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How a (sub)Cellular Coincidence
Detection Mechanism Featuring
Layer-5 Pyramidal Cells May Help
Produce Various Visual Phenomena

Talis Bachmann*

University of Tartu, Tartu, Estonia

Perceptual phenomena such as spatio-temporal illusions and masking are typically
explained by psychological (cognitive) processing theories or large-scale neural theories
involving inter-areal connectivity and neural circuits comprising of hundreds or more
interconnected single cells. Subcellular mechanisms are hardly used for such purpose.
Here, a mechanistic theoretical view is presented on how a subcellular brain mechanism
of integration of presynaptic signals that arrive at different compartments of layer-5
pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects
unfolding along very brief time intervals within the range of the sub-second temporal
scale.

Keywords: consciousness, neural correlates of consciousness, visual perception, illusions, phenomenology,
neuromodulation, dendrites, pyramidal cells

INTRODUCTION

Non-veridical subjective experiences of external physical reality are typical for situations where
very brief visual stimuli interact within a sub-second time interval. Spatial, temporal and
spatio-temporal distortions and misrepresentations are usually the essence of these phenomena
(Bachmann et al., 2011). Characteristically, when pairs or multiples of brief stimuli in the range
of dozens of milliseconds (ms) are presented with comparably short intervals, subjective delays
with which target stimuli appear in explicit perception often tend to misrepresent the objective
temporal relations between targets and reference stimuli. Moreover, when masking is the case
the stimuli that are phenomenally distinct and clear when presented alone become deprived of
conscious experience when paired with perceptual masks. In this paper I will describe a couple of
such phenomena suggesting a common subcellular level neural mechanism hypothetically capable
of explaining these phenomena. The core of the mechanism consists in a coincidence detection
operation performed by certain subcellular and synaptic processes. It is my belief that this kind
of approach in principle is consistent with the emerging Zeitgeist of nanophysiology which is set
to deal with processes taking place between different compartments of single cells (Holcman and
Yuste, 2015).

THE GENERIC MECHANISM OF COINCIDENCE DETECTION

Most of the theoretical approaches adopted for explaining the temporal illusions and masking
have been based on cognitive mechanisms, systems level neural architectures or neural population
level models. However, in several theoretical models of explicit perception the core of the model is
implemented at the cellular and sub-cellular levels of sensory processing. The temporal parameters
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and functional underpinnings of the models allow use them
to explain several common temporal illusions. These models
have helped to explain binding of features for formation of
integrated perceptual objects and also to explain how pre-
consciously processed sensory information becomes bound with
contextual representations, thus becoming incorporated into the
consciously experienced scenes. Specifically, the list includes the
LAMINART model by Stephen Grossberg (e.g., Grossberg and
Versace, 2008), the model developed by Rodolfo Llinas and
his colleagues (e.g., Llinds et al., 1998), the perceptual retouch
model by Bachmann (1994, 1997), the zero-lag synchronization
mechanism by Raul Vicente and colleagues (e.g., Vicente et al,,
2008), and the backpropagation-activated Ca’* spike firing or
BAC firing mechanism by Matthew Larkum and associates (e.g.,
Larkum et al., 1999; Larkum, 2013). The characteristics of the
listed mechanistic models essential for the view advocated in this
paper are:

(i) perceptual contents are encoded by the neocortical
pyramidal neurons (PN);
(ii) afferent presynaptic input from stimulation becomes
explicitly perceived when the activity of thalamo-cortical
microcircuits that represents specific sensory contents is
synchronized with the activity of thalamo-cortical non-
specific modulatory microcircuits; this system involves
layer-4 PN that are activated mostly by first-order and
higher-order feedforward connections from thalamus and
layer-5 PN as an essential link in integrating the cascaded
thalamo-cortico-thalamic processes by sending cortico-
thalamic efferents to higher-order thalamic relays such as
pulvinar;
modulatory presynaptic input essential for long-range
integration (top—-down connectivity) and contextual effects
from higher level cortex and/or from non-specific reticulo-
thalamic alerting system arrives at the apical dendrite
compartment of PN;
for perceptual integration to be available for conscious
experience (representing objects and scenes), temporal
coincidence of the somatic presynaptic input and apical-
dendritic presynaptic input is necessary;
(v) the varying contents of explicit perception are extracted
and selected from the active type-PN neurons by the
coincidence detection mechanism; this mechanism
makes part of the available information accessible for
consciousness;
this cellular/subcellular mechanism is subject to neuronal
plasticity effects in learning and constitutes a device where
actual sensory input and contextual information from long-
and short-term memory interact;
the temporal dynamics of activity of the PN units
is explicated in excitatory post-synaptic potentials
(EPSPs) and spiking as dependent on the level of EPSP
depolarization; it is subject to varied inhibitory effects by
GABA-ergic interneurons;
feed-forward sensory effects are somatic-compartment
driven whereas top—down and collateral modulation effects
are apical dendrite (including tuft) compartment driven.

(iii)

(iv)

(vi)

(vii)

(viii)

Information contents of objects and scenes are encoded in the
multiple modules of cortex, ordered along the afferent processing
stages retina-LGN-V1-V2-V4-IT. However, most of information
reaching these cortical areas benefits from the cascaded system
of thalamic relays (Sherman, 2005). It is widely accepted that
layer-4 and -3 pyramids are the main stuff of cells that are
tuned to the specific contents of stimulation represented in V1,
V2, V3, V4, V5/IT (Guillery and Sherman, 2002; Sincich and
Horton, 2005; Sherman, 2007). While there is no evidence that
layer-5 P cells directly respond to sensory input, these cells
are crucial in allowing multi-featured stimulation responded
to by layer-4 and -3 cells to be integrated for conscious
perception where different features of objects are perceptually
bound together (Llinds et al., 1998; Jones, 2001; Ribary, 2005).
Moreover, there are several reasons that allow me to postulate
that in addition to acting as an integrating device and modulator
(including top-down effects from cortex to subcortex), layer-
5 PN is a neural unit, activity of which may be a reliable
signature of the specific contents of sensory processing reaching
conscious-level representation. First, although primary geniculo-
cortical afferents most massively target layer-4 PN, there are
also specific sensory fibers to layer-5b pyramids (including
the “tall” variety with long apical dendrites) (Callaway, 2004).
Second, layer-5 PN axons target most of other layers except
layer-4 (Callaway, 2004). However, because temporal delays
between sensory input to a layer-5 PN and its driving effect
on supragranular cells that receive input from layer-4 cells are
extremely short it can be said that layer-5 activity virtually
synchronously mimics content-specific layer-4 and supragranul
activity. Third, if we accept the sparse coding principles in
neocortical representation then it is well conceivable that despite
its relatively less expressed specific afferent innervation compared
to layer-4 and different supragranular cells, layer-5 neurons
may well be capable of encoding the afferent contents of
stimulation. Fourth, there is substantial fast-acting input from
layer-5 PN to layer-4 higher order subcortical relays (Sherman,
2005) and thus a lower level layer-5 pyramid can signal a
higher-order layer-4 PN activity. Fifth, because the calcium
spike based BAC firing mechanism is extremely “explosive”,
the relative small number of specific afferent presynaptic fibers
targeting layer-5 PN can be compensated for by a rigorous
burst of spiking (Larkum, 2013). Sixth, because layer-5 PN
possess many widely branching axons, this type of cell can
multiply relatively few early level presynaptic sensory signaling
through diverging directions to higher levels of complex cells
representing complex attributes of stimuli. Seventh, it is well
known that early electrophysiological markers of neural activity
correlating with conscious perception of specific contents of
stimulation have a latency of about 100-150 ms or 200 ms
(Bachmann, 1994; Railo et al.,, 2011; Schoenfeld et al., 2011;
Navajas et al., 2013; Pitts et al., 2014; Andersen et al., 2015; Rutiku
et al., 2015). This means that neural correlates of conscious-
level perceptual activity attributed to layer-5 PN have to have
a corresponding post-stimulus latency. Hansen et al. (2012)
showed that both infragranular and supragranuar neural activity
in V1 boosted after 100 ms whereas granular activity had a
boost before 100 ms. As layer-5 specifies infragranular units,
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the association of surface-negative electrophysiological markers
of becoming aware of stimulus contents suggests that apical
amplification (which is characteristic to BAC firing mechanism
of layer-5 neurons) helps bringing respective contents to
consciousness.

Although layer-5 PN do not take any direct part in the feed-
forward retina-LGN-V1 object representation and perception
stream, the activity of layer-5 cells can be considered as a “litmus
test” of whether certain contents carried by PN of other layers
have been integrated to a conscious percept.

For the layer-5b PN to generate plateau-wave-based spiking,
the temporal coincidence of somatic sodium channel-related
presynaptic input and calcium channel-related presynaptic input
targeted at the apical compartment of the cell is necessary
(Larkum, 2013). The somatic input informs appearance or
presence of specific sensory input and input to apical dendrite
mediates modulation by the associative system. Importantly,
suprathreshold input to the neuron’s body (responsible for
signaling about the new stimuli) produces fewer action potentials
of the cell than triggering of the dendritic Ca?* spikes
does. This substantiates the importance of modulatory brain
processes in addition to the straightforward sensory afference
and provides a convincing argument for the common effects
of biased perception being under the contextual and arousal
systems control. (See also Llinas et al., 1998, on the putative
significance of coincidence detection for the effectively working
consciousness mechanism.) Figure 1 illustrates the key elements
of this conceptualization.

I posit that several temporal perceptual phenomena are due to
the preconditions requiring that (a) target stimuli are presented
together with contextual stimuli, (b) temporal parameters of
the duration and succession of the stimuli are compatible with
the time constants of activity of the timing of presynaptic
inputs and plateau waves of EPSPs of the coincidence detection
mechanism, (c) the somatic presynaptic input of the layer-5 PN
cells signaling about certain perceptual content and the dendritic
apical compartment input of the same layer-5 cells can originate
from different stimuli inputs, (d) the temporal delay to conscious
access of the perceptual contents is determined by the slowest
link in the hierarchical modules which represent the object and
scene contents. This set of premises makes it possible that target
stimulus’ contents-signaling activity of the PN is modulated by
the contextual stimulation so that illusory shifts of perceptual
delays of different content in real time may occur. Moreover,
in some stimulation conditions these premises allow a stimulus
that follows to substitute a preceding stimulus in conscious
experience.

THE PHENOMENA TO BE EXPLAINED

Temporal Reversal of Stimuli in

Consciousness

Recently, a novel temporal illusion was presented by Wu et al.
(2009) demonstrating that the cause of a perceptual event
can be perceived after the event itself. In a motion-induced
blindness (MIB) display, a static visual target presented on

a constantly rotating background of small crosses disappears
and reappears from awareness periodically. When a flash
was presented during a period of perceptual suppression it
almost instantaneously caused subjective reappearance of the
suppressed target. However, although being the cause of the
target’s reappearance (the subjective effect), the flash was
systematically perceived as occurring after this reappearance.
The subjective illusory delay to consciousness was about
100 ms. The authors did not present any specific coherent
theory for explaining the effect and suggested that specific
information updating and/or reentrant processing of subliminal
target trace might be involved. Obviously, it must be a non-
specific mechanism which brings the non-conscious specific
representation to consciousness because any explanation requires
a process that is activated by the flash but acts on the
representation of the target (and is, therefore, not specific). In the
coincidence detection based binding mechanism apical-dendrite
presynaptic input implements the non-specific counterpart and
somatic presynaptic input implements the specific target-content
counterpart. As the target stimulus is physically present also
when subjectively suppressed during MIB, by definition the
apical presynaptic input to the PNt neuron representing the
target should be insufficient during MIB although the somatic
input for PNt must be sustained (presumably at the near-
spiking threshold level of its EPSP, Figure 1, ii). When a
flash is presented, its transient response evokes non-specific
presynaptic input to apical dendrites of the PNt neuron and
as the PNt related EPSP was already at the near threshold
level, plateau-wave spiking of the PNt is ignited at once
(Figure 1, iii). This leads to the conscious perception of
the target. The sustained part of PNf signaling necessary for
the flash-stimulus perceptual content representation takes time
and only after a delay of about 100 ms specific somatic
and contextual dendritic pre-synaptic inputs coincidence is
processed, resulting in the delayed awareness of the flash.
When the flashed object is presented, two processes are
triggered - the process for representation of the contents
of the flashed stimulus and the boost of or perturbation
in the contextual process presynaptically alerting the PN
neurons at their apical-dendrite compartment. This facilitated
(or reset) contextual activity leads to binding of the already
present pre-conscious PNt-activity with global consciousness-
level representation. This binding process takes little time because
there is no need for build-up of the content-specific neural
representation for the target as it is pre-consciously already
present. (In some computational model, only phase resetting
between the already functioning two oscillatory activities is
required.)

lllusory Temporal Dissociation of
Filled-in Shape Surface Quality and
Background Sensory Quality

Another intriguing temporal illusion was presented by
Motoyoshi (2007). An illusory object (with its edges formed
by illusory contours) was briefly flashed on color background
which gradually changed its hue. An illusory dissociation
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FIGURE 1 | Conscious access to the contents signaled by a layer-5 PN depends on whether somatic feedforward presynaptic input (signaling
sensory contents of stimulation) is coincident with apical-dendritic presynaptic input (carrying contextual modulatory signals). (iiij) Two arrows
symbolizing the arrival of feedforward (blue arrow) and modulatory (red arrow) input are aligned in time, which refers to temporal coincidence of somatic and apical
inputs as a prerequisite of burst firing necessary for communicating the contents between levels.In this case BAC firing mechanism is ignited with its characteristic
plateau wave allowing rigorous spiking (iii). When somatic input is relatively strong (ii, blue arrow), but not accompanied by sufficient synchronous apical input (ii, red
arrow), conscious access is absent [the pyramid in (ii) does not fire sufficiently]. When apical modulatory input is sufficiently expressed, but somatic synchronous
sensory input is weak, conscious access to this sensory data is not possible (i). When in a non-conscious contents condition specific input is relatively substantial (i),
this content can be upgraded to conscious access fast because only a few synchronizing modulatory presynaptic apical inputs are needed. When in a
non-conscious contents condition modulatory input is relatively substantial, but specific input weak (i) conscious access may be granted instead for a different PN
that gets similarly strong apical modulation, but gets also a strong somatic input of a different content (e.g., iii, interpreted as referring to a different neuron from the

LayerS
pyramidal
| neurons

between the color of the object formed by illusory contours
and its surrounding background color was perceived. The
illusory object’s surface appeared subjectively as having the color
of the background from the earlier time when the inducing
elements of the illusory-contour object were flashed but the
background surrounding the object appeared in the color
the background obtained later in time. Again, the author did
not present any specific coherent theory for explaining the
effect and suggested a possible involvement of specific cortical
filling-in mechanisms for static objects (working slower than
the dynamic background signaling mechanisms). From the
present theoretical point of view this illusion can be explained
by the temporal coincidence of the two processing states. One
is the slower object form related presynaptic somatic activity
of the neurons PNcf at a higher level where color and form of
the filled-in contoured object had been integrated. The other
is the fast background color representing contextual activity
driven by the contourless background color where somatic and
apical compartment presynaptic coincidence has been processed
faster. For the PNcf representing color/form integrated objects
access to consciousness is slower and with regard to it the
internal state iii (Figure 1) represents an earlier external time
moment than the internal state iii (Figure 1) for the PNbg
representing diffuse background color. This explanation either
suggests that sensory consciousness emerges right there where
the corresponding perceptual contents coding PN are located
(even though at different cortical levels) or assumes a higher level
integrative locus where “all comes together” with a temporal

delay.

Backwrad Masking

In backward masking, if a brief target stimulus (e.g., with 40 ms
duration or less) is rapidly followed by a masking stimulus,
target may not be consciously perceived and the masking
stimulus is explicitly experienced instead (Bachmann, 1994;
Breitmeyer and Ogmen, 2006). Majority of masking theories
explain this by some inhibitory mechanism where masking-
stimulus signals suppress or interfere with target-stimulus signals
(review: Breitmeyer and Ogmen, 2006). The hypothetical picture
of the BAC firing mechanism processes that would lead to this
kind of behavioral/subjective outcome is as follows. First of
all, let us remember that the theoretically necessary condition
for sensory input to be integrated up to the level of conscious
experience requires temporal coincidence of the input to different
compartments of the same neuron. Input from feedforward
sensory channels targeted at the somatic compartment of the
PN cell that represents the signaled content and associative
(modulating) input targeted at the distal dendritic compartment
of the cell must simultaneously coincide in time. Target signals
feed synaptic receiving membrane compartment close to cell
soma with a short delay (say, 30-50 ms) generating few somatic
Nat spikes. However, because this delay is too short for any
associative input to arrive to the tuft region of the dendrite in
response to the target-evoked perturbation, initially there is no
target experience. Processing is pre-conscious. After some more
time has lapsed, this associative, tuft-area directed presynaptic
input arrives (say, with about 100 ms post-target delay), but it
coincides with the mask-stimulus evoked Na™ spikes produced
by the neurons that encode mask features. Because certain
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features of target and mask are shared by the target-responsive
and mask-responsive cells (e.g., spatial location, some blob-, or
edge-defining features, etc), mask-responsive cells receive also
the associative presynaptic Ca’Tactivity initiating input to the
dendrite’s upper compartment (this was evoked by the preceding
target). Because this input is coincident with Na™t spikes, a
plateau wave is produced primarily for the neurons representing
the mask features instead of the neurons representing exclusively
the target features (Figure 1, iii). We must remember here that
the associative input in response to a perturbation by a stimulus
has a longer delay to reach the apical compartments of the
dendrites of the neurons compared to the delay it takes for the
initial basal input to arrive to the cell. This basic fact is the
crucial precondition for BAC firing based binding of the later
presented stimulus with conscious representation instead of the
first presented, briefly offset stimulus. Thus, the target-evoked
dendritic Ca?>* mediated EPSP appears after a delay, is spread
also to dendrites of other cells (e.g., mask-related neurons), and
coincides with the fast Na ™ based somatic EPSP/spiking process
of the mask-related cells. It is exactly then and there when and
where the coincidence detection device sets in, but as a result,
the masking stimulus is emphasized for awareness. An open
question here is this: what are the relative roles of the (i) specific
top—down associative backpropagation from the higher nodes of
representations of specific input and (ii) non-specific (“diffuse”)
thalamocortical modulation mediated by the directed arousal
system? Bachmann (1994, 1997) in his model of modulated
EPSPs as the explanatory mechanism of masking emphasizes
the latter aspect. Larkum (2013), in his explanation of feature
binding, leaves open the role of non-specific thalamocortical
input possibly targeting the same dendritic area (layer 1) as
reentrant cortical feedback inputs do.

lllusory Misbinding of Features

In certain specific mutual masking experimental protocols,
illusory misbinding of features of the two successive, spatially
overlapping targets occurs when intermediate stimulus onset
asycnhronies (SOAs) separate targets in time. For example, this
happens when S1 and S2 are stimulus-objects with two integrated
within-object, task-relevant features in each (Hommuk and
Bachmann, 2009). When certain shape (e.g., square, ring,
triangle) is combined with certain orientation of the grating
filling the area of that shape (e.g., vertical, horizontal, oblique)
and when subjects are asked to report the contents of the object
not by the target feature (according to which he/she searches that
object), but according to the other feature associated with the
target feature, illusory misbindings are typical. The shape of S1
(when target is searched according to that shape) is misbound
with the surface-grating of S2, but rarely the opposite version of
misbinding happens. According to the hypothetical coincidence
detection (cellular level) mechanism the neural events leading
to misbinding are as follows. Shape processing as a relatively
higher level operation takes longer than grating orientation
processing. The top—down activity directed from the PN neurons
encoding S1 shape and targeted at the apical compartment of
the dendrites of the lower level orientation encoding neurons
produces Ca?" membrane activity exactly at the time when

the feedforward somatic input to the lower level PN neurons
encoding S2 surface orientation arrives there. This temporal
coincidence allows to produce a plateau-wave in the neurons that
carry information about S2 surface orientation, which leads to
perceptual integration of this feature with the higher level neural
activity representing S1 shape. The result is illusory binding of
S1 shape and S2 surface orientation in the perceived object. The
temporal asymmetry of misbinding between the two attributes
separated in time speaks against the response bias explanation of
the illusion.

Flash-Lag Efect

I will end the examples of illusions with the much celebrated
flash-lag effect (FLE; Sheth et al., 2000; Nijhawan and Khurana,
2010; Bachmann, 2013; Hubbard, 2013). When an object
continuously changes its feature value (e.g., location when in
motion or color when presented from the same location) and
an invariant object is briefly flashed, with its value matching
the value of the changing object, the flashed object appears to
lag behind the continuously changing object. For example, the
moving object appears to be ahead of the flashed object along
the trajectory of motion (even though actually the objects were
aligned) or the color of the flashed object appears to have the
hue the continuously color-changing object had a brief moment
ago. Among the most popular theories explaining the FLE we
should first of all refer to the extrapolation theory: the moving
target is extrapolated in space and the flashed static reference
is therefore lagging behind (see Nijhawan and Khurana, 2010).
Another well known theory suggests that the moving stimulus is
processed faster than the stationary flash, which also causes the
flash to lag. However, FLE can be obtained also when a target
is presented in a stream of spatially overlapping stimuli (target
compared to an out-of-stream reference stimulus) (Bachmann
and Poder, 2001). This invalidetes the theory based on differential
processing speeds of moving and stationary stimuli. On the
other hand, if the mechanism of exptrapolation is controlled by
presenting an additional moving stimulus in order to cancel the
motion vector of the moving reference stimulus, FLE is alive
and well despite this nullification of the extrapolation activity
(Bachmann et al., 2012). This result puts extrapolation theory as
the only valid theory in doubt. From the point of view of the
coincidence detection mechanism the effect appears as a result
of the difference in the delays with which the crucial presynaptic
input arrives at the PN neurons. Let us compare the delays
with which the apical dendrite-targeted, presynaptic contextual
input arrives at its presynaptic membrane locus compared to
the time when the somatic presynaptic feedforward input arrives
at its presynaptic membrane locus. In case of the continuously
changing object the preceding instances of the sensory input
have already succeeded in driving the time-consuming activity
of the higher level nodes above PN level. Consequently, the
reentrant contextual input targeted at the apical dendrites of the
PN coincides in time with the newly arriving somatic presynaptic
input to this cell. Because of this “stealing of time” the very
first afferents of the continuously changing stimulus take part in
coincidence based boosting of the plateau wave of the PN (e.g., a
state as in Figure 1, i changes very fast to a state as in Figure 1,
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iii). The changing object’s perceptual values are fast to conscious
perception. With the flashing object there is a temporal handicap:
because the flashed object is a newly appearing one, it takes time
to prepare the bottom-up plus top—down contextual reentrance
for apical presynaptic input. This means that the somatic plus
apical input coincidence detection for the PN of the flashed object
has a longer delay. The same subjective moment in time presents
the observer with different perceptual values of the changing and
invariant objects: for the flashed feature this value comes from
a bit more distant past while for the changing object it is more
contemporary.

The present theoretical account capitalizing on the contextual
modulation by the BAC firing mechanism has an advantage
over the above mentioned alternative theories put forward
for explaining the listed phenomena. Each of these theories
is narrowly bound to certain one specific phenomenon while
the present theoretical approach can explain a multitude of
phenomena in a single theoretical framework. Sure enough,
although the temporal parameters of the listed phenomena have
a largely coinciding order of magnitude of the temporal scale
(e.g., 50-200 ms), the precise timing values may differ. Therefore,
in future research it is important to find the ways to test
specific predictions related to precise timing of the phenomena
vis-a-vis the timing of the subprocesses of the BAC firing,
contextual modulation, mechanism. Although this is technically
complicated with human subjects, one way would be to measure
directly the BAC firing processes in the conditions across different
experimental settings that produce these different phenomena.
(If animal models of perceptual behavior - supposedly based
on the analogous phenomena - could be developed, direct
measurements by patch clamp or optogenetic procedures may be
envisaged. First attempts along this direction can be noted: e.g.,
Manita et al., 2015). If the time constants of the BAC firing related
activity of the neuronal motifs will change according to the
stimulation context specific to each phenomenon, the generality
of the present theory will receive support. On the other hand, it
should be possible to modulate the timing characteristics of the
BAC firing mechanism by psychopharmacological intervention
targeted at modulating the neurotransmitter and —modulator
activity or sensitivity of the respective systems. (Glutamatergic
and GABA-ergic systems are among the first candidates as the
BAC firing, apical amplification mechanism clearly depends on
the effects of these substances.).

Another line of research might be this: we can study individual
differences in timing parameters of the listed phenomena
as related to endophenotypes caused by genetic variability.
For example, in our recent research we showed that there
are individual differences in timing the magnitude of the
metacontrast masking effect. Masking dynamics interacted
with single nucleotid polymorphisms (SNPs) associated with
serotonergic, dopaminergic and BDNF related endophenotypes
(Maksimov et al,, 2013, 2015a,b). This approach, if further
developed, allows cellular-level precise analysis of timing of
neural activity in light of behavioral effects of perceptual
phenomenology. For example, the 5SHTR2A mediated non-
synchronous, late glutamatergic EPSP has a post-stimulation
delay exceeding 50 ms. This effect is characteristic for apical

dendrites of the layer-5 PNs (Marek and Aghajanian, 1998;
Aghajanian and Marek, 1999a) and corresponds suitably to what
Larkum (2013) has described when explaining the subcellular
mechanism of cognitive binding and long range top-down
modulation. Importantly, Ca?* based electrogenesis of the
membrane response allowing integration of the apically targeted
modulatory effects and soma-directed primary sensory afference
(which is central in our conceptualization) is also implicated
in the slow 5-HT induced glutamatergic response (Aghajanian
and Marek, 1999b). So the two approaches appear mutually
consistent in describing the neuronal-level basic mechanisms of
neural underpinnings of real-time cognition. Furthermore, this
5-HT based mechanism is strongly involved in hallucinogenic
effects (Aghajanian and Marek, 1999a), which also suggests
this mechanism is involved in visual functions. Thus, some
predictions based on serotonergic system related common
genetic variability could be used to reveal whether individual
differences in the timing of the optima of some of the listed visual
phenomena support our theoretical approach.

Visual phenomenology as related to GABA and glutamate
levels in visual cortex was investigated by Terhune et al
(2015) who used transcranial magnetic stimulation for inducing
phosphenes. Phosphene thresholds negatively correlated with
glutamate concentrations in visual cortex (assessed by magnetic
resonance spectroscopy). This result is not at odds with our
theoretical stance and the views of Larkum (2013). Apical
compartment activity relates to this effect.

Of course, another direction of development for the present
approach could be computational modeling (e.g., Shai et al.,
2014, 2015). While this remains out of the scope of the present
article, I can notice some positive trends in recent published
research, including the very promising approach taken by Phillips
(2015). Indeed, when this article was already written to its pre-
revision stage, several papers were published also suggesting
that the BAC firing related apical amplification mechanism of
contextual modulation could find its place at the center stage of
current theorizing about conscious perception: Phillips (2015),
Meyer (2015), Muckli et al. (2015). Among these, Phillips (2015)
comments our earlier similar ideas (Bachmann and Hudetz,
2014) and hints at possible limitations which our account of BAC
firing as the consciousness mechanism might bear. I will reply to
Phillips (2015) in the part that follows.

UNSOLVED ISSUES AND LIMITATIONS
OF THE PRESENT ACCOUNT

An obvious limitation of this paper concerns the mutual
isolation of the perceptual level phenomena I explained and
the mechanistic level of explanation at the (sub-)cellular
level. Because of the space constraints I can not present
an in-depth treatment of this issue. For a more detailed
discussion of the neuronal level mechanistic description of the
foundations of the present theory of the illusory phenomena
different publications can be recommended (see Bachmann,
1994; Larkum, 2013; Bachmann and Hudetz, 2014). On the
other hand, most of the earlier research involving cellular
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level description of the mechanisms featuring top-down
presynaptic input and coincidence detection has been either
(a) abstract computational modeling without combining direct
evidence from neural/behavioral data and model behavior
or (b) neurobiological experiments employing neuronal-
level recording, but using anesthetized animals or in vitro
methods. Understandably enough, this type of research can not
provide data directly relevant for consciousness phenomena.
Nevertheless, among the scarce research linking top-down
contextually modulated perceptual behavior in vivo and cellular
events there are studies with results consistent with the present
hypothesis. Using the method of cortical cooling of V3 and
V2, Nassi et al. (2013) demonstrated top-down modulation
of the V1 neuronal responses in alert monkeys. Yet, the layer
specificity of the lower level neurons could not be precisely
ascertained with the methods of recording they used. Similarly,
although the results of another monkey-study (Self et al., 2012)
showed that top-down contextually driven modulations and
feedforward effects are mediated differently (by NMDA receptors
and AMPA receptors), the precise layer-specific description of
the presynaptic afferents was not available. On the other hand,
the detailed descriptions of the layered structure of the neuronal
local circuits mediating perceptual and cognitive phenomena
involving contextual effects have been suggested repeatedly
(e.g., Grossberg and Versace, 2008). However, this research
has typically followed the tradition of abstract computational
modeling without directly collecting neurobiological data in
association with behavioral task perfromance.

Another limitation of the present article is its “fixation” at
the layer 5/6 units without explicating whether other layers of
neurons may be necessary or even whether other kinds of local
circuits capitalizing on the effects of neurons situated in other
layers (except layer 5) could produce similar results. For example,
layer 2/3 and layer 6-to-4 neurons can be assembled together
so as to model a rich repertoire of the perceptual phenomena
(Grossberg and Versace, 2008). Future neurobiological research
combining single-cell recordings/manipulations and behavioral
experiments with alert mammal subjects should help solve these
dilemmas.

Phillips (2015) argues that theoretical standpoints of
Bachmann and Hudetz (2014) who earlier presented the
views similar to what is presented in this paper need further
clarifications. First, according to Phillips (2015) it can also
be argued that consciousness depends upon the formation of
transient coalitions (Crick and Koch, 2003), so the role of apical
amplification in creating large mutually supportive coalitions
needs to be clarified. Indeed, by facilitating communication
to higher cascaded levels of representation by BAC firing
and therefore also creating chances of more top-down effects
apical amplification also helps to invoke more pyramidal
cells into forming coalitions which dissipate as soon as either
somatic or apical input or both become insufficient. As Phillips
(2015) rightly notices, relating assembly formation to NMDA-
dependent anesthesia may be one way of doing this (Flohr et al,,
1998; see also Meyer, 2015). Second, Phillips asks whether it
is only the contents that are consciously experienced, but not
the level, and, if so, why? I think that, directly, only contents

are consciously experienced, but certain variable aspects
of contents such as “clarity”, “intensity”, “fragmentariness”
indirectly tell the subject what is the level of consciousness.
In perceptual illusory phenomena the aspect of subjective
contrast can be often noticed. Phillips (2015) also points out
that strong modulatory interactions can occur even in cases
where the subject is not conscious of the contextual information
producing the amplification. It therefore needs to be made clear
how it is possible for effective modulation to occur without
consciousness. In my opinion, the level of EPSP can be shifted
closer to firing threshold before firing has started and this can
work selectively for certain content. This may be a kind of
implicit Bayesian priors selectively modulating of what becomes
selectively conscious among the possible alternatives. Actually,
in most of the perceptual phenomena described in the preceding
chapter this kind of subliminal influence has been assumed.
Moreover, few spikes of the content-carrying layer-5 pyramidal
neurons can be produced in the driving mode which may not
be sufficient for consciousness, but the bursting mode caused
by BAC firing is what matters. The fourth problem according
to Phillips refers to our assumption that BAC firing is the
mechanism by which apical input amplifies response, but the
evidence reviewed in Section 2 of Phillips’ article (Phillips, 2015)
suggests that other mechanisms may be more important in some
classes of pyramidal cell. Of course, I think that in order to
protect the apical amplification system from too long inhibited
states after the preceding intensive bursting and for allowing
lateral-inhibitory effects from neighboring content-specific
neurons to take place, certain balancing mechanisms are needed.
Phillips (2015) and Larkum (2013) list many such cellular-level
mechnisms (e.g., interneurons of different types) capable of
inhibition and disamplification that could optimize the work of
the BAC firing integrative mechanism. On the other hand, it is
possible that not all pyramidal cells that are modulated by apical
amplification are part of the direct consciousness mechanisms
(e,g, CA cells or some parietal cortex cells). The consciousness
mechanism at its cortical level may consist in only a part of
cortical pyramids such as the ones present in the higher-level
occipital, most of the temporal, and some of the frontal cortex.
Fifth, Bachmann and Hudetz (2014) imply that amplification
can be strong enough to amplify transmission of the content,
but not strong enough to elevate it into consciousness. Thus,
Phillips (2015) further asks what is the difference between the
apical amplification that is sufficient for consciousness and that
which is not? Relying on my earlier model involving presynaptic
modulation of the EPSPs of pyramidal neurons (Bachmann,
1994, 1997) and its successfully tested experimental predictions
I suggest that insufficient duration of the BAC firing plateau
potential may be the cause why some amplifications remain
without a conscious effect.

Phillips (2015) further comments that there is a long
tradition in psychiatry relating disorders such as hysteria and
schizophrenia to impaired levels of consciousness and asks
how is apical dendrites’ amplification related to that evidence.
In my view it is possible that endophenotypes related to
mental vulnerability are the result of deficient neuromediator-
and -modulator systems which in turn causes abnormal
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phenomenology. This is what causes abnormal conscious
experiences. Finally Phillips (2015) pointed out that some
functions of apical amplification such as attention, working
memory, and cognitive control require consciousness, but others
such as priming and figure-ground segregation do not, which
means that such differences at the phenomenological level require
clarification. I think that both recent theoretical arguments and
empirical evidence show that attention and working memory can
be preconscious as well as conscious (Bachmann, 2011; Murd
and Bachmann, 2011; Tsuchiya and Koch, 2016). Consequently,
it seems to be a matter of degree whether and to what extent
some cognitive function remains subliminal. Subliminal phase
of some cognitive process can be interpreted as inter-level
communication in the driving mode of neuronal spiking without
sufficient generation of the plateau potentials in the bursting
mode of pyramidal activity.

CONCLUDING REMARKS

There are two big groups of neurobiological theories of the
mechanisms of explicit conscious perception possibly to be used
for explaining why our subjective experience of the real world
is not always veridical and sometimes even deprives us from
seeing distinct reality: (i) distributed global processing theories,
stressing the importance of the large network and computations
performed by that network (Baars, Tononi, Dehaene, Singer);
(ii) local integrative modules based theories stressing the
significance of the cellular and sub-cellular mechanisms for
the whole global network functioning and particularly for
upgrading the preconscious information processing activities
in order to acquire the status of phenomenal experience
of the processed contents (Llinds, Larkum, Bachmann). The
group (i) does not provide specific hypotheses for the fine
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