311.1 Hz,
respectively]; one octave lower for male participants). This

was used to evaluate participants’ singing accuracy. Before the
experimental trials began, participants were familiarized with the
experimental procedure with a block of practice items, which
ranged from simple scales and familiar melodies to unfamiliar
melodies.

Data Analysis
We extracted the mean fundamental frequency of the sung
note using Praat (Boersma, 2002). The pitch of the sung note
was determined by rounding the measured mean fundamental
frequency to the closest semitone in the Western chromatic scale
(e.g., A4 = 440 Hz), with the deviation from the frequency of
this chromatic scale tone recorded (in cents, i.e., in hundredths
of a semitone). The sung response was also represented in terms
of its scale degree within the key of the stem in question.
Responses were generalized across octaves for the purpose of
this study. Participants’ responses to the pitch-matching portion
of the experiment were also analyzed; if any participant’s pitch-
matching responses did not round to the same note that
was presented, or if their responses to at least 25% of the
experimental trials were more than 40 cents away from the
nearest semitone, the participant’s responses were excluded
from further analysis (eight participants were omitted for these
reasons). Additionally, reaction times were measured using a
sound onset measurement script in Praat (a sound’s onset was
detected when the sound reached a level −25 dB below its
maximum intensity for a minimum of 50 ms) to determine how
quickly the continuation was sung after the offset of the last note
of the stem.

RESULTS

Participants found the task intuitive and uncomplicated,
suggesting that the melodic cloze probability task provides a
naturalistic way to measure melodic expectations. On average,
participants sang a continuation note with a reaction time of
899 ms (SD = 604 ms), and their sung notes were an average of
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1896 ms long (SD = 808 ms). Given that that the melodies had a
tempo of 120 BPM, this corresponds to an average time interval
of 1.80 beats after the offset of the stem, and a sung note duration
of 3.79 beats.

Constraint
The primary dependent variable in our study was the predictive
constraint of a melodic stem, as measured by the percentage of
participants that sang the most common note after the stem.
Figure 2 illustrates how this was computed, based on the AC-NC
melodic pair in Figure 1. Figures 2A,B show the distributions of
sung notes after the AC and NC stems in Figure 1, respectively.
Figure 2A shows that 92% of participants that heard the AC
stem produced the most commonly sung note (the tonic, D),
while Figure 2B shows that no more than 24% of participants
that heard the NC stem produced any one note (in this case,
there was a tie between C# and A, but in most cases, one
pitch class was most common). Thus the constraint of this
melodic pair was 92% (or 0.92) for the AC melody and 24%
(or 0.24) for the NC melody. For this pair, the AC melody
was indeed far more constraining than the NC melody, as
predicted.

For each AC and NC stem, we computed the constraint as
described above. After AC stems, the average constraint was 69%
(i.e., on average, 69% of participants sang the same note after
hearing an AC stem), while after NC stems, the average constraint
was 42% (i.e., on average, only 42% of participants sang the same
note after hearing an NC stem). Thus on average, melodic stems
in the AC condition did prove to be more constraining than NC
stems (ACM = 0.692, SD = 0.171; NC M = 0.415, SD = 0.153),
[t(44) = 7.79, p < 0.001]. This pattern of higher constraint for
the AC vs. NC stem was observed in 38 of the 45 item pairs
(Figure 3).

On average, participants responded significantly more quickly
after AC stems (mean RT = 767 ms, SD = 265 ms) than after
NC stems (mean RT = 1033 ms, SD = 302 ms), t(49) = 9.78,
p< 0.001. Additionally, on average participants were significantly
more confident in their responses to AC stems (M = 5.14,
SD= 0.95) than to NC stems (M = 4.36, SD= 1.04), t(49)= 9.60,
p < 0.001.

Scale Degree
When responses were represented in terms of their scale degree
in the key of the stem in question, and compiled across all items
in each condition, the distributions for AC and NC items were
strikingly different. For six of the seven diatonic scale degrees,
the frequency of response differed significantly between AC and
NC items based on t-tests of each scale degree with a Bonferroni
correction applied (see Figure 4 for p-values). For AC items,
responses were heavily weighted around the first note of the scale,
or tonic (known as ‘do’ in solfege). For NC items, responses were
more widely distributed; however, they were mainly restricted to
in-key diatonic scale degrees.

Variability
While AC stems were on average significantly more constraining
than their matched NC stems, there was considerable variability
across AC-NC pairs in the degree of difference in constraint
between members of a pair (see Figure 3). Thirty-eight out of
45 pairs demonstrated the expected pattern, with the AC stem
proving more constraining than the NC stem. For instance, the
stem pair in Figure 5A has a highly constraining AC stem, with
92% of participants singing the same note, the melody’s tonic
pitch, C (in Figures 5 and 6, the most commonly sung note is
shown as a red note head after the end of each stem). Why might
this be? This stem is short, contains only one rhythmic value,
and has very clear harmonic implications, beginning with an
unambiguously arpeggiated tonic triad (C-E-G) and concluding
with a similarly outlined complete dominant triad (G-B-D).
This stem also ends on the leading tone of B, i.e., the seventh
scale degree of the diatonic major scale, which customarily
resolves to the tonic scale degree, particularly near the end of
a phrase. Further structural factors that may contribute to the
high degree of agreement on the final pitch are (1) the melody’s
consistent downward contour, which seems to close in on middle
C, and (2) the fact that the tonic note is heard very close to
the end of the phrase, which may make it more likely to be
replicated. Turning to the NC stem in Figure 5B, it is similar in
many respects to the AC stem, yet very different in constraint,
with the most commonly sung note (F) being produced by
just 24% of participants who heard this stem. What might

FIGURE 2 | Histograms showing the relative frequency of different notes sung by participants at the end of the AC and NC stems in Figure 1. After the
AC stem, most participants (92%) sang the pitch D, which is the 1st scale degree or tonic of the prevailing key of D major. After the NC stem, the note sung varied
much more between participants: only 20% sang the pitch D, and no more than 24% of participants sang the same note (a tie between A and C# in this case).
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FIGURE 3 | Constraint of AC and NC stems, as calculated by the percentage of participants providing the most common response for each stem.
Stem pairs are ranked in order of decreasing constraint for AC stems. The melodic pair shown in Figure 1 corresponds to stem pair 3 in this graph. Dotted
horizontal lines show the mean constraint across all AC and NC stems.

FIGURE 4 | Average of all response distributions to AC and NC stems, shown as scale degrees. Numbers represent diatonic (major) scale degrees (e.g.,
1 = tonic, 7 = leading tone, etc.), with asterisks indicating scale degrees with significantly different frequencies between the two conditions.

account for this? The NC stem does not have any resolution-
demanding dominant pitches at its conclusion, and as a result
lacks a clear sense of harmonic direction. Instead, the melody
follows a downward pattern of melodic thirds (E–G, C–E, A–C)
whose continuation is ambiguous. The most commonly chosen
completion of F could be explained as the next logical pitch in
the chain of descending thirds, after A–C. Thus, when faced with
a stem where harmonic direction is underdetermined, subjects
may have recruited an alternative strategy of melodic pattern
continuation.

Another example of an AC stem that proved to be highly
constraining is shown in Figure 5B (same melodic pair as in
Figure 1). As with the melody in Figure 5A, the AC stem
begins on the tonic note and returns to it as the most expected
continuation, with an overall melodic range that emphasizes
the octave generated above the first scale degree. The melody’s
interior arpeggiates two chords, first the tonic (D–F#-A) in
measure 1, then the subdominant (G-B-D) in measure 2.
The subdominant chord frequently serves a syntactic role of
“predominant,” a harmonic function that signals the initiation of
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FIGURE 5 | Examples of two melodic stem pairs (A,B) with an AC stem that was much more constraining than the non-cadence (NC) stem. Stems are
shown in black and white, and for each stem the most frequently sung note is shown as a red note head at the end of the stem. The pitch class name of this note
and the proportion of listeners who sang the note (i.e., the measured melodic constraint of the stem) are printed next to the red note. These two pairs correspond to
stem pairs 4 and 3 in Figure 3 [the stems in panel (B) are the same as in Figure 1].

a cadence. This is indeed how measure three is structured, with a
heavily implied dominant harmony via scale degrees 2 and 7, and
a melodic contour that insures D as a plausible completion due
to an implied F#-E-D melodic descent and a unresolved leading
tone of C#. The less constraining NC stem in Figure 5B, by
contrast, ends on the sixth scale degree (the submediant). Unlike
the leading tone, this note lacks a strong tendency to resolve in a
particular way. It may plausibly serve as part of a stepwise motion
to or away from the dominant, or as part of an arpeggiation of
a predominant harmony; in either case, it negates the cadential
function of the third measure and points to no obvious melodic
completion.

Contrasting with these stems, where subjects’ responses to
stems adhered to the AC/NC designations, there were several
items where the constraint of the NC stem unexpectedly exceeded
that of the AC stem. For example, after the NC stem in Figure 6A,
80% of participants sang the same note (F#, the 5th scale degree).
In this particular melody, we believe this reflects the tendency
for a large melodic interval to be followed by stepwise motion
in the opposite direction. This “gap-fill” pattern (Meyer, 1956;
Narmour, 1990) likely strongly influenced the continuation most
participants chose, which involved singing a note (F#) one step
down from the last note of the stem (G#), following a large leap of
a sixth to an already contextually unstable note (scale degree six).
Additionally, this stem has a strongly implied compound melody,
wherein most of the topmost notes form a rising, stepwise
pattern of B-C#-D#-E, which leads to an F# if this pattern is
continued. Meanwhile, the unexpectedly low constraint of the
AC stem in Figure 6A was perhaps due to the lack of a strong
tendency note (like the leading tone) as its last pitch, and the
obscuring of the underlying harmonic implications by the relative
rhythmic complexity of the melody. That is, the unpredictable
and syncopated rhythm may have reduced the strength of the
expectancy for the tonic scale degree (Schmuckler and Boltz,
1994). Similarly, in the stem pair in Figure 6B, the most common
continuation for the NC stem was a gap-filling motion to fill

the exceptionally wide upward leap of an octave from Bb4–Bb5.
Landing on Ab, which 56% of subjects agreed on, helps close that
gap with a downward step and continues the melody on the more
stable pitch of scale degree 5. This note also has the advantage of
mirroring the first note of the melody, thus promoting melodic
symmetry. The AC stem of this melodic pair presented no such
clearly determined ending. If subjects opted to fill in the large
upward octave gap to Ab with a downward step, they would land
on the unstable fourth scale degree (Gb). On the other hand, if
they were to resolve the melody with a cadence on the tonic note
(Db), they would land far from the final note of the stem, going
against a general tendency in melodic expectation for pitches that
are proximate in frequency to the previous note (see section on
modeling below).

Based on the above observations, it is clear that underlying
harmonic structure, which was manipulated in the AC vs.
NC stems, does not alone determine melodic expectation.
Melodic factors that likely contributed to increased constraint
in our melodies include (but are not limited to) rhythmic
simplicity, gap-fill pattern, compound-line implication, leading-
tone resolution, and pattern completion. In this way, stems in
which linear, contrapuntal, rhythmic and harmonic parameters
were closely coordinated produced reliable agreement onmelodic
completions, while examples with a conflict or ambiguity between
those factors were prone to considerably less consensus.

Musical Experience
Prior research suggests that musical training enhances sensitivity
to underlying harmonic structure (Koelsch et al., 2002). Since
implicit harmonywas used to guide the listeners’ expectation for a
tonic note after AC stems, we sought to determine if participants
with greater degrees of musical training were more likely to sing
the tonic after AC stems. Thus across AC stems, we correlated
each participant’s total years of formal musical training with
their frequency of responding with the tonic. (Thus for example,
if a participant sang the tonic after half of the AC stems they
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FIGURE 6 | Examples of two melodic stem pairs (A,B) with an AC stem that was less constraining than the NC stem. Stems are shown in black and
white, and for each stem the most frequently sung note is shown as a red note head at the end of the stem. The pitch class name of this note and the proportion of
listeners who sang the note (i.e., the measured melodic constraint of the stem) are printed next to the red note. These two pairs correspond to stem pairs 40 and 45
in Figure 3.

heard, their frequency of responding with the tonic to an AC
stem would be 0.5.) When all AC items were included in the
analysis, there was no significant correlation with years of formal
musical training, r(48) = 0.035, p = 0.812. However, when we
divided AC stems according to the scale degree of their final
note, an interesting pattern emerged. On average, after AC stems
that ended on the 7th scale degree, participants sang the tonic
81% of the time, and in these melodies, there was a significant
correlation between participants’ years of formal training and
their frequency of responding with the tonic, r(48) = 0.45,
p = 0.001 (see Figure 7). This relationship with musical training
was also observed with AC stems that ended on the 5th scale
degree, where participants sang the tonic 55% of the time on
average, r(48) = 0.33, p= 0.02. (The relationship was not seen for
AC stems that ended on the 2nd scale degree, where participants
sang the tonic 57% of the time on average.)

Model Comparison
One potential use of the melodic cloze probability task is
to test models of melodic expectation. While different forms
of musical expectancy (e.g., melodic, rhythmic, harmonic)
have been the subject of many important theoretical and
empirical investigations (e.g., Schmuckler, 1989; Narmour, 1990;
Schellenberg, 1996; Krumhansl et al., 1999; Large and Jones, 1999;
Huron, 2006), melodic expectancy in particular has been a focus
for quantitative modeling (e.g., Schellenberg, 1996; Krumhansl
et al., 1999; Pearce et al., 2010). While comparison of behavioral
and modeling data is not the primary focus of this paper, we
present one such comparison to illustrate how melodic cloze data
can be used for this purpose. We focus on the simplified version
of the implication-realization (I-R) model of melodic expectancy
(Narmour, 1990) developed by Schellenberg (1997).

FIGURE 7 | Relationship between participants’ years of formal musical
training and how often they sung the tonic after melodic stems that
ended on the 7th scale degree. On average, participants sang the tonic
81% of the time after these stems (data for all 50 participants are shown: due
to some data points lying directly on top of each other, fewer than 50 data
points are visible on the graph).

This model computes the probability of each possible
continuation of a melody based on two factors. The first of these
factors is “pitch proximity,” which states that listeners expect the
next tone of a melody to be proximate in pitch to the last tone
heard. (Another way of stating this is that listeners generally
expect melodies to move by small steps.) The second factor is
“pitch reversal,” which states that after a leap, listeners expect the
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next tone to reverse direction (e.g., after an upward leap, they
expect a downward pitch interval), and also expect the upcoming
tone to land in a pitch region proximate to the penultimate tone
(the first tone of the leap). A third factor relating to tonal stability
was also included, based on values from the probe-tone profiles of
Krumhansl and Kessler (1982). This factor reflects expectation for
notes that fit well into the existing key context, with higher values
for structurally more important/stable notes in key. Based on the
equations for the simplified I-R model as codified in Schellenberg
(1997) these three factors (proximity, reversal, and tonality) were
weighted evenly by equalizing their maximum values, and were
used to compute expectancies for all notes within two octaves
of the final note of each melodic stem, using the MIDI toolbox
(Eerola and Toiviainen, 2004).

In order to compare the model’s predictions to cases where
humans had strong expectations, we focused on high-constraint
stems where most participants sang the same continuation (stems
with constraint >69%, the mean of all AC stems). In the 22
stems satisfying this criterion, the simplified I-Rmodel (including
the tonality factor) correctly predicted the note most often
sung by participants in 12 stems, i.e., 54.5% of the time. In
the remaining 10 of these high-constraint stems (i.e., 45.5%
of the time), the model’s predictions were an average of 4.9
semitones away from participants’ sung note (SD = 0.32 st) (see
Figure 8 for the distribution of distances between human data
and model predictions). For the 10 stems where the model’s
predictions differed from the mostly commonly sung note, we
checked if the note predicted by the model was the second-most-
commonly produced note by participants. This was true in only
one stem. Overall, the model’s performance suggests that our
data cannot be accounted for solely by local factors of proximity
and reversal, combined with tonality. This suggests that larger-
scale factors need to be taken into account, as further discussed
below.

DISCUSSION

We introduce the melodic cloze probability task, in which
participants hear the opening of a short, novel tonal melody
and sing the note they expect to come next. This task,
which is modeled on the well-known cloze probability task
in psycholinguistics, has not previously been used to study
expectancy in the field of music cognition. Participants found the
melodic cloze task easy to do, demonstrating that expectancy can
be measured in a comparable way across linguistic and musical
domains.

Prior work using singing to study melodic expectancy has
focused on responses to two-note intervals (see introduction for
references). Of these studies, the closest task to ours is Lake
(1987), who had participants sing extended continuations in
response to a two-note interval preceded by a tonal context.
Unlike the current study, the tonal context was not the opening
of a novel coherent melody, but a sequence of notes consisting of
a major chord, a scale, and another major chord, which served to
establish a strong sense of key before the two-note interval. One
might ask how our results compare to those of Lake, since one

FIGURE 8 | Distance in semitones between the continuations sung by
participants and the most likely continuation predicted by the
simplified Implication-Realization (I-R) model of melodic expectancy
(Schellenberg, 1997), including a tonality factor. Data are for the 22 AC
stems with a constraint of at least 69% (the AC average).

can conceive of our stimuli as also consisting of a key-inducing
context followed by a final two-tone interval (i.e., the final two
tones of the melodic stem).

While the last two notes of our stems clearly contribute to
our results, our findings cannot be attributed to only hearing
this final interval in a generic tonal context. A number of our
stems are identical in the scale degrees of their final two notes, yet
they elicit very different patterns of results from participants (see
Figure 9 for an example). This different pattern of responding to
the same final interval reflects differences in the structure of the
preceding notes. Thus our paradigm and results are not simply
a replication of Lake (1987), and show the relevance of using
melodically coherent materials as contexts for production-based
studies of melodic expectation. Similarly, we note that our results
are not simply a replication of the well-known probe-tone results
of Krumhansl and Kessler (1982), since the pattern of responding
was not just a reflection of the tonal hierarchy, and depended on
the structure of the heard melody (e.g., Figures 1 and 2).

In addition to being the first study to obtain cloze
probabilities for musical notes, to our knowledge the current
study is the also the first to manipulate the predictive
constraint of musical sequences as part of research on
melodic expectation. By using pairs of monophonic melodic
openings (or ‘stems’) matched in length, rhythm, and melodic
contour, but differing in implied harmonic structure, we show
that underlying harmonic progressions can strongly guide
melodic expectations. Specifically, there was significantly more
consistency in participants’ responses to melodic stems ending
on an implied authentic cadence (AC condition) than in their
responses to stems ending non-cadentially (NC condition), as
reflected by a higher percentage of participants singing the most
common continuation for items in the AC condition. In other
words, AC stems were more highly constraining than NC stems
on average.
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FIGURE 9 | Example of stems that have the same final two notes but elicit different patterns of responses from participants. Stems have been
transposed from their original keys to C major in order to facilitate comparison. Both stems end with scale degrees 7 and 2. The distribution of sung responses
(expressed as scale degrees) is shown to the right of each stem.

However, our data also clearly indicate that expectations based
on larger-scale implied harmony interact with expectations based
on melodic structure. That is, despite the fact that the harmonic
differences between the AC and NC melodies in each pair were
similar, we observed considerable variability in the constraint of
melodies. In some pairs, the AC stem was considerably more
constraining than the NC stem, but in other pairs the difference in
constraint was mild, and in seven pairs the NC stem was actually
equal to or more constraining than the AC stem (Figure 3).
Analysis of two such ‘reversed constraint’ pairs (Figure 6)
suggested that factors related to rhythmic simplicity, gap-fill
pattern, compound line implication, and pattern completion may
have been involved in overwhelming harmonic expectations.
Further investigation of the factors driving the observed large
variation in constraint among melodies is clearly warranted.
From our results it is clear that expectancies related to melodic
patterns (e.g., gap-fill) may sometimes trump those related to
tonality.

Indeed, the variability in constraint observed in our data
(Figure 3) suggests that the melodic cloze task is well suited
for use in future studies aimed at exploring the relative
contributions of melodic and harmonic patterns in shaping
melodic expectation. Such studies can help test and improve
quantitative models of melodic expectation (e.g., Schellenberg,
1996, 1997; Krumhansl et al., 1999; Eerola and Toiviainen, 2004;
Margulis, 2005; Pearce, 2005; Pearce and Wiggins, 2006). In
the current study, we compared human melodic expectations
to predictions based on Schellenberg’s (1997) simplified version
of Narmour’s (1990) Implication-Realization (I-R) model of
melodic expectation, with an added tonality factor. For the
22 AC melodies with a high degree of measured constraint
(i.e., where >69% of participants sang the same note), the
model correctly predicted the sung pitch in 54.5% of these
melodies. In the remaining 45.5% of these melodies, the
model predicted a pitch that was on average 4.9 semitones
from the pitch actually sung by participants. This discrepancy

between human expectations and model predictions likely
stems from the fact that the simplified I-R model focuses
on just the last interval of a melody, and does not take
larger-scale structural patterns into account (such as harmonic
progressions and recurring motivic patterns). Successful models
of melodic expectation will almost certainly need to operate
at multiple timescales, reflecting the human tendency to
integrate both local and global information in processing
melodic sequence structure (Dowling, 2010). In the future, it
will be interesting to use the melodic cloze method to test
models which are sensitive to patterns at multiple timescales,
including Margulis’ (2005) model of melodic expectation, and
Pearce’s (2005) IDyOM model (cf. Pearce and Wiggins, 2006).
Such models can be tested and improved by comparing their
predictions with observed cloze probabilities from human
participants.

The musical cloze probability task has further uses in the
field of music cognition. For example, this paradigm can be
used to investigate how different factors influence melodic
expectancy. While we manipulated only the harmonic structure
of melodies in the present experiment, the influence of any
other factor (e.g., melodic contour, rhythm, dynamics, etc.) on
musical expectations could be explored in subsequent studies by
composing melodies in pairs and manipulating the one factor
while keeping other factors constant. Additionally, the task could
be varied to have participants sing multiple-note continuations,
as has been done in previous studies (Carlsen, 1981; Lake, 1987;
Unyk and Carlsen, 1987; Thompson et al., 1997; Schellenberg
et al., 2002). This would allow responses to be examined on
longer timescales than just the first sung note. In addition, it
would reduce the possibility that participants are responding by
completing the melodic sequences with the sung note, instead of
continuing them (as instructed). This is an important issue, as
the note sung after the stem may differ depending on whether
listeners treat it as a continuation or a completion (Aarden, 2003,
cf. Huron, 2006).
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Of course, the melodic cloze paradigm does have its
limitations. By focusing on what pitch a person sings, it
cannot give independent measures of all the different types
of expectations which may be at play at a given point
in a melody, such as timbral expectations (if listening to
complex textures) or rhythmic expectations. To study these
sorts of expectations, modifications of the paradigm presented
here would be necessary. For example, if studying rhythmic
expectations, at the end of each stem one could ask participants
to press a bar for as long as they think the next note will last.

The melodic cloze task can also be used to examine musical
expectations in different populations. We observed a significant
correlation between formal musical training and a tendency to
sing the tonic after AC stems that ended on the 7th or 5th
scale degrees. It has been suggested that having more musical
experience leads to greater sensitivity to harmonic cues, which
is consistent with our finding and with neural research on
harmonic processing (Koelsch et al., 2002). Future studies could
use the melodic cloze method to investigate how different kinds
of musical experience might impact expectancy formation. For
example, expectations may differ between musicians who have
been educated in music theory vs. those who have experience

singing or improvising without reading music. Additionally, the
melodic cloze paradigm could be used in studies with children, to
investigate how melodic expectations develop (cf. Corrigall and
Trainor, 2014).

Obtaining melodic cloze probabilities is crucial for future
research comparing predictive processing in music and language,
as it allows for the comparison of the effects of violating
predictions of comparable strength in the two domains (cf.
Tillmann and Bigand, 2015). Previous studies comparing
expectancy violations in music and language have typically
chosen violations that are intuitively thought to be comparable
in the two domains. By using a cloze paradigm to quantify
cloze probabilities for possible continuations in both domains,
it is possible to compare effects of violations of the same
degree, using normed stimuli (cf. Featherstone et al., 2012).
For example, this will allow comparison of brain responses to
plausible violations of expectations, instead of to frank structural
violations (which rarely occur in naturalistic sequences). Also,
studies that probe interactions between simultaneously presented
music and language expectancy violations can be more precisely
calibrated, in order to further elucidate cognitive and neural
relations between language and music processing.
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