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Dependencies between educational test items can be represented as quasi-orders on

the item set of a knowledge domain and used for an efficient adaptive assessment of

knowledge. One approach to uncovering such dependencies is by exploratory algorithms

of item tree analysis (ITA). There are several methods of ITA available. The basic tool to

compare such algorithms concerning their quality are large-scale simulation studies that

are crucially set up on a large collection of quasi-orders. A serious problem is that all

known ITA algorithms are sensitive to the structure of the underlying quasi-order. Thus, it

is crucial to base any simulation study that tries to compare the algorithms upon samples

of quasi-orders that are representative, meaning each quasi-order is included in a sample

with the same probability. Up to now, no method to create representative quasi-orders on

larger item sets is known. Non-optimal algorithms for quasi-order generation were used

in previous studies, which caused misinterpretations and erroneous conclusions. In this

paper, we present a method for creating representative random samples of quasi-orders.

The basic idea is to consider random extensions of quasi-orders from lower to higher

dimension and to discard extensions that do not satisfy the transitivity property.

Keywords: learning space theory, item tree analysis, quasi-order, representative sampling, inductive uniform

extension

INTRODUCTION

Orders play an important role in various formal theories of behavioral, social, economic, or
computer sciences. Examples are in decision making and preference modeling (e.g., Fishburn,
1972; Peterson, 2011) or economics (e.g., Varian, 2002). Other areas where order relations
play an important role are in computer science, for example in database systems research
(e.g., Rob and Coronel, 2009). There are also several applications that try to set up a structure
that represents common beliefs of respondents in the form of an order relation in sociological
questionnaires (e.g., Wiley and Martin, 1999; Martin and Wiley, 2000; Schrepp, 2005).

First and foremost, we are interested in quasi-orders or preorders (i.e., reflexive and transitive
binary relations) as a cornerstone concept in the educational or psychological theory of
knowledge or learning spaces (Doignon and Falmagne, 1985, 1999; Falmagne and Doignon, 2011;
Falmagne et al., 2013). Knowledge or learning space theory interprets discrete order structures such
as the quasi-orders in the human-centered knowledge or competence modeling and assessment
context. The basic idea underlying the theory is to formalize the adaptive approach of a teacher,
when the teacher’s experience and knowledge about prerequisite relations between the pieces of
knowledge (e.g., algebra questions) are utilized to avoid asking a student questions neither too easy
nor too difficult, so to operate in this way at the borderline of what the student masters and what
he does not know.
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Prerequisite relations can be modeled using quasi-orders. In
knowledge or learning space theory, a quasi-order ≤ on a test
or item set Q is also called a surmise relation because it has the
following interpretation. Typically, the items represent problems
or questions, for example from the domains of mathematics
or science, which the subjects can solve or fail to solve. A
prerequisite relation (implication or dependency) i ≤ j is
interpreted as stating “Each subject who is able to solve item j is
also able to solve item i.” As an example, a plausible dependency
to postulate between the two algebra items “a. Perform the
multiplication 4x4y4· 2x · 5y2 and simplify” and “b. Find the
greatest common factor of the expressions 14t6y and 4tu5y8 and
simplify” is to assume that the mastery of problem a is a
prerequisite for the mastery of problem b. Thus, the items a and b
are in relation with respect to a quasi-order≤, denoted by a ≤ b.

Quasi-orders representing such item dependencies can be
derived by querying experts or from postulated theoretical
assumptions (e.g., Albert and Lukas, 1999), or by exploratory data
analysis methods such as item tree analysis (ITA; Van Leeuwe,
1974; Schrepp, 1999, 2003; Sargin and Ünlü, 2009). In fact, the
goal of any ITA method is to reconstruct, by data analysis of a
collection of observed noisy response patterns, the underlying
or true dependencies among the items, and therefore, the ITA
methods can also be utilized for validating expert judgments
or theories that imply subjective or theoretical item hierarchies,
respectively. However, developing, evaluating, and comparing
ITA-type algorithms used to extract true relational dependencies
or surmise relations from sets of observed response patterns are
a challenging task and an important branch of research.

A specific problem in this respect is addressed in the present
paper. We deal in this work with the question of how random
quasi-orders can be generated, for example as a basis for
simulation studies to investigate the performance or properties
of such data analytical methods, or indirectly to validate, in the
sense we described above, possible theories or expert judgments.
As discussed by Ünlü and Schrepp (2015), ITA simulation studies
do create response data from a given quasi-order, by simulating
random response errors, and then do check if the original quasi-
order can be reconstructed, by analyzing the simulated data
based on a data analysis method. Since all known ITA algorithms
are sensitive to the structure of the quasi-order, it is important
to use a representative set of quasi-orders as the basis for
the simulations. Using non-representative quasi-order samples
yielded biased or erroneous simulation results regarding the
recovery quality of the algorithms (Ünlü and Schrepp, in press).

For the purpose of reconstructing mastery hierarchies
among items several ITA algorithms have been published in
the last years (Van Leeuwe, 1974; Schrepp, 1999, 2003, 2006;
Sargin and Ünlü, 2009, 2010; Ünlü and Sargin, 2010). Large-scale
simulation studies are conducted to compare such algorithms
concerning their ability to detect a surmise relation. More
precisely, these studies start with a sample of surmise relations
on the item setQ, and then create, for each of the posited surmise
relations, a data set D (for details see e.g., Ünlü and Schrepp,
2015):

• The surmise relation≤ determines the set of response patterns
compatible with all of the dependencies in ≤.

• Then random response errors, for example lucky guesses or
careless errors, are simulated.

• This data setD is analyzed with the algorithm, and it is checked
how close the resulting surmise relation is to the underlying
surmise relation used to generate the data set.

We see that at the basis of this type of simulation study is a large
set of quasi-orders assumed to underlie an item set (Schrepp,
2007). A serious problem is that all known ITA algorithms are
sensitive to the structure of the underlying surmise relation.
For example, the original procedure by Van Leeuwe (1974)
works very well for linear orders, but is unsatisfactory for quasi-
orders that contain many non-comparable item pairs i � j or
j � i (see e.g., Schrepp, 1999). Therefore, it is essential to base
any simulation study that aims at comparing different ITA-type
algorithms on samples of quasi-orders that are representative, in
the sense that each quasi-order on the item set is included in a
sample with the same probability.

Let X be a non-empty, randomly generated subset of quasi-
orders on a set Q of n items (below we will outline different
approaches to creating quasi-order samples). We call X a
representative subset or sample if P(≤1 ∈ X) = P(≤2 ∈ X) for any
two quasi-orders ≤1 and ≤2 on Q, where P denotes probability.
Since this definition is for arbitrary quasi-orders, as a corollary,
we obtain that any such representative set X of quasi-orders
must also be “proportionally representative” for the population
distributions of quasi-order size, quasi-order width, and quasi-
order height (defined below), in the sense that the corresponding
sample distributions computed in X provide unbiased estimates
of their population analogs. The latter distributional properties
are the evaluation criteria used for assessing the extent of
representativeness in this paper.

In Ünlü and Schrepp (2015, in press), it was shown that
conclusions concerning the performance of the variants of ITA
in earlier publications were biased due to the use of non-
representative samples of underlying quasi-orders. By repeating
simulations with a representative sample drawn from the set of all
quasi-orders on six items, the biased results could be corrected,
and a clear picture of the performance of the ITA algorithms was
reached. The maximum number of items used in the latter study
was six, because higher item numbers were prohibitively too large
for realizing representative samples. With the present paper, we
introduce an algorithm that allows constructing large samples
of representative quasi-orders efficiently, and on larger item
sets.

In the next section, we discuss existing approaches to
addressing this problem and the critical issues related with these.
In a next step, the description of the proposed algorithm is
given, and then simulation results are presented demonstrating
the usefulness of the sampling procedure. Finally, we conclude
with a summary and further related remarks.

EXISTING APPROACHES TO CREATING
RANDOM QUASI-ORDERS

Formally, the problem we address in this paper can be described
as follows. Presuppose a set Q of n test items. The goal is
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TABLE 1 | Probability to detect a quasi-order by random selection.

n Number of Number of Selection

reflexive relations quasi-orders probability

3 26 = 64 29 0.453

4 212 = 4096 355 0.087

5 220 = 1,048,576 6942 0.007

6 230 = 1,073,741,824 209, 527 0.0002

to create randomly a sample, PQO(n), of quasi-orders that is
representative, in the sense that each quasi-order onQ is included
in the sample with the same probability.

We use the relational matrix notation, i.e., a binary relation
R on Q (not necessarily reflexive or transitive) is denoted by a
matrix (rij) with rij ∈ {0, 1} and rij = 1⇔ iRj.

In this notation, reflexivity and transitivity of any binary
relation R mean that its corresponding relational matrix satisfies
the following properties:

• rii = 1 for all i = 1, . . . , n (reflexive R),
• (rij = 1 ∧ rjk = 1 → rik = 1) for all i,j,k ∈ {1, . . . , n}

(transitive R).

There are two direct methods to create a representative sample
of quasi-orders. First, simply construct and store all quasi-orders
on Q and then select the sample by a random process that
draws elements from the set of all quasi-orders with the same
probability. This does not work even for small values of n, since
the number of quasi-orders on a set of n items grows very fast
with n. For example, on a set of three items there are 29 quasi-
orders, on six items this number already grows to 209, 527 (e.g.,
Pfeiffer, 2004).

Another direct approach is to create a huge number of random
reflexive relations on n items and to keep the transitive ones. This
process can be described as follows:

• Create a relational matrix (rij), where rii = 1 for all i = 1, . . . ,
n, and the other values rij are chosen with equal probability
from {0, 1}.

• Check if the generated relation is transitive. If this is the case,
add it to the sample. Otherwise discard it, go back to the
previous step and create again a random reflexive relation on
n items.

• This process continues until the required number of quasi-
orders contained in the sample is attained.

This method, directly operating on all items simultaneously,
also fails even for moderate sizes of n, since the chance that
a randomly created reflexive relation is transitive becomes

extremely small. For n items, we have 2n
2−n reflexive relations,

since each reflexive relation can be represented by an n×nmatrix
containing 1 in the cells of the diagonal and one of the values 0
or 1 in all of the other n2 − n cells. If we compare these numbers
for n = 3, . . . , 6 with the numbers of (labeled) quasi-orders, we
can see in Table 1 that even for such small n the chance to pick a
transitive relation using this random process is tiny.

Thus, finding for example 10,000 quasi-orders on n = 6
items requires to select ∼50,000,000 random reflexive relations,

i.e., 1,500,000,000 random 0–1-numbers. If we would be able to
generate and check 1000 reflexive relations per second, it would
require ∼50,000 s until the process stops. It is obvious that this
will not work at all for larger item numbers, for example for
n = 10. In contrast, the processing times of the newly proposed
procedure are feasible and the results can be found in the section
Creating Quasi-orders on Bigger Item Sets.

Previous studies tried to avoid this problem by implementing
ad-hoc procedures to draw random quasi-orders. Although these
methods are very flexible and virtually work for any value of n,
they lack representativeness in their generation processes. The
simplest method is to create a random relation on n items and
to compute the transitive closure of this relation. It was found in
earlier publications (e.g., Sargin and Ünlü, 2009) that this simple
strategy produced samples of quasi-orders, which were far from
being representative concerning quasi-order sizes.

Some more advanced strategies tried to compensate this issue.
For example, in Sargin and Ünlü (2009) the following procedure
was used. Generate a relational matrix (rij) such that:

1. rii = 1 for all i = 1, . . . , n.
2. For all rij with i, j = 1, . . . , n and i 6= j, the value rij is

chosen randomly with probabilities P(rij = 1) = x and
P(rij = 0) = 1− x. The probability x itself is a realization of a
normal distribution with parameters µ = 0.16 and σ = 0.06.
Values “< 0” or “> 0.3” are set to 0 or 0.3, respectively1.

3. The transitive closure of the binary relation corresponding to
(rij) is the resulting random quasi-order.

This random process—existent in two variants, absolute and
averaged; for details, see Sargin and Ünlü (2009)—is already
an improvement of an older procedure (Schrepp, 1999) that
drew x based on a uniform distribution on the interval 0–0.4
and that resulted in non-representative samples consisting of
overly represented large quasi-orders. But this improved normal
procedure still produced non-representative samples, as can be
seen from Figure 1 (Ünlü and Schrepp, 2015).

DESCRIPTION OF THE ALGORITHM

The algorithm is inductive, i.e., a procedure for creating a
representative set of quasi-orders on n + 1 items, on the basis
of a prior constructed set of quasi-orders on n items.

In principle, we can always start the process, the anchoring,
with the set of all quasi-orders for a sufficiently small value of n.

For the step from n to n + 1, we consider a set PQO(n)
of m quasi-orders on n items and assume that PQO(n) is
representative, in the sense that each quasi-order on the n items is
contained in this set with the same probability. Thus, PQO(n) can
be seen as a random sample drawn from the set of all quasi-orders

1Strictly speaking, there is no driving force for the use of the normal distribution.
For example, other symmetric distributions with direct location and scalemeasures
could also be used. It is worth mentioning, however, that the distributions of quasi-
order size seem to roughly follow a bell-shaped curve, deeming the normal choice
a plausible one. Moreover, it is obvious that different values of x are needed to
simulate sufficiently varying quasi-order sizes. More importantly, note that this
procedure is ad-hoc, and this is the reason why we propose a principled new
approach.
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on n items. In the induction step, we create for each quasi-order
in PQO(n), subsequently represented by its relationalmatrix (qij),
a number of z random extensions to n + 1—i.e., each random
extension of (qij), denoted as the matrix (q′ij), is defined by:

• q′ij = qij for i, j = 1, . . . , n,

• q′n+1n+1 = 1 (reflexive extension),
• for indices i 6= j with i = n + 1 or j = n + 1, q′ij is a random

variable with P(q′ij = 1) = P(q′ij = 0) = 0.5.

The z random extensions created are checked for transitivity,
and the transitive ones are added to PQO(n + 1). Duplicates are
removed, i.e., each quasi-order occurs only once in PQO(n+ 1).
Regarding the choice of z, note that the chance a random
extension of a quasi-order on n items again yields a quasi-order
on n + 1 items decreases with increasing item number n. Thus,
higher values for z must be used when n is getting larger, and
in particular, this number must be adjusted depending on the
number of quasi-orders that should be created during simulation.
A general strategy easily possible is to specify z in a way such
that slightly more quasi-orders than desired are generated. In a
final step of the procedure, PQO(n + 1) is reduced to a required
or reasonable size, for example by keeping only m randomly
selected elements from PQO(n + 1) based on simple random
sampling. This step is necessary to have the number of elements
of the PQO(n)’s reasonably limited, if this process is repeated
several times; for instance, when creating a sample consisting of
1000 quasi-orders on 10 items starting with the set of all four
quasi-orders on two items.

This inductive algorithm produces representative samples of
quasi-orders.

FIGURE 1 | For six items, in red, histogram densities of quasi-order

size (i.e., number of item pairs in relation) for 10,000 (left panel) and

100,000 (right panel) quasi-orders randomly created according to the

two variants of the normal procedure. In addition, kernel density estimates
of the samples are plotted, in light blue, to assist visualization. In gray, the true
distribution is shown, with overlapping areas of the true and sampled printed in
dark red.

Proposition. Let≤1 and≤2 be any two quasi-orders on n+ 1
items. Denote by P1 and P2 the probabilities that ≤1 and ≤2 are
contained in the set PQO(n + 1) that is generated according to
the proposed inductive procedure, respectively. Then, P1 = P2.

Proof. The proof is by induction. As its anchoring, the
algorithm always starts with a representative set of quasi-orders
for a sufficiently small item number l. We consider the inductive
step from n ≥ l to n+ 1. Let≤i,n be the traces of≤i (i = 1, 2) on
the n items of the predecessor construction step, that is, the quasi-
orders restricted to those n items. Since PQO(n) constructed in
the predecessor step n is assumed to be representative in the sense
we defined (the induction hypothesis), the probabilities for the
two traces to belong to PQO(n), in respective order, P1,n and P2,n,
are the same.Moreover, all random extensions (to the n+1 items)
of any given trace quasi-order (on the n items) are equally likely,
with the same probability of 2−2n and independent of the trace
quasi-order considered. Thus, P1 = 2−2nP1,n = 2−2n P2,n = P2.

A FIRST SIMULATION STUDY

To assess the quality of the algorithm used to create random
quasi-orders we performed a first simulation study. In the study,
we generated 100 random samples each of (sample sizes) 100,
1000, and 5000 quasi-orders on a set of six items, which were
compared with the set of all possible quasi-orders concerning
their distributions of important properties.

We use the following properties as the criteria for
representativeness of the samples.

1. Size: The size of a quasi-order ≤ is defined as the number of
item pairs (i, j) with i ≤ j.

2. Width: The size of a longest anti-chain in ≤: An anti-chain
is a subset of items {i1, . . . , ik} with ¬(ix ≤ iy) for all x, y ∈

{1, . . . , k} (¬, the negation).
3. Height: The size of a longest chain in ≤: A chain is a subset of

items {i1, . . . , ik} with i1 ≤ i2∧ . . .∧ ik−1 ≤ ik.

The sampling process started with the set of all four quasi-orders
on a set of two items. The inductive procedure described in the
last section was then employed to create random quasi-orders on
n = 6 items. The computations reported in this paper were done
with a C program that implements the described algorithm on a
computer with an Intel Core i5 2.50 GHz processor.

If we compare the mean values of the average sizes, widths,
and heights taken over the 100 generated samples, we see that the
results approximate the true values calculated for the set of all
quasi-orders on six items very well (see Table 2).

TABLE 2 | Means and standard deviations (in parentheses) of the average

sizes, widths, and heights over all 100 simulated samples of 100, 1000,

and 5000 quasi-orders (PQO’s), compared to the true average values for

the set of all quasi-orders on n = 6 items.

100 PQO’s 1000 PQO’s 5000 PQO’s True value

Mean size 15.15 (0.35) 15.13 (0.20) 15.20 (0.16) 15.22

Mean width 2.64 (0.07) 2.64 (0.04) 2.63 (0.03) 2.62

Mean height 3.60 (0.11) 3.60 (0.06) 3.62 (0.04) 3.62
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Figure 2 shows the distributions of the relative sizes for the
set of all quasi-orders and of the mean values of the relative sizes
computed over all 100 generated samples.

Figures 3, 4 show the distributions of the relative widths and
heights for the set of all quasi-orders and of the mean values of
the relative widths and heights over all 100 generated samples.

CREATING QUASI-ORDERS ON BIGGER
ITEM SETS

In a second simulation study, we investigated how much
resources were needed to create representative samples of
quasi-orders on bigger item sets.

The study started with a sample of 10,000 quasi-orders that
was drawn randomly from the set of all 209, 527 quasi-orders on
six items (see Ünlü and Schrepp, 2015).

From this set, samples of quasi-orders on n = 7, . . . , 20 items
were constructed inductively.

Figure 5 shows how the computing time in s (per quasi-order)
required to produce the quasi-orders evolves. The exact values
can be seen in Table 3.

As can be seen, we still have acceptable computing times up
to 17 items, but then the required computing time grows fast.
The exponential increase of computing time obviously limits the
possible scope of the method.

Figure 6 shows the numbers of random 0–1-values that
are required on average to produce one quasi-order, reported
for the different item counts. The exact values can be found
in Table 3.

Thus, highly efficient processes to produce random 0–1-
numbers are required to apply the algorithm. Obviously, the
current limit on applications of the algorithm running on
standard machines will be around 15–20 items, as long as we
will not accept runtimes of several days. But since the algorithm
can easily run in parallel architectures, i.e., on several computers
in parallel or on multi-processor machines, this limit can be
increased.

An interesting point is to compare the performance of the
new algorithm with the performance of the basic approach
that directly creates random reflexive relations and checks if
they are transitive (see Table 1). For n = 6, the chance
that a randomly generated reflexive relation is a quasi-order
is 0.0002, and to obtain such a random reflexive relation we

FIGURE 2 | Distributions of the relative sizes in the set of all quasi-orders and corresponding mean values of the relative sizes in the 100 simulated

quasi-order samples (PQO’s).

FIGURE 3 | Distributions of the relative widths in the set of all quasi-orders and corresponding mean values obtained from the 100 simulated samples

of 100, 1000, and 5000 quasi-orders (PQO’s).

Frontiers in Psychology | www.frontiersin.org 5 November 2015 | Volume 6 | Article 1791

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Schrepp and Ünlü On the Creation of Representative Quasi-Orders

FIGURE 4 | Distributions of the relative heights in the set of all quasi-orders and corresponding mean values obtained from the 100 simulated samples

of 100, 1000, and 5000 quasi-orders (PQO’s).

FIGURE 5 | Required computing time (in s) per produced quasi-order for different numbers of items.

TABLE 3 | Required computing time in s and used number of random

0–1-values per produced quasi-order.

n Computing time (in s) Number of random 0–1-values

7 1.4809E-05 1039

8 2.65824E-05 3243

9 5.70143E-05 10,470

10 0.00013198 32,479

11 0.000334222 99,200

12 0.000904816 300,011

13 0.003017408 960,431

14 0.011056273 3,192,934

15 0.039129196 10,750,095

16 0.059797056 23,245,005

17 0.077668647 32,748,257

18 0.458117766 222,208,059

19 2.573514793 1,163,076,923

20 19.49241959 9,388,888,889

need to have 30 random 0–1-values. Now compare this to the
new procedure, for the step from 10 to 11 items. Creating
a random reflexive extension on 11 items, of a quasi-order

on 10 items, requires 20 random 0–1-values. The probability
for such a random extension to satisfy transitivity is 0.0002,
i.e., as high as the probability to generate a random quasi-
order on only six items using the basic or direct method.
Thus, working with successive extensions of lower-dimensional
quasi-orders to higher dimension massively increases the
probability for a random reflexive extension to be transitive
too, and reduces the number of necessary random 0–1-values,
compared to the direct or purely random generation of binary
relations.

CONCLUSION

Algorithms that create quasi-orders by exploratory data analysis
are a relevant research topic in knowledge or learning space
theory. Typically, the quality of such algorithms cannot
be evaluated on the basis of purely theoretical arguments.
Large-scale simulation studies are required to examine whether
such algorithms can handle different quasi-order structures
underlying the data and various ranges of simulated response
error probabilities.
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FIGURE 6 | Required random 0–1-numbers per produced quasi-order for different numbers of items.

Representative samples of quasi-orders are a prerequisite
for such studies. However, up to now it has not been
possible to create truly representative samples for larger item
numbers. Thus, previous simulation studies had to live with
approximations, which in some cases had a negative impact
on the simulation results and caused biased or incorrect
conclusions (Ünlü and Schrepp, 2015, in press). The only possible
workaround was to draw samples of quasi-orders from the prior
constructed set of all quasi-orders, whichmerely worked for small
item sets.

We have described an inductive algorithm that allows creating
representative samples of quasi-orders even for higher item
numbers in still acceptable runtime. The algorithm successively
considers random reflexive extensions of lower dimensions to
higher. In one simulation study with six items, we have seen
that the results regarding quasi-order size, width, and height do
approximate the true values very well. In a further simulation
study, we have also investigated generating representative
samples of quasi-orders on bigger item sets. Although the
required computing time increases relatively fast, we still have
obtained acceptable processing times for up to 17 items.

The problem considered in this paper is a very specific
one, namely, to provide a sound basis for the reliable
comparison of the ITA algorithms in simulation studies. For

this purpose, the studied range of 10–20 items is adequate.
However, it could be interesting to develop, in future research,
extensions of the proposed technique that allow sampling
representative quasi-orders on more than 20 items. This
may be useful, for instance, in applications to international
educational large-scale assessments such as PISA or TIMSS
(e.g., Ünlü et al., 2014), although in that context smaller
subtests or item collections of appropriate sizes could also be
studied.

Representative samples of quasi-orders can be employed in
subsequent research to investigate the properties of and thereby
improve on data analysis methods used to mine for relational
dependencies in psychological or educational response data,
since properties investigated in representative samples can be
generalized to the population of all quasi-orders.

In principle, the methods that we have discussed could
generally be applied in other fields or situations (cf. also Section
Introduction). For example, linear orders are a special case of
quasi-orders and, as pointed out by Augustin Kelava, may be
useful in the analysis of item position or item order effects
in large-scale assessments. Knowledge or learning space theory
combinatorial structures or computational ITA analyses could be
utilized to study these effects. Future research into this issue is
needed.
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