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We consider the covariance matrix for dichotomous Guttman items under a set of

uniformity conditions, and obtain closed-form expressions for the eigenvalues and

eigenvectors of the matrix. In particular, we describe the eigenvalues and eigenvectors of

the matrix in terms of trigonometric functions of the number of items. Our results parallel

those of Zwick (1987) for the correlation matrix under the same uniformity conditions.

We provide an explanation for certain properties of principal components under Guttman

scalability which have been first reported by Guttman (1950).

Keywords: Guttman scale, dichotomous items, Rasch model, principal component analysis, eigenvalues,
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1. INTRODUCTION

Guttman scales form the conceptual foundation for modern Item Response Theory (IRT). For
example, Guttman scales underlie the Rasch model (e.g., Andrich, 1985) as well as Mokken scales
(e.g., van Schuur, 2003),—see Tenenhaus and Young (1985) and Lord and Novick (1968) for
classic reviews and discussions of Guttman scaling. Under the auspices of understanding the
principal component structure of unidimensional scales, Guttman (1950) derived several important
properties relating to the correlation matrix of perfect dichotomous Guttman items. Later work by
Zwick (1987) identified that the eigenvalues corresponding to this matrix can be written as simple
functions of the number of items, under a set of uniformity conditions.

In this brief note, we extend the results of Zwick (1987) by considering the covariance matrix
of dichotomous Guttman items under these same uniformity conditions. We derive closed-form
solutions for the eigenvalues and eigenvectors of this matrix, for any number of items. In particular,
we provide expressions in terms of simple trigonometric functions of the number of items. These
expressions lead to a simple explanation of the signing relationships among principal components
for Guttman scales first described by Guttman (1950).

2. MAIN RESULTS

The core idea of a Guttman scale is that the set of items under consideration forms a unidimensional
scale, i.e., if a person obtains a correct response to an item then this person would obtain a correct
response to all “easier” items.Table 1 presents amatrix of response patterns conforming to a perfect
Guttman scale for five items, with Item 5 being the most “difficult” and Item 1 being the “easiest.”

As in Zwick (1987), we consider the following two assumptions. First, we assume that all items
are distinct, i.e., no two items produce identical responses for all possible response patterns. Second,
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TABLE 1 | An example of a perfect Guttman scale for five items.

Response pattern Item 1 Item 2 Item 3 Item 4 Item 5

1 0 0 0 0 0

2 1 0 0 0 0

3 1 1 0 0 0

4 1 1 1 0 0

5 1 1 1 1 0

6 1 1 1 1 1

A value of 0 indicates an incorrect response to the item, a value of 1 indicates a correct

response.

we assume that the probability of obtaining each response
pattern is 1

n+1 , where n is the number of items, i.e., a uniform
distribution over response patterns. This last assumption is rather
strong, given that responses are typically modeled using a normal
distribution. While we assume uniformly distributed response
patterns primarily for mathematical tractability, we demonstrate
later via simulations that our results approximate those obtained
from a normal distribution under highly discriminating items
that are equally spaced by difficulty.

Under our assumptions, the covariance between any items i
and j, with i ≤ j, is equal to the following:

σ
cov
i,j = i(n+ 1− j)

(n+ 1)2
, ∀i, j ∈ {1, 2, . . . n} with i ≤ j. (1)

As one would expect, Equation (1) is closely related to the
Pearson product-moment correlation, which, as described by
Zwick (1987), is equal to:

Corr(i, j) =
√

i(n+ 1− j)

j(n+ 1− i)
, ∀i, j ∈ {1, 2, . . . n} with i ≤ j. (2)

Parallel to Zwick (1987) and Guttman (1950), who handled
the correlation matrix, we consider the n × n covariance
matrix defined by Equation (1). We first provide the n distinct
eigenvalues.

Proposition 1. The covariance matrix σ cov, with entries given by
Equation (1), has its eigenvalues equal to (in decreasing order)

λ
cov
i = 1

(n+ 1)(2− 2 cos( iπ
n+1 ))

, i = 1, 2, . . . , n. (3)

The proof is in the Appendix.
Note how i and n determine the period of the cosine term in

the denominator of the right-hand side of Equation (3). From
the same equation, the maximal eigenvalue for any fixed number
of items n is equal to λmax

n = 1
(n+1)(2 − 2 cos( π

n+1 ))
. Note that as

n → ∞, λmax
n → ∞. Also, the eigenvalues of the covariance

matrix are very different from the eigenvalues of the Pearson
product correlation matrix, which, as described by Zwick (1987),
are equal to λcorri = n+1

i(i+1)
.

The eigenvectors of the covariancematrix also have an elegant,
closed-form expression.

TABLE 2 | This table presents the eigenvector components of the

covariance matrix for n = 5.

P1 P2 P3 P4 P5

1
2

√
3
2 1

√
3
2

1
2√

3
2

√
3
2 0 −

√
3
2 −

√
3
2

1 0 –1 0 1√
3
2 −

√
3
2 0

√
3
2 −

√
3
2

1
2 −

√
3
2 1 −

√
3
2

1
2

The eigenvectors are arrayed in descending order according to the corresponding

eigenvalue, i.e., P1 is the eigenvector corresponding to the maximal eigenvalue.

Proposition 2. For the covariance matrix σ cov defined by
Equation (1), an eigenvector Pi of eigenvalue λcovi , with i = 1,
2, . . . , n (as in Proposition 1), results from setting

Pi,m = sin

(

imπ

n+ 1

)

, m = 1, 2, . . . , n. (4)

The proof is in the Appendix.
Guttman (1950) derived a series of relationships on the

eigenvector components of correlationmatrices based on perfect,
“error free” scales. Let sgn(x) be the sign function of the value
x. Define a sign change of an eigenvector Pi,m as a value j such
that sgn(Pi,j) 6= sgn(Pi,j+1), j ∈ {1, 2, . . . , n}. As described
in Guttman (1950), for n-many items there exists exactly one
eigenvector with no sign changes, one eigenvector with a single
sign change, one with two sign changes, and so on, with the
eigenvector corresponding to the smallest eigenvalue having
exactly n–1 sign changes. This symmetry can be seen in Table 2,
which presents the eigenvectors in Equation (4) for n = 5. As
made explicit by Equation (4), these sign changes result from the
symmetry of the sine function as the values of i andm vary.

3. COMPARISON TO IRT DATA

In this section, we illustrate how our analytic results could be
used to evaluate responses conforming to modern IRT models.
We consider the well-known two parameter logistic (2PL) model,
where the probability of a correct response to item i is defined as
follows:

pi(θ) =
1

1+ exp−ai(θ−bi)
, (5)

where ai ∈ R
+ is the item discrimination parameter, bi ∈ R is the

item difficulty parameter and θ ∈ R is the person-specific ability
parameter.

From the perspective of the 2PL model, Guttman items
are obtained by letting the ai (item discrimination) parameter
values become arbitrarily large (e.g., van Schuur, 2003), i.e., the
probability of a test taker correctly answering an item given
that their latent skill is higher (lower, resp.) than the item
difficulty is 1 (0 resp.). Our results provide a new perspective
on the item covariance and principal component structure of
2PL items under the idealized conditions of a Guttman scale.
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Indeed, one could consider the eigenvalues and eigenvectors in
Equations (3–4) as an error-free ideal for such response data,
under our assumption of a uniform distribution over response
patterns.

In the next section, we compare our results to simulated
data that relax the assumption of a uniform distribution over
response patterns. In the first simulation study, we compare
our results to data generated from a Rasch model (Equation 5
with ai = 1, i = 1, 2, . . . , n) where the person specific
ability parameter, θ , is randomly drawn from a standard normal
distribution. For the second simulation study, we consider a setup
nearly identical to the first, with the exception that we consider
large values of ai for each item, i.e., high discrimination among
items.

3.1. Simulation Study 1
For this study, we considered six conditions comprised of: 4, 6,
8, 16, 32, and 64 test items. For each condition, the difficulty
of the items, bi, was equally spaced along the interval [−1, 1].
For each condition, we randomly sampled 5000 values of θ

from a standard normal distribution (e.g., Anderson et al., 2007).
We obtained simulated responses to the items by applying the
sampled θ values, and item difficulties, bi, to Equation (5),
with ai = 1 for all test items, i.e., a Rasch model. Thus, for
each condition, we have 5000 simulated responses to the test
items.

For each condition, we computed the covariance matrix of the
items using the 5000 simulated responses, i.e., we calculated the
sample covariance of the 5000 responses. We then numerically

FIGURE 1 | Each plot compares the eigenvalues obtained from Equation (3) to those obtained from simulated Rasch data under the assumption that

θ ∼ N(0,1) under n = 4,6,8,16,32, and 64 items.
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calculated the eigenvalues of this covariance matrix. Figure 1
compares the eigenvalues obtained from the simulated data to
the eigenvalues obtained from Equation (3), for each condition.
It is interesting to note that the largest eigenvalue for the
simulated data is always larger than the maximal eigenvalue
obtained via Equation (3), this is similar to results obtained
by Zwick (1987) within the context of the Guttman correlation
matrix. In general, moving to a probabilistic response model
(the Rasch model) and sampling the θ values from a normal
distribution appears to yield covariance eigenvalues that greatly
differ from those obtained in Equation (3). As we show in the
next study, improving item discrimination will yield different
results.

3.2. Simulation Study 2
In this simulation study, we consider nearly identical conditions
to the first, with the exception that the item discrimination
parameters, ai, are large in size, indicating excellent item
discrimination. As in the previous study, we considered six
conditions comprised of: 4, 6, 8, 16, 32, and 64 test items.
For each condition, the difficulty of the items, bi, was
equally spaced along the interval [−1, 1]. As before, for each
condition, we randomly sampled 5000 values of θ from a
standard normal distribution. We obtained simulated responses
to the items by applying the sampled θ values, and item
difficulties, bi, to Equation (5), with ai = 3, i = 1, 2, . . . , n,
indicating excellent item discrimination. As before, for each

FIGURE 2 | Each plot compares the eigenvalues obtained from Equation (3) to those obtained from simulated 2PL data with high item discrimination

under the assumption that θ ∼ N(0,1) under n = 4,6,8,16,32, and 64 items.
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condition, we have 5000 simulated responses to the test
items.

For each condition, we computed the covariance matrix
of the 5000 simulated responses and numerically calculated
the eigenvalues of the generated covariance matrix for each
condition. Figure 2 compares the eigenvalues from these
simulated data to the eigenvalues obtained via Equation (3), for
each condition. It is interesting to note that there is a much
closer correspondence between the two sets of eigenvalues under
these conditions. Further, this relationship becomes stronger as
the number of equally spaced items increases, yielding nearly a
perfect match to the maximal eigenvalue as the number of items
reaches 32 and 64.

This study illustrates that our analytic results, which are
derived under the strong assumption of uniformly distributed
response patterns, may be useful as an approximation even
when the ability parameter is normally distributed. This
approximation is best when the difficulty range of the items
are within a single standard deviation of the mean and the
items have excellent discriminability. As the range of the
item difficulty increases and/or the variance of the ability
parameter distribution shrinks, the approximation becomes
much poorer. Our Matlab code for generating these graphs
and exploring other configurations is available as an online
supplement.

4. CONCLUSION

We derived closed-form solutions for the eigenvalues and
eigenvectors of the covariance matrix of dichotomous Guttman
items, under a uniform sampling assumption. We demonstrated
that these eigenvalues and eigenvectors are simple trigonometric
functions of the number of items, n. Our results parallel those of
Zwick (1987), who examined the eigenvalues of the correlation
matrix of dichotomous Guttman items under the same
uniformity assumptions. It remains an open question whether the
eigenvectors of the correlation matrix, as investigated by Zwick
(1987), can also be solved for explicitly.
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APPENDIX

A. Proofs of Propositions 1 and 2
To prove the main results of the paper, we first derive the general
inverse of the covariance matrix of Guttman items under our
uniformity assumptions. This inverse has a special tridiagonal
form. From this tridiagonal form, we apply known algebraic
results to obtain the required eigenvalues and eigenvectors.

Define X as the (n + 1) × n matrix of perfect Guttman
scores under the specified uniformity assumptions. The rows of
this matrix correspond to response patterns while the columns
correspond to Guttman items, see also Table 1. This matrix has
zeros on the diagonal and above, and all elements below the
diagonal are ones:

X =















0 0 0 . . . 0
1 0 0 . . . 0
1 1 0 . . . 0
...
...
...
. . .

...
1 1 1 . . . 1















.

We denote by e(i) the i-th vector of the canonical basis of R
n+ 1,

and by v(i) the i-th column vector of X. For later use, it is
convenient to introduce also v(0) = (1, 1, . . . , 1)′ and v(n+ 1) =
(0, 0, . . . , 0)′. Thus in R

n+ 1 we have for i = 1, 2, . . . , n+ 1,

v(i) = v(i−1) − e(i),

and then also, for i = 1, 2, . . . , n,

v(i) = 1

2

(

v(i−1) − e(i)
)

+ 1

2

(

v(i+1) + e(i+1)
)

= 1

2

(

v(i−1) + v(i+1)
)

+ 1

2

(

e(i+1) − e(i)
)

. (A1)

Obtaining the eigenvalues and eigenvectors of the covariance
matrix via the columns v(i) of X can be done in five steps:

1. centering each vector v(i) (for i = 1, 2, . . . , n), that is,
subtracting the mean of all components of v(i) from each
component; let us denote by ṽ(i) the resulting vector;

2. computing the element Sij of the matrix S as the scalar product

ṽ(i) · ṽ(j);
3. deriving the inverse of S by taking into account a special

property of the rows of S (see below);
4. inferring the eigenvalues and eigenvectors of S−1 (then also of

S) from the special form of S−1, a tridiagonal matrix;
5. finally, observing that the covariance matrix equals σ cov =

1
(n+1)

S, thus obtaining the eigenvalues and eigenvectors of

σ̂ cov.

Let us rephrase these steps in a more geometric fashion. In Step 1,
ṽ(i) is the image of v(i) by the orthogonal projection fromR

n+ 1 to
the hyperplane H with equation

∑n+ 1
i= 1 xi = 0 (indeed, ṽ(i) ∈ H

and furthermore ṽ(i) − v(i), a constant vector, is orthogonal to

H). Moreover, notice that e(i) − e(j) belongs to H and so projects
onto itself. Consequently, for i = 1, 2, . . . , n, we derive from
Equation (A1)

ṽ(i) = 1

2

(

ṽ(i−1) + ṽ(i+1)
)

+ 1

2

(

e(i+1) − e(i)
)

. (A2)

In Step 2, we compute Si,j as the scalar product of ṽ
(i) with ṽ(j).

Taking the scalar product of both sides of the previous equation
with ṽ(j), we get for i = 2, 3, . . . , n− 1 and j = 1, 2, . . . , n

Si,j =
1

2

(

Si− 1,j + Si+ 1,j

)

+ 1

2

(

ṽ
(j)
i+ 1 − ṽ

(j)
i

)

.

Now because

ṽ
(j)
i+ 1 − ṽ

(j)
i = v

(j)
i+ 1 − v

(j)
i =

{

1 if i = j,

0 otherwise,

we see that row Si,• is the mean of rows Si− 1,• and Si+ 1,• except
for its diagonal element which is 1

2 more than the mean. This
holds for i = 2, 3, . . . , n − 1. By considering extraneous rows
S0,• = (0, 0, . . . , 0) and Sn+ 1,• = (0, 0, . . . , 0), we can also
allow i = 1 and i = n [this follows again from (A2), considered
now for i = 1 and i = n, together with ṽ(0) = ṽ(n+ 1) =
(0, 0, . . . , 0)′]. This special property of S immediately translates
into the following expression for the inverse matrix of S:

S−1 =























2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
0 0 −1 2 −1 . . . 0
...

...
...

. . .
. . .

. . .
...

0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2























.

(indeed, the product of the abovematrix with S equals the identity
matrix).

The form of S−1 follows a particular tridiagonal form that
has been extensively studied in the mathematics literature.
Elliott (1953) and Gregory and Karney (1969) identified that the
eigenvalues λi of S

−1, and (selected) corresponding eigenvectors
Pi, for i = 1, 2, . . . , n, are given by λi = 2 − 2 cos( iπ

n+1 )

(in increasing order) and Pi,m = sin( imπ
n+1 ) respectively (where

m = 1, 2, . . . , n). These results were later extended to more
general tridiagonal matrices by Yueh (2005), see also Yueh and
Cheng (2008) and Bünger (2014).

Because the covariance matrix σ cov equals 1
(n+1)

S, the

eigenvalues of σ cov are equal to 1
n+1 times those of S, so they are

also 1
n+1 times the inverses of the eigenvalues of S−1.

Proposition 1 now follows from the fact that the eigenvalues
of σ cov are equal to 1

n+1 times the reciprocals of the eigenvalues

of S−1, and Proposition 2 from the fact the matrices σ cov, S, and
S−1 have the same eigenvectors. This completes the proof. 2
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