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The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature

of overexcitability, which assists in determining the developmental potential of an

individual according to Dabrowski’s Theory of Positive Disintegration. Previous validation

studies using frequentist confirmatory factor analysis, which postulates exact parameter

constraints, led to model rejection and a long series of model modifications. Bayesian

structural equation modeling (BSEM) allows the application of zero-mean, small-variance

priors for cross-loadings, residual covariances, and differences in measurement

parameters across groups, better reflecting substantive theory and leading to better

model fit and less overestimation of factor correlations. Our BSEM analysis with a sample

of 516 students in higher education yields positive results regarding the factorial validity of

the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement

invariance, the absence of non-invariant factor loadings and intercepts across gender is

supportive of the psychometric quality of the OEQ-II. Compared tomales, females scored

significantly higher on emotional and sensual overexcitability, and significantly lower on

psychomotor overexcitability.

Keywords: Bayesian structural equation modeling, Overexcitability Questionnaire-Two (OEQ-II), approximate

measurement invariance, alignment optimization method, Dabrowski’s Theory of Positive Disintegration,

psychometrics

INTRODUCTION

Overexcitability within Dabrowski’s Theory of Positive
Disintegration
Dabrowski (1902–1980), a Polish psychiatrist and psychologist, developed the Theory of Positive
Disintegration, which centers on heightened excitability in individuals, as well as on their drive,
and their urge to resist conformity and complacency (Daniels and Piechowski, 2009). According
to Dabrowski (1964; 1972; Mendaglio, 2008), personality is achieved through a process of positive
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disintegration, which begins with the disintegration of a primitive
mental organization aimed at meeting biological needs and
conforming to societal norms. Reintegration subsequently takes
place at a higher level of human functioning, as characterized
by autonomy, authenticity, and empathy. Achieving the highest
level of human development—or enacting the personality ideal—
depends on the developmental potential of an individual, which
is determined by the individual’s level of innate heightened
excitability (overexcitability) and the presence of specific talents,
abilities, and autonomous inner forces that cultivate growth
(dynamisms).

According to Dabrowski, the developmental potential of an
individual depends in part on the extent and nature of psychic
intensity. Dabrowski uses the term “overexcitability” to refer to
an above average responsiveness to stimuli, due to heightened
sensitivity of the central nervous system, which generates a
different, more intense, and more multi-faceted experience of
internal and external reality (Dabrowski, 1964, 1972; Mendaglio,
2008). Dabrowski distinguishes five forms of overexcitability.
Psychomotor overexcitability represents “a surplus of energy
or the expression of emotional tension through general
hyperactivity” (Silverman, 2008, p. 160). Manifestations include
an abundance of physical energy, work addiction, nervous habits,
rapid speech, love of movement, impulsiveness, competitiveness,
and an urge to action. Sensual overexcitability involves enhanced
receptivity of the senses, aesthetic appreciation, sensuality,
and pleasure in being the center of attention. Imaginational
overexcitability is characterized by a capacity to visualize
events very well, as well as by ingenuity, fantasy, a need for
novelty and variety, and poetic and dramatic perception.
Intellectual overexcitability is characterized by an intensified
activity of the mind, as well as by asking penetrating questions,
reflective thought, problem solving, searching for truth and
understanding, conceptual and intuitive integration, and an
interest in abstraction and theory. Emotional overexcitability
involves an intense connectedness with others, as well as the
ability to experience things deeply, strong affective and somatic
expressions, sensitivity in relationships, responsiveness to
others, and well-differentiated feelings toward self (Silverman,
2008; Daniels and Piechowski, 2009). Dabrowski considers
the last three forms of overexcitability essential to advanced
personality development (Dabrowski, 1972; Mendaglio,
2008).

The Overexcitability Questionnaire-Two
and its Psychometric Properties
Falk et al. (1999) developed a self-report questionnaire
to measure the degree and nature of overexcitability. The
Overexcitability Questionnaire-Two (OEQ-II) continues to be
used primarily in research positioned within the domain of
giftedness. Numerous studies on intensity in gifted and non-
gifted students have demonstrated associations of giftedness with
intellectual (Bouchet and Falk, 2001; Tieso, 2007a; Siu, 2010;
Carman, 2011; Harrison and Van Haneghan, 2011; Wirthwein
and Rost, 2011; Wirthwein et al., 2011; Van den Broeck et al.,
2014), imaginational (Tieso, 2007a; Siu, 2010; Carman, 2011;
Harrison and Van Haneghan, 2011), and emotional (Bouchet

and Falk, 2001; Siu, 2010) overexcitability. The OEQ-II has been
translated into Turkish, Chinese, Korean, Spanish, French, and
Dutch (Falk et al., 2008; Siu, 2010; He and Wong, 2014; Van
den Broeck et al., 2014; Botella et al., 2015). Empirical research
has revealed that emotional, intellectual, and imaginational
overexcitability are important indicators and predictors of
advanced personality development (Falk and Miller, 2009).

Despite the rising tendency in empirical research to use
the OEQ-II as a supplementary measure of dispositional
traits, the instrument has been validated in a limited way.
Falk et al. (1999, p. 2) developed the easily administered
and scored OEQ-II by incorporating the results of numerous
prior studies on hyperexcitability, “including responses to deep
reflex stimulation, open-ended responses to verbal stimuli,
assessment in autobiographical material, and an open-ended
questionnaire.” The authors investigated the structural validity
of the questionnaire via principal components factor analysis
using varimax rotation. A stable and conceptually clear five-
factor structure was retrieved with factor loadings above 0.50, and
good internal consistency among the items indicative of the same
factor was found for the two samples under study (Falk et al.,
1999).

Van den Broeck et al. (2014) investigated the factorial
structure of the OEQ-II (Dutch translation), using exploratory
structural equation modeling (ESEM; Asparouhov and Muthén,
2009) with weighted least squares estimation and oblique target
rotation. The highly restrictive independent clusters model used
in the confirmatory factor analysis (CFA), in which each indicator
is allowed to load on only one factor and all non-target loadings
are constrained to zero (Marsh et al., 2009), led to model
rejection. Model testing using ESEM, in which the five correlated
overexcitability factors were measured by each of the 50 items,
yielded a partly satisfactory model fit. Modification indices were
inspected in order to improve the model by including two
residual covariances, ultimately leading to an acceptable fit to
the data. This study further examined measurement invariance
across intelligence levels and gender using an ESEM-Within-
CFA approach (Marsh et al., 2013). This analysis established
partial strict measurement invariance of the OEQ-II scores
across the different groups. The researchers concluded that
the non-invariant parameters do not considerably affect group
comparisons because of their small proportionality.

Warne (2011) also investigatedmeasurement invariance of the
OEQ-II scores across gender using a multi-group CFA approach
and maximum likelihood estimation, but the study could not
establish metric invariance.

Botella et al. (2015) examined the structural validity of the
French OEQ-II using CFA and maximum likelihood estimation.
Instead of freeing “an important number of cross-loadings
and residual covariances” (Botella et al., 2015, p. 211), the
researchers first reduced the instrument to a 35-item version
and concluded that a model with “five correlated factors with
residual covariances” yields a better fit to the data compared to
a “one second-order factor” model. Other studies that used CFA
and maximum likelihood estimation to establish the construct
validity of the OEQ-II also resulted in moderate model fit (Tieso,
2007b; Siu, 2010; He and Wong, 2014).
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Bayesian Structural Equation Modeling
In contrast to frequentist statistics, which ignores prior
knowledge for hypothesis testing, Bayesian statistics relies on
Bayes’ theorem to update prior knowledge given the data.
In maximum likelihood estimation, the parameters of the
population are fixed but unknown, and the estimates of those
parameters from a sample of the population are random but
known. In Bayesian statistics the parameter of the population is
considered random, allowing probability statements to be made
about its value, as expressed in the prior distribution. Using Bayes’
theorem, observed sampling data will revise this prior knowledge,
leading to the posterior distribution of the parameter (Bolstad,
2007; Lee, 2007; Kaplan and Depaoli, 2012). Drawing on Bayes
theorem, the formula for the posterior distribution P(θ|z) of the
unknown parameter θ given the observed data z can be expressed
as:

P (θ|z) =
P (θ, z)

P (z)
=

P (z|θ)P (θ)

P (z)

where P(θ) stands for the prior distribution of the parameter,
reflecting substantive theory or the researcher’s prior beliefs,
and P(z|θ) is referred to as the distribution of the data given
the parameter, which represents the likelihood (Levy, 2011;
Kaplan and Depaoli, 2012; Kruschke et al., 2012; Zyphur
and Oswald, 2015). Omitting the marginal distribution of
the data P(z) in the formula, reveals the proportionality of
the unnormalized posterior distribution to the product of
the likelihood and the prior distribution (Levy, 2011; Kaplan
and Depaoli, 2012). The uncertainty regarding the population
parameter value, as indicated by the variance of its prior
probability distribution, is influenced by the observed sampling
data, yielding a revised estimate of the parameter, as reflected in
its posterior probability distribution (Kaplan and Depaoli, 2012).
The Bayesian credibility interval1, based on the percentiles of
the posterior distribution, allows direct probability statements
about the parameter, in contrast to the confidence interval (CI)
in frequentist theory, which is contingent on the hypothesis
of extensive repeated sampling from the population (Bolstad,
2007; Kaplan and Depaoli, 2012; Zyphur and Oswald, 2015).
The posterior distribution P(θ|z) yields maximum information
about the parameter given the data—“unlike the point estimate
and confidence interval in classical statistics, which provide no
distributional information” (Kruschke et al., 2012, p. 725). Using
a small variance prior, which reflects strong prior knowledge, the
data will tend to contribute less information to the construction
of the posterior distribution (Muthén and Asparouhov, 2012).

1The Bayesian credibility interval can be retrieved directly from the percentiles

of the posterior probability distribution of the model parameters. Using the

posterior distribution percentiles, it is possible to determine directly the probability

that a population parameter value is situated within a specific interval. In this

study, which used Bayesian analysis as a pragmatic approach, a (null) hypothesis

testing perspective (Arbuckle, 2013; Zyphur and Oswald, 2015) was used in

parameter estimation by evaluating whether the 95% credibility interval of the

model parameters encompassed zero. If the posterior probability interval of a

particular parameter does not contain zero, the null (condition) can be rejected as

implausible, and as a consequence, the parameter is considered significant (which

is indicated by a one-tailed Bayesian p-value below 0.05). A hypothesis testing

perspective was also used in assessing model fit (Levy, 2011).

Recently, computational methods (e.g., the Gibbs algorithm)
have been developed to draw random samples from the posterior
distribution, allowing the practical use of Bayesian statistics
(Bolstad, 2007), and leading to strong and increasing interest in
this approach to statistics (Kruschke, 2015).

Meanwhile, Muthén and Asparouhov (2012) proposed an
innovative approach to factor analysis using Bayesian structural
equation modeling (BSEM), which better reflects substantive
theory. Many psychological instruments cannot be adequately
represented within a frequentist CFA approach, in which each
item is allowed to load on one factor and all non-target loadings
are fixed at zero (Marsh et al., 2009). Strategies to compensate
for this inappropriateness may capitalize on chance (MacCallum
et al., 1992), with a large risk of model misspecification (Muthén
and Asparouhov, 2013b). In BSEM, parameter specifications
of exact zeros are replaced by approximate zeros based on
“informative, small-variance priors to reflect the researcher’s
theories and prior beliefs” (Muthén and Asparouhov, 2012,
p. 316).

In the same way, Muthén and Asparouhov (2013a) propose
the BSEM approach to measurement invariance analysis across
different groups, in which exact zero differences in factor loadings
and intercepts are replaced by approximate zero differences
based on zero-mean, small-variance priors. “Measurement
invariance is built on the notion that a measuring device
should function in the same way across varied conditions, so
long as those varied conditions are irrelevant to the attribute
being measured” (Millsap, 2011, p. 1). With reference to
psychological questionnaires, this implies that in order to test
for mean differences across groups, the assumption of equivalent
measurement of the underlying construct must be fulfilled.
Scalar invariance, as characterized by invariant factor loadings
and measurement intercepts, is a prerequisite to compare
factor means and factor intercepts across groups (Vandenberg
and Lance, 2000; Millsap, 2011; Muthén and Asparouhov,
2013c). The BSEM approach to measurement invariance is
referred to as approximate measurement invariance and provides
a valuable alternative to the multi-group CFA approach to
measurement invariance analysis with maximum likelihood
estimation (Muthén and Asparouhov, 2013a; Asparouhov and
Muthén, 2014), which mostly results in unsatisfactory fit
due to minor deviations from exact invariance (Muthén and
Asparouhov, 2012). Results of simulation studies indicate that
BSEM with approximate measurement invariance is a suitable
technique for proper estimation and comparison of factor
means and variances across multiple groups that may have
non-invariant measurement parameters with minor variance,
“without relaxing the invariance specifications or deleting non-
invariant items” (Muthén and Asparouhov, 2013a, p. 7; van de
Schoot et al., 2013).

Aim of this Study
The first and main objective of this study is to investigate the
structural validity of the OEQ-II using BSEM with informative,
small-variance priors, and to compare the results of this Bayesian
approach to that of a frequentist approach to validation.
We hypothesize that maximum likelihood CFA and ESEM
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models will generate poor data fit by postulating non-estimated
parameters as exactly zero. The results of previous validation
studies indicate that the OEQ-II—like most psychological
instruments—exhibits slight cross-loadings and measures several
supplementary minor personality factors in addition to the five
overexcitabilities. On the one hand, freeing all cross-loadings and
residual covariances leads to a non-identified model (Muthén
and Asparouhov, 2012); on the other hand, modifying the model
using modification indices in a frequentist analysis may capitalize
on chance (MacCallum et al., 1992). Using Bayesian analysis as a
pragmatic approach, we hypothesize that the BSEM model will
generate a good fit to the data because it may take into account
the existence of trivial cross-loadings in the CFA model and
many minor correlated residuals among the factor indicators.
The BSEM technique allows for the simultaneous inclusion in
the model of all, approximate zero cross-loadings and residual
covariances based on zero-mean, small-variance priors, and
consequently represents substantive theory better.

The second aim of the study is to explore in greater
depth the interrelationships between the five overexcitabilities
by estimating a higher order model based on theoretical
expectations and using Bayesian estimation. Mendaglio and
Tillier (2006) strongly advocate the conceptualization of
overexcitability within the overall context of development
potential in future quantitative studies. According to Dabrowski,
an individual’s developmental potential is comprised of
overexcitability, specific talents and abilities, and a strong
autonomous drive to achieve individuality (Dabrowski,
1964, 1972; Mendaglio, 2008). However, the five forms of
overexcitability are not equally important with respect to the
developmental process (Mendaglio, 2012). Dabrowski considers
emotional, intellectual and imaginational overexcitability
essential to advanced personality development (Dabrowski,
1972; Mendaglio, 2008, 2012). Positive developmental potential
is comprised of all of the five overexcitabilities, although
emotional, intellectual and imaginational overexcitability aid
the transformation of the lower forms of overexcitability,
i.e., psychomotor and sensual overexcitability, “such that
their energy is harnessed in the service of the developmental
process” (Mendaglio, 2012, p. 212). The exclusive presence of
psychomotor and sensual overexcitability constitutes negative
developmental potential, which impedes the transcendence of
biological needs and societal norms that is considered to be
fundamental for the development of autonomy, authenticity,
and empathy (Dabrowski, 1972; Mendaglio, 2012). Based on
these theoretical considerations we hypothesize that all of the
five overexcitabilities will load substantially on a superordinate
general construct of positive developmental potential.

The final objective of this study is to investigate approximate
invariance of measurement parameters across gender using
BSEM. A CFA approach to measurement invariance often
proves to be too strict, leading to model rejection and a long
series of modifications of the model with a substantial risk
of misspecification (Asparouhov and Muthén, 2014). Using an
ESEM-Within-CFA approach, the study by Van den Broeck
et al. (2014, p. 64) revealed partial strict measurement invariance
across gender: “five items showed larger unique variances for girls

than for boys, seven thresholds out of 200 were non-invariant,
and only 12 out of 250 factor loadings were non-invariant.”
Because of the small proportionality of non-invariant parameters,
we hypothesize that the BSEM approach will be a useful
alternative to establish approximate measurement invariance
across gender.

All analyses were carried out using the Mplus software
program (Version 7.3; Muthén and Muthén, 1998–2012).

MATERIALS AND METHODS

Participants
The OEQ-II (Falk et al., 1999) was added to a study conducted
in Flanders investigating the influence of learning patterns
on academic performance and the successful transition from
secondary to higher education. The self-report measure was
translated into Dutch, using back-translation, by the first author
of this article, and it was tested on several young adults, in order
to ensure the comprehensibility and proper interpretation of the
items. The instrument was added to a fifth survey, which was
conducted in the first semester of the academic year in which the
respondents were in the second consecutive year of a program
of higher education. In all, 516 students (318 women: 61.6%; 198
men: 38.4%) completed the OEQ-II online. Of these respondents,
356 (69%) had completed general secondary education before
entering higher education, while 26% had followed technical
secondary education, 4% had followed vocational secondary
education, and 1% had followed secondary education in the arts.
Two-thirds of the students were 19 years of age at the time of the
survey, while 17% were 18 years old, 10% were 20 years old, and
6% were between 21 and 23 years of age. The study was executed
in accordance with the guidelines of the Ethics Committee for
the Social Sciences and Humanities of the University of Antwerp
with written informed consent from all subjects.

Instrument
The OEQ-II consists of 50 items, equally representing intellectual
overexcitability (e.g., “I love to solve problems and develop
new concepts”), imaginational overexcitability (e.g., “Things that
I picture in my mind are so vivid that they seem real to
me”), emotional overexcitability (e.g., “I am deeply concerned
about others”), psychomotor overexcitability (e.g., “If an activity
is physically exhausting, I find it satisfying”), and sensual
overexcitability (e.g., “I love to listen to the sounds of nature”).
The items are scored along a five-point Likert scale with response
options ranging from “Not at all like me” to “Very much like me.”
A high value on the scale of the items represents a high level of
overexcitability.

Significant interrelationships have been found between gender
and the extent and nature of overexcitability, as measured by the
OEQ-II. A relatively strong association of emotional and sensual
overexcitability with the female gender appears to be a general
empirical finding (Bouchet and Falk, 2001; Treat, 2006; Tieso,
2007a,b; Miller et al., 2009; Siu, 2010; Wirthwein et al., 2011;
He and Wong, 2014; Van den Broeck et al., 2014; Botella et al.,
2015). There is also evidence of a stronger relationship between
the dispositional traits of intellectual (Bouchet and Falk, 2001;
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Treat, 2006; Miller et al., 2009; Rinn et al., 2010; Siu, 2010; Van
den Broeck et al., 2014; Botella et al., 2015) and psychomotor
(Bouchet and Falk, 2001; Treat, 2006; Rinn et al., 2010; He
and Wong, 2014; Van den Broeck et al., 2014; Botella et al.,
2015) overexcitability and the male gender. Because of these
interrelationships, statistical analyses will be performed for the
different gender groups separately.

MCMC Convergence
Bayesian estimation makes use of Markov chain Monte Carlo
(MCMC) algorithms to iteratively draw random samples from
the posterior distribution of the model parameters (Muthén
and Muthén, 1998–2012). The software program Mplus uses
the Gibbs algorithm (Geman and Geman, 1984) to execute
MCMC sampling. MCMC convergence of posterior parameters,
which indicates that a sufficient number of samples has been
drawn from the posterior distribution to accurately estimate the
posterior parameter values (Arbuckle, 2013), is evaluated via the
potential scale reduction (PSR) convergence criterion (Gelman
and Rubin, 1992; Gelman et al., 2014). The PSR criterion
compares within- and between-chain variation of parameter
estimates. When a singleMCMC chain is used, the PSR compares
variation within and between the third and fourth quarters of the
iterations. A PSR value of 1.000 represents perfect convergence
(Muthén and Muthén, 1998–2012; Kaplan and Depaoli, 2012).
With a large number of parameters, a PSR < 1.100 for each
parameter indicates that convergence of theMCMC sequence has
been obtained (Muthén and Muthén, 1998–2012).

Convergence of the MCMC algorithm in distribution is
assessed via monitoring of the posterior distributions by trace
and autocorrelation plots (Muthén and Muthén, 1998–2012).
Posterior parameter trace plots display the sampled parameter
values over time. Quick up-and-down fluctuations and absence
of long-term trends in the plot indicate rapid convergence in
distribution (Kaplan and Depaoli, 2012; Arbuckle, 2013).

Autocorrelation plots also display the degree of non-
independence of successive posterior draws in the MCMC chains
Muthén and Muthén, 1998–2012; Kaplan and Depaoli, 2012).
An estimated correlation between the sampled parameter values
reaching zero indicates convergence (Arbuckle, 2013).

Analyses
Before performing a Bayesian analysis of the OEQ-II model, a
maximum likelihood analysis was carried out for comparison
purposes. Using maximum likelihood estimation, a CFA model
was tested—according to the OEQ-II’s hypothesized latent
factor loading pattern for the 50 observed variables—and an
exploratory factor analysis (EFA) for five factors was performed
using ESEM with oblique Geomin rotation. In the ESEM model,
the five correlated factors were measured by each of the 50 factor
indicators and the residuals were not correlated.

Subsequently, a Bayesian analysis was performed using the
CFA model, albeit with informative, small-variance priors for
the cross-loadings in the model and uncorrelated residuals.
Target loadings with non-informative priors—i.e., normally
distributed priors with a mean of zero and infinite variance—
and cross-loadings with strong informative priors—i.e., normally

distributed priors with a mean of zero and a variance of 0.01,
yielding 95% small cross-loading bounds of ±0.20 (Muthén and
Asparouhov, 2012)—were utilized in this model. Applying the
Bayes estimator and Gibbs algorithm, two independent MCMC
chains with 10,000 iterations were used to describe the posterior
distribution. The factor variances were fixed at one to set the
metric of the factors, and standardized variables were analyzed.

In the next step, a Bayesian analysis was performed using
informative, small-variance priors for cross-loadings and residual
covariances in the CFA model. In this BSEM analysis, normal
prior distributions N(0, 0.01) were used for the cross-loadings,
admitting ignorable effect sizes (Muthén and Asparouhov, 2012).
An inverse-Wishart prior distribution IW(0, df ) with df =

56 was applied for the correlated residuals, corresponding to
prior zero-means and variances of 0.01 (MacKinnon, 2008).
In this analysis, every 10th iteration was used—in order to
reduce autocorrelation between successive posterior draws—with
a total of 100,000 iterations and one MCMC chain to describe
the posterior distribution. A sensitivity analysis was carried
out, in which the effect of varying the prior variances of the
residual covariances on the parameter estimates and model fit
was investigated.

In relation to the second aim of this study, a higher order
model was estimated—according to the hypothesized latent
factor loading pattern, as represented in Figure 1—using BSEM
with informative, small-variance priors for the cross-loadings
λ ∼ N(0, 0.01) and residual covariances δ ∼ IW(0, 56) in
the measurement model. In the hypothetical model, the latent
variable of positive developmental potential was operationalized
according to the five overexcitability factors.

Finally, a Bayesian multiple-group model with approximate
measurement invariance (Muthén and Asparouhov, 2013a)
was carried out. One categorical latent variable with two
known classes (i.e., male and female) was specified in this
BSEM model. Normally distributed priors N(0, 0.01) were
utilized for differences in intercepts and factor loadings across
groups. Non-informative or diffuse priors were used for factor
means, variances, and covariances across groups with the
exception of factor means and variances in the male group,
which were set at zero and one, respectively. Residuals were
correlated, using an inverse-Wishart prior distribution IW(0,
16), corresponding to prior zero-means and variances of 0.01.
Analyses were executed for each overexcitability factor and
the alignment optimization method with Bayes estimation
(Asparouhov and Muthén, 2014) was applied, which optimizes
alignment “of the measurement parameters, factor loadings
and intercepts/thresholds according to a simplicity criterion
that favors few non-invariant measurement parameters,” and
subsequently adjusts “the factor means and variances in line
with the optimal alignment” (Muthén and Muthén, 2013,
p. 2). The alignment optimization method provides a solution
to a parameterization indeterminacy, in which (few) non-
invariant parameters are underestimated and (many) invariant
parameters are overestimated, due to non-normally distributed
deviations from a parameter average over groups resulting in
the misestimation of factor means and variances (Muthén and
Asparouhov, 2013a). In this BSEMmultiple-group analysis, every
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FIGURE 1 | Higher order BSEM model with informative, small-variance priors for cross-loadings and residual covariances for the Overexcitability

Questionnaire-Two (OEQ-II; Falk et al., 1999) data for females and males (second-order factor loadings are added within parentheses). OE,

overexcitability; BSEM, Bayesian structural equation modeling. *Significance at the 5% level in the sense that the 95% Bayesian credibility interval does not cover zero.
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10th iteration was saved with a maximum andminimum number
of iterations for each of two MCMC chains of 50,000 and
1,000, respectively, using the Gelman-Rubin PSR< 1.05 criterion
(Gelman and Rubin, 1992).

Model Fit Assessment
The following fit measures were used as a means of evaluating
the quality of the fit of both CFA and EFA models: the chi-square
statistic, comparative fit index (CFI; Bentler, 1990), and root
mean square error of approximation (RMSEA; Steiger, 1990). A
non-significant chi-square value, CFI values close to 1 (Hu and
Bentler, 1995), and a value of the RMSEA of 0.05 or less (Browne
and Cudeck, 1989) indicate a close fit of the model.

For the BSEM models, fit assessment was carried out
using Posterior Predictive Checking in which—as implemented
in Mplus—the likelihood-ratio chi-square statistic for the
observed data is compared to the chi-square based on synthetic
data obtained by means of draws of parameter values from
the posterior distribution (Muthén and Muthén, 1998–2012;
Scheines et al., 1999; Asparouhov and Muthén, 2010). The
simulated data should approximately match the observed data if
the model fits the data (Kaplan and Depaoli, 2012). The Posterior
Predictive p-value (PPp) measures the proportion of the chi-
square values of the replicated data that exceeds that of the
observed data. A low PPp (<0.05) indicates poor model fit. On
the contrary, a PPp of 0.50, as well as a 95%CI for the difference in
the chi-square statistic for the observed and simulated data that
contains zero positioned close to the middle of the interval, are
both indicative of excellent model fit (Muthén and Asparouhov,
2012). Results of simulation studies show the PPp to demonstrate
sufficient power to reveal important model misspecifications
(Muthén and Asparouhov, 2012).

RESULTS

Descriptive Statistics
Descriptive summary statistics for the five overexcitability factors
are reported per gender group in Table 1. The mean outcomes
are consistent with all other studies using the OEQ-II, in which
the two highest scores have been for emotional, intellectual, or
psychomotor overexcitability (Falk and Miller, 2009).

Confirmatory and Exploratory Factor
Analysis
Table 2 shows the chi-square statistic, CFI, and RMSEA for the
evaluation of both maximum likelihood CFA and EFA models.

Highly significant chi-square statistics, RMSEA values of more
than 0.05, and CFI values of less than 0.90 all indicate that
the CFA and EFA models for females and males fit the data
poorly. Moreover, as represented in Table 3, the hypothesized
five factor pattern is not fully recovered by the EFA results for
females and males. Several significant (at the 5% significance
level) cross-loadings on other latent factors can be detected.
The hypothesized factor loading pattern is not well captured by
the EFA model, possibly due to the existence of many minor
correlated residuals among the factor indicators (Muthén and
Asparouhov, 2012), as can be expected from inspection of the
modification indices.

BSEM with Informative, Small-Variance
Priors for Cross-Loadings
Table 4 presents the fit results of the BSEM model with
informative, small-variance priors for cross-loadings for both
gender groups. The 95% CIs for the difference between the
observed and replicated chi-square values do not cover zero, and
the PPps are smaller than 0.05, both indicating unsatisfactory
model fit. The results of this BSEM model, which are not
reported, still reveal significant2 (in the sense that the 95%
Bayesian credibility interval does not encompass zero) but fewer
cross-loadings and slightly higher major factor loadings, as
compared with the EFA model. Increasing the variance of the
prior distributions of the cross-loadings does not alter the fit
results considerably. We may assume that the OEQ-II measures

TABLE 2 | Maximum likelihood CFA and EFA model testing results for

females (n = 318) and males (n = 198).

Model χ2 df p-value RMSEA CFI

FEMALES

CFA 2565 1165 0.000 0.061 0.767

EFA 1934 985 0.000 0.055 0.842

MALES

CFA 2174 1165 0.000 0.066 0.712

EFA 1660 985 0.000 0.059 0.807

CFA, confirmatory factor analysis; EFA, exploratory factor analysis; df, degrees of freedom;

RMSEA, root mean square error of approximation; CFI, comparative fit index.

2As previously mentioned in footnote 1, a hypothesis testing perspective was used

in this study. In Bayesian parameter estimation, the term “significant” is used by

the authors to indicate that the 95% Bayesian credibility interval of a particular

parameter did not cover zero.

TABLE 1 | Descriptive statistics per overexcitability factor for females and males.

Females Males

IOE ImOE EOE SOE POE IOE ImOE EOE SOE POE

Mean 3.450 2.809 3.737 3.295 3.233 3.540 2.708 3.162 3.112 3.380

Standard deviation 0.591 0.779 0.572 0.736 0.714 0.538 0.663 0.617 0.691 0.700

Skewness −0.035 0.220 −0.245 −0.147 0.105 0.161 0.148 −0.097 0.041 −0.253

Kurtosis 0.102 −0.195 −0.153 −0.175 −0.217 −0.128 −0.245 0.148 0.054 −0.094

IOE, intellectual overexcitability; ImOE, imaginational overexcitability; EOE, emotional overexcitability; SOE, sensual overexcitability; POE, psychomotor overexcitability.
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TABLE 3 | Maximum likelihood EFA model estimation results for females (n = 318) and males (n = 198).

Females Males

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

FACTOR LOADINGS

y1 0.467* 0.086 −0.12 −0.018 −0.058 0.405* 0.163 0.101 −0.021 −0.034

y2 0.011 0.135* 0.041 0.03 0.023 −0.042 0.263* −0.041 0.079 0.032

y3 0.498* −0.031 0.117 0.153* −0.024 0.550* −0.041 0.026 −0.017 −0.123

y4 0.599* 0.038 0.029 −0.055 0.018 0.476* −0.08 0.027 0.221* −0.064

y5 0.504* 0.044 0.016 0.146* 0.003 0.443* −0.013 0.133 0.021 −0.170*

y6 0.589* 0.073 0.061 −0.06 −0.007 0.425* 0.251* 0.005 0.042 −0.113

y7 0.667* −0.115* −0.1 −0.002 0.126* 0.652* −0.023 −0.101 0.07 0.088

y8 0.610* −0.003 0.162* 0.113* −0.056 0.607* −0.012 0.145* 0.068 −0.069

y9 0.575* −0.004 0.034 0.169* 0.013 0.558* 0.079 0.121 −0.142 0.058

y10 0.685* −0.031 0.102 −0.044 0.014 0.694* 0.05 −0.001 0.112 0.025

y11 0.008 0.480* 0.084 0.075 −0.026 0.361* 0.291* −0.01 −0.047 −0.045

y12 0.006 0.631* 0.11 0.011 0.051 0.223* 0.429* 0.025 0.144 −0.147*

y13 −0.052 0.466* 0.173* 0.059 −0.085 0.254* 0.382* 0.037 −0.048 0.058

y14 0.037 0.569* −0.058 0.04 −0.076 −0.041 0.582* 0.023 −0.072 0.066

y15 0.029 0.664* 0.074 −0.068 0.099* 0.005 0.442* 0.001 0.157 −0.084

y16 −0.011 0.725* 0.01 −0.027 0.026 0.084 0.744* −0.039 −0.017 0.029

y17 0.062 0.570* −0.048 0.044 0.038 0.082 0.563* −0.11 −0.019 0.171*

y18 0 0.504* 0.119 −0.055 0.032 −0.252* 0.506* 0.002 0.272* −0.037

y19 0.045 0.546* 0.212* −0.029 0.101* −0.123 0.455* 0.026 0.425* 0.017

y20 0.076 0.410* 0.353* −0.014 −0.082 0.180* 0.354* −0.022 0.255* −0.117

y21 0.236* −0.012 0.041 0.577* 0.038 0.104 −0.082 0.571* −0.059 −0.001

y22 −0.132 0.303* −0.106 0.402* −0.007 0.061 −0.01 0.492* −0.046 0.001

y23 0.036 −0.023 0.01 0.477* 0.125* −0.007 −0.024 0.571* −0.058 0.078

y24 0.172* 0.147* −0.038 0.185* 0.184* 0.025 0.270* 0.079 0.248* 0.140*

y25 0.012 0.537* −0.140* 0.412* −0.068 0.101 0.359* 0.389* 0.012 −0.012

y26 0.143* 0.008 0.051 0.605* 0.051 0.021 0.005 0.847* 0.029 0.006

y27 −0.02 0.406* 0.027 0.468* 0.062 −0.175* 0.471* 0.311* 0.118 −0.074

y28 0.240* 0.323* −0.052 0.486* −0.061 0.179* 0.039 0.351* 0.082 0.028

y29 −0.101 −0.084 0.210* 0.633* 0.009 0.038 −0.105 0.507* 0.041 −0.016

y30 0.126 0.138* 0.05 0.347* 0.031 −0.04 0.11 0.462* 0.220* 0.045

y31 0.188* 0.025 0.465* −0.071 0.188* 0.308* −0.076 −0.001 0.465* −0.007

y32 0.134* 0.037 0.583* −0.132* −0.025 0.068 0.015 0.046 0.644* −0.067

y33 0.189* 0.004 0.555* −0.088 −0.018 −0.071 0.072 0.127* 0.756* −0.058

y34 −0.056 0.208* 0.264* 0.114 0.111* 0.133 0.094 0.09 0.179* 0.084

y35 −0.038 0.221* 0.657* −0.04 0.005 0.003 0.325* −0.054 0.543* 0.008

y36 0.252* 0.032 0.472* 0.113* 0.028 0.185* 0.061 0.227* 0.420* 0.107

y37 −0.023 −0.073 0.741* 0.141* −0.021 0.153 −0.028 0.033 0.462* 0.042

y38 0 0.026 0.834* 0.062 −0.001 0.184* −0.043 −0.029 0.794* 0.008

y39 0.056 0.030 0.692* 0.029 −0.036 0.233* 0.091 −0.061 0.453* 0.11

y40 0.184* 0.033 0.495* 0.03 0.027 −0.002 0.037 0.189* 0.392* 0.124

y41 0.282* 0.058 −0.295* −0.019 0.289* 0.255* −0.097 −0.014 −0.093 0.342*

y42 0.007 −0.072 −0.058 0.093* 0.753* 0.145* −0.082 −0.033 0.036 0.799*

y43 −0.019 −0.104* 0.001 0.041 0.832* −0.012 −0.112 −0.013 0.118* 0.871*

y44 −0.057 −0.034 0.003 0.058 0.751* 0.009 −0.007 0.127* −0.029 0.789*

y45 0.098 0.065 −0.045 −0.181* 0.614* −0.072 −0.007 0.009 0.087 0.594*

y46 −0.032 0.195* 0.042 −0.016 0.419* −0.083 0.180* 0.155 −0.094 0.353*

y47 −0.073 0.275* 0.114* −0.064 0.503* −0.131 0.293* 0.029 0.023 0.579*

y48 −0.049 0.063 −0.041 0.149* 0.612* −0.009 0.136 0.131 −0.177* 0.514*

y49 0.073 −0.097 0.053 0.013 0.691* −0.04 −0.037 0.215* 0.076 0.408*

y50 0.086 0.058 −0.002 −0.036 0.707* 0.066 0.04 −0.071 −0.150* 0.653*

(Continued)
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TABLE 3 | Continued

Females Males

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

FACTOR CORRELATIONS

F1 1.000 1.000

F2 0.292* 1.000 0.036 1.000

F3 0.345* 0.325* 1.000 0.226* 0.228* 1.000

F4 0.082 0.057 0.083 1.000 0.252* 0.344* 0.252* 1.000

F5 0.133* 0.114* 0.010 0.126* 1.000 −0.040 −0.056 0.139 −0.038 1.000

EFA, exploratory factor analysis; F1, factor 1; F2, factor 2; F3, factor 3; F4, factor 4; F5, factor 5. The standardized coefficients in bold represent factor loadings that are the largest for

each factor indicator. *p < 0.05.

TABLE 4 | Bayesian model testing results for females (n = 318) and males

(n = 198).

Model PP p 95% CI

FEMALES

CFA with cross-loadings 0.000 770.367−994.541

CFA with cross-loadings and residual covariances 0.767 −199.724–93.706

MALES

CFA with cross-loadings 0.000 448.610–682.850

CFA with cross-loadings and residual covariances 0.905 −248.311–50.020

PP p, posterior predictive probability; CI, confidence interval; CFA, confirmatory factor

analysis.

several supplementary minor personality factors in addition to
the five overexcitabilities. On the one hand, freeing all residual
covariances would lead to a non-identified model (Muthén
and Asparouhov, 2012), which in Bayesian analysis may hinder
MCMC convergence; on the other hand, modifying the model
using modification indices in a frequentist analysis may capitalize
on chance (MacCallum et al., 1992), with a large risk of model
misspecification (Muthén and Asparouhov, 2013b).

BSEM with Informative, Small-Variance
Priors for Cross-Loadings and Residual
Covariances
Subsequently, a Bayesian analysis was performed using
informative, small-variance priors for cross-loadings and
residual covariances. As represented in Table 4, the 95% CIs
for the difference between the observed and the replicated
chi-square values cover zero and the PPps are 0.767 and 0.905 for
the female and male group, respectively, both indicating good
model fit. Figure 2A presents the distribution of the difference
between the observed and the replicated chi-square values for the
female group. The matching scatterplot (see Figure 2B), with the
majority of the points plotted along the 45 degree line, indicates
satisfactory model fit for the observed data.

Good MCMC convergence was established for the two
models. The PSR value smoothly decreased over the iterations,
reaching a value of 1.010 after half of the iterations. Additionally,
the stability of the parameter estimates across the iterations
was verified. Figure 3 presents posterior parameter trace and

autocorrelation plots for the loading of item y10 on the
intellectual overexcitability factor for the male group. The
trace plot (see Figure 3A) displays a stable, horizontal band
for the parameter presented, indicating convergence of the
MCMC algorithm in distribution. The autocorrelation plot (see
Figure 3B) displays low autocorrelation or approximate non-
independence of successive posterior samples. The posterior
parameter trace and autocorrelation plots for the other
parameters included in the models (not reported) were also
indicative of good convergence in distribution.

Thus, the results of both BSEM models can be reliably
interpreted. With the exception of one non-significant (in the
sense that the 95% Bayesian credibility interval encompasses
zero) major factor loading, the hypothesized factor loading
pattern was fully recovered, with substantial target loadings
and only one significant cross-loading (in the male group),
as displayed in Table 5 (in Mplus, the reported estimates are
the medians of their posterior distributions). Many minor
residual covariances were found to be significant at the 5% level,
particularly 49 (i.e., 4%) for the female group, with an average
absolute residual correlation (range) of 0.221 (−0.254 to 0.532),
and 68 (i.e., 5.55%) for the male group, with an average absolute
residual correlation (range) of 0.241 (−0.294 to 0.462). Excluding
these residual correlations may lead to the poor fit of the

previously studied models (Cole et al., 2007), and unsatisfactory

loading pattern recovery in the ESEM model (Muthén and
Asparouhov, 2012). The Bayesian factor correlations are located

in order of magnitude between the maximum likelihood EFA
(smallest values, cf. Tables 3, 5) and CFA (largest values, not
reported) correlations. However, according to theory, the factors

are predicted to correlate to a considerable level. Table 5 shows
weak to moderate factor correlations.

A sensitivity analysis was carried out, investigating the effects
of varying the prior variances of the residual covariances on
the PPp and the lower and upper bounds of the 95% CI
for the difference in chi-square statistic for the observed and

synthetic data. This analysis also checked the variability of the
parameter estimates. Unless the research sample is extremely

small, or the model and/or prior distribution are strongly
contradicted by the data, the results of the Bayesian analysis will

change very little when the variance of the prior distribution

is altered (Arbuckle, 2013). Table 6 presents the Bayesian
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FIGURE 2 | Bayesian posterior predictive checking distribution plot (A) and scatterplot (B) for the Bayesian model with small-variance priors for

cross-loadings and residual covariances for females. In the posterior predictive checking distribution plot, the chi-square statistic for the observed data is

marked by the vertical line, which corresponds to a zero value on the x-axis. The matching scatterplot allows determining the PPp as the proportion of points above

the 45 degree line.

model fit results under varying prior variance conditions for
the male group, and also presents the standardized estimate
of the factor loading of item y1 on the latent variable of
intellectual overexcitability. Initially, an inverse-Wishart prior
IW(0, 56) was used for the residual covariances, corresponding
to prior zero-means and variances of 0.0111 (SD = 0.1054).
Augmenting the degrees of freedom for the parameters that
are assumed to follow an inverse-Wishart distribution will
decrease the variance of the prior distribution or increase the
degree of prior knowledge included in the model. The extent
to which the prior variance can be reduced is monitored
through the PPp. In the framework of this residual correlations
sensitivity analysis, both a less informative prior with df =

54 (corresponding to a prior variance of 0.0833) and more
informative priors with df = 66, 76, and 86 (corresponding
to prior variances of 0.0003, 0.0001, and <0.0001, respectively)
were used. Applying a strong informative prior with df = 73
(corresponding to a prior variance of 0.0001) yielded excellent
model fit, as indicated by a PPp of 0.515. However, for both
gender groups, the results of the sensitivity analysis indicate
that different priors for the residual covariances do not alter
the estimation of the factor loadings considerably. Additionally,
with rather large sample sizes, the choice of the prior variance
is less important as the data contribute more information to
the construction of the posterior distribution (Muthén and
Asparouhov, 2012).
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FIGURE 3 | Bayesian posterior parameter trace plot (A) and autocorrelation plot (B) for the loading of item y10 on intellectual overexcitability in the

Bayesian model with small-variance priors for cross-loadings and residual covariances for males. The x-axis of the posterior parameter trace plot displays

the iterations of the MCMC procedures and the y-axis shows the corresponding parameter values. The vertical line represents the burn-in phase at 50,000 iterations.

The iterations on the right-hand side of the vertical line determine the posterior distribution of the loading estimate.

BSEM Higher Order Model
With respect to the female group, the 95% CI for the difference
between the observed and the replicated chi-square values
covers zero, with a lower bound of -197.241 and an upper
bound of 92.474, and the PPp is 0.757, both indicating good
model fit. The same conclusion can be drawn for the male
group (PPp = 0.884, 1 observed and replicated χ2 95% CI
[−246.146, 59.556]). A steadily decreasing PSR value, with a
value close to 1 for the last few tens of thousands of iterations,
as well as convergence plots showing tight horizontal bands
for the parameters, and autocorrelation plots displaying low
dependence in the chain, are all indicative of good MCMC
convergence.

The hypothesized loading pattern depicted in Figure 1 is
only partially recovered for both gender groups. Psychomotor
overexcitability can be distinguished from the other forms
of overexcitability, as indicated by the non-significant factor
loading on the general latent construct of positive developmental
potential. Regarding the measurement model, all intended factor
loadings—with the exception of the loading of item y2 on
intellectual overexcitability, as in the previous BSEM models—
were substantive. Nonetheless, some cross-loadings were found
to deviate substantially from zero, particularly 6 for the female
group, with an average loading of 0.175, and 2 for the male
group, with an average loading of 0.224. Many minor residual
covariances were found to be significant at the 5% level,
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TABLE 5 | Bayesian model estimation results for females (n = 318) and males (n = 198) using small-variance priors for cross-loadings and residual

covariances.

Females Males

IOE ImOE EOE SOE POE IOE ImOE EOE SOE POE

FACTOR LOADINGS

y1 0.456* 0.025 −0.004 −0.042 −0.035 0.530* 0.069 0.028 −0.041 0.013

y2 0.078 0.06 0.046 0.007 0.005 0.178 0.021 −0.011 0.024 −0.003

y3 0.587* 0.015 0.031 0.039 −0.013 0.611* −0.004 −0.019 −0.047 −0.047

y4 0.576* 0.001 0.023 0.031 0.003 0.615* −0.034 −0.001 0.041 −0.014

y5 0.634* −0.021 0.051 −0.016 0.008 0.617* −0.05 0.035 −0.018 −0.085

y6 0.655* 0.035 −0.07 0.042 −0.007 0.555* 0.061 0.003 0.031 −0.06

y7 0.689* −0.04 −0.028 −0.121 0.073 0.728* −0.025 −0.103 −0.016 0.076

y8 0.619* 0.028 0.044 0.099 −0.054 0.680* −0.03 0.06 0.041 −0.03

y9 0.649* −0.033 0.07 0.002 0.011 0.574* 0.022 0.039 −0.039 0.074

y10 0.703* 0.026 −0.038 0.024 −0.01 0.663* 0.048 −0.006 0.068 0.028

y11 −0.03 0.688* −0.002 −0.04 0.008 0.032 0.563* 0.018 0.004 −0.031

y12 −0.002 0.729* 0.012 −0.022 0.02 0.014 0.681* 0.011 0.035 −0.082

y13 −0.042 0.684* −0.015 0.003 −0.058 −0.003 0.648* −0.013 −0.024 0.046

y14 −0.001 0.488* 0.04 −0.016 −0.034 0.006 0.404* 0.047 −0.048 0.031

y15 0.027 0.681* −0.005 −0.036 0.085 0.024 0.475* −0.015 0.009 −0.017

y16 0.009 0.688* 0.001 −0.045 0 0.044 0.666* 0.008 −0.092 0.026

y17 0.019 0.505* 0.044 −0.003 0.026 −0.02 0.563* −0.033 −0.058 0.112

y18 −0.021 0.497* 0.016 0.06 0.006 −0.075 0.424* 0.017 0.042 −0.017

y19 0.069 0.513* 0.024 0.112 0.043 0.017 0.404* 0.034 0.191* −0.001

y20 0.039 0.608* −0.007 0.14 −0.077 0.001 0.607* 0.009 0.08 −0.092

y21 0.071 −0.047 0.650* 0.006 0.009 0.011 0.006 0.565* −0.066 0.045

y22 −0.067 0.042 0.422* −0.04 0.008 −0.017 −0.053 0.652* −0.052 −0.033

y23 −0.054 −0.033 0.540* −0.021 0.056 −0.018 −0.05 0.584* −0.041 0.036

y24 0.083 0.029 0.347* −0.029 0.109 0.038 0.051 0.359* 0.062 0.076

y25 −0.022 0.126 0.567* −0.031 −0.058 0.031 0.049 0.629* 0.039 −0.031

y26 0.003 −0.059 0.723* −0.011 −0.01 0.057 −0.011 0.750* −0.017 0.045

y27 −0.027 0.092 0.628* −0.005 0.036 −0.088 0.121 0.588* −0.013 −0.075

y28 0.098 0.066 0.596* 0.027 −0.034 0.029 0.035 0.474* 0.076 0.019

y29 −0.067 −0.122 0.640* 0.044 −0.026 −0.018 −0.073 0.572* 0.035 −0.004

y30 0.059 0.007 0.457* 0.026 0.014 0.012 0.005 0.546* 0.085 −0.004

y31 0.049 −0.005 −0.051 0.614* 0.125 0.009 −0.045 −0.041 0.709* −0.035

y32 0.014 −0.02 −0.071 0.692* −0.018 0.02 0.025 −0.043 0.671* −0.025

y33 0.045 −0.01 −0.026 0.648* −0.022 −0.015 0.01 0.056 0.679* −0.013

y34 −0.094 0.026 0.087 0.444* 0.06 0.044 −0.014 0.049 0.363* 0.016

y35 −0.042 0.09 −0.006 0.693* −0.02 0.015 0.106 0.003 0.540* 0.014

y36 0.091 0.009 0.042 0.623* 0.02 0.029 0.036 0.084 0.604* 0.076

y37 −0.033 −0.022 0.042 0.694* −0.038 −0.017 −0.064 −0.009 0.679* 0.005

y38 −0.031 0.004 0.041 0.790* −0.025 0.038 −0.017 −0.004 0.787* −0.039

y39 0.012 −0.004 −0.022 0.732* −0.03 0.023 0.055 −0.03 0.591* 0.048

y40 0.032 0.024 −0.009 0.622* 0.025 −0.044 0.032 0.066 0.491* 0.041

y41 0.091 −0.017 0.006 −0.062 0.356* 0.091 −0.047 0.013 −0.023 0.421*

y42 −0.045 −0.047 0.043 −0.004 0.729* 0.017 0.019 −0.04 0.034 0.758*

y43 −0.013 −0.063 −0.008 −0.008 0.796* −0.036 −0.041 −0.016 0.046 0.802*

y44 −0.034 0.049 −0.029 −0.034 0.761* −0.016 −0.009 0.093 −0.03 0.752*

y45 0.02 0.038 −0.076 −0.021 0.673* −0.024 0.014 −0.058 0.023 0.700*

y46 0.006 0.075 0.02 0.022 0.524* −0.038 0.042 0.028 −0.007 0.529*

y47 −0.046 0.099 0.02 0.105 0.564* 0.016 0.021 −0.01 0.029 0.675*

y48 −0.003 0.000 0.058 −0.048 0.707* −0.019 0.01 0.022 −0.02 0.634*

y49 0.048 −0.103 0.001 0.05 0.730* 0.045 −0.039 0.1 −0.011 0.542*

y50 0.014 0.029 0.000 0.029 0.716* −0.019 −0.01 −0.063 −0.036 0.670*

(Continued)
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TABLE 5 | Continued

Females Males

IOE ImOE EOE SOE POE IOE ImOE EOE SOE POE

FACTOR CORRELATIONS

IOE 1.000 1.000

ImOE 0.343* 1.000 0.334* 1.000

EOE 0.336* 0.368* 1.000 0.318* 0.367* 1.000

SOE 0.471* 0.506* 0.288* 1.000 0.462* 0.476* 0.426* 1.000

POE 0.163 0.144 0.215* 0.071 1.000 −0.042 −0.022 0.166 0.035 1.000

IOE, intellectual overexcitability; ImOE, imaginational overexcitability; EOE, emotional overexcitability; SOE, sensual overexcitability; POE, psychomotor overexcitability. The standardized

coefficients in bold represent factor loadings that are the largest for each factor indicator. *Significance at the 5% level in the sense that the 95% Bayesian credibility interval does not

cover zero.

TABLE 6 | Bayesian model testing results for males using small-variance priors for cross-loadings and varying prior variance conditions for residual

covariances, and corresponding estimation results for the factor loading of item y1 on intellectual overexcitability.

Model Parameter 95% Credibility interval

df PP p 95% CI Loading λ1 Posterior SD One-tailed p Lower 2.5% Upper 2.5%

54 0.914 −256.198–44.962 0.526 0.102 0.000 0.314 0.712

56 0.905 −248.311–50.020 0.530 0.104 0.000 0.312 0.716

66 0.728 −204.914–101.821 0.537 0.099 0.000 0.330 0.718

73 0.515 −163.316–153.099 0.539 0.096 0.000 0.340 0.715

76 0.414 −132.449–171.688 0.536 0.098 0.000 0.334 0.719

86 0.108 −60.272–257.655 0.544 0.094 0.000 0.347 0.716

df, degrees of freedom; PP p, posterior predictive probability; CI, confidence interval; SD, standard deviation.

particularly 34 for the female group, with an average absolute
residual correlation (range) of 0.233 (−0.252 to 0.532), and 47
for the male group, with an average absolute residual correlation
(range) of 0.248 (−0.279 to 0.476). Parameter estimates for
the structural components in the model are presented in
Figure 1.

Omitting the cross-loadings in the hierarchical model
and using informative, small-variance priors for the residual
covariances δ ∼ IW(0, 56) in the measurement model also yields
satisfactory model fit for both the female (PPp = 0.634, 1

observed and replicated χ2 95% CI [−168.305, 123.630]) and
male groups (PPp = 0.800, 1 observed and replicated χ2

95% CI [−215.656, 88.242]), in contrast to a model that only
has cross-loadings with even less strict prior variances [λ ∼

N(0, 0.09) corresponding to 95% cross-loading limits of ±0.59],
which leads to a low PPp (<0.05). However, in the structural
model for the female group, all target loadings are significant,
although the loading of the psychomotor overexcitability factor
on the latent variable of positive developmental potential must
be considered small (λ = 0.261). Not permitting cross-loadings
in the measurement model considerably increases the number
of non-trivial residual covariances (158 for females, and 124 for
males) and inflates parameter estimates.

In Bayesian analysis, the deviance information criterion (DIC)
can be used for the purpose of comparing different models,
where the model with the lowest DIC value is preferably
selected (Spiegelhalter et al., 2002). The DIC values generated
by the first higher order model and the second hierarchical

model were 40,490.867 and 40,459.584 for the female group,
and 25,991.245 and 25,956.312 for the male group, respectively.
Although the difference in DIC is small, the models that only
included residual covariances produced the smallest DIC values.
However, the models with more constraints led to considerably
more significant residual covariances (and, as a consequence,
lower DIC values), making model comparison more difficult.
Our results correspond to previous studies mentioning higher
loadings on a second-order latent variable and inflated first-order
factor correlations in the case of more strict models (Golay et al.,
2013).

Multiple-Group BSEM-Based Alignment
with Approximate Measurement Invariance
Table 7 presents the results of the BSEM multiple-group
approximate measurement invariance analysis with zero-means
and decreasing variances for the prior distributions of differences
in factor loadings and intercepts across gender. The extent to
which the prior variance can be reduced is monitored through
the PPp. “If the prior variance is small relative to the magnitude
of non-invariance, PPP will be lower than if the prior variance
corresponds better to the magnitude of non-invariance” (Muthén
and Asparouhov, 2013a, p. 21). Analyses were executed for each
overexcitability factor, since configural invariance had already
been established (cf., BSEM models with informative, small-
variance priors for cross-loadings and residual covariances).
For the intellectual overexcitability data a prior variance for
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TABLE 7 | Model fit coefficients of multiple-group BSEM-based alignment with approximate measurement invariance per overexcitability factor using

varying prior variances.

Prior variance σ2 Intellectual OE Imaginational OE Emotional OE Sensual OE Psychomotor OE

PP p 95% CI PP p 95% CI PP p 95% CI PP p 95% CI PP p 95% CI

0.01 0.540 −42.660–52.130 0.392 −38.731–46.347 0.500 −49.966–38.545 0.598 −48.852–43.248 0.518 −59.937–40.278

0.001 0.589 −51.289–40.207 0.275 −32.969–56.720 0.441 −45.894–44.876 0.491 −38.249–43.758 0.235 −34.540–51.567

0.0001 0.578 −47.817–40.790 0.232 −35.467–72.492 0.402 −45.185–48.596 0.455 −34.207–48.716 0.157 −29.045–62.081

0.00001 0.559 −47.853–44.884 0.232 −37.887–72.639 0.392 −46.726–47.701 0.455 −33.556–50.392 0.157 −28.902–63.374

0.000001 0.559 −48.030–46.511 0.232 −39.102–70.930 0.402 −46.654–47.810 0.455 −33.668–51.832 0.167 −29.122–63.611

0.0000001 0.559 −48.083–47.011 0.225 −33.007–59.420 0.402 −46.508–47.884 0.455 −33.740–52.255 0.167 −29.234–63.665

0.00000001 0.559 −48.098–47.165 0.225 −33.042–59.346 0.402 −46.448–47.911 0.446 −33.761–52.384 0.167 −29.274–63.680

0.000000001 0.559 −48.103–47.214 0.225 −33.053–59.322 0.402 −46.428–47.920 0.446 −33.768–52.425 0.157 −29.287–63.685

BSEM, Bayesian structural equation modeling; OE, overexcitability; PP p, posterior predictive probability; CI, confidence interval.

the measurement parameters of 0.01 results in a PPp of 0.540.
Decreasing the prior variance does not alter the PPp substantially.
A prior variance of 0.000000001—resulting in an excellent PPp
of 0.559—entails a strong informative prior belief that 95% of
the distribution of non-invariance is situated within the range
of [−0.000062; +0.000062], which represents an extremely small
range around zero.

Scalar invariance, as characterized by invariant factor loadings
and measurement intercepts, is a prerequisite to compare
factor means across groups (Vandenberg and Lance, 2000;
Millsap, 2011; Muthén and Asparouhov, 2013c). For intellectual
overexcitability, the factor loadings and intercepts are all
invariant, regardless of the simulated prior variance, and none
of the groups show a significantly (at the 5% significance
level) different factor mean. For the construct of imaginational
overexcitability, the use of a prior variance of 0.01 and
0.000000001 generates PPps of 0.392 and 0.225, respectively.
The factor loadings and intercepts are all invariant, and none
of the groups show a significantly different factor mean. For
emotional overexcitability, a prior variance of 0.01, 0.001, and
smaller, results in PPps of 0.500, 0.441, and 0.402, respectively.
The factor loadings and intercepts are all invariant, and the
male group shows a significantly smaller factor mean. For
sensual overexcitability, a prior variance of 0.01, 0.001, and
smaller, results in PPps of 0.598, 0.491, and ∼0.450, respectively.
The factor loadings and intercepts are all invariant, and the
male group shows a significantly smaller factor mean. For the
psychomotor overexcitability data a prior variance of 0.01 results
in a PPp of 0.518. The factor loadings are all invariant, although
the intercept of item y50 (“I thrive on intense physical activity,
e.g., fast games and sports”) is non-invariant across gender.
Decreasing the prior variance to 0.001 or smaller, still produces
an acceptable PPp of 0.235 and∼0.160, respectively, and leads the
non-invariance of the intercept of y50 to disappear. The factor
loadings and intercepts are all invariant and the female group
shows a significantly smaller factor mean.

According to the acceptable PPps and corresponding CIs even
under strict conditions (i.e., the use of prior distributions with
extremely small variances of 0.000000001), we may conclude that
approximate scalar measurement invariance is supported by the
data for each of the overexcitability latent variables.

DISCUSSION

The first aim of this study was to validate the factorial structure
of the OEQ-II using Bayesian estimation in comparison with
the frequentist approach to validation. To this end, the new
concept of BSEM, as presented by Muthén and Asparouhov
(2012), was applied with informative, small-variance priors for

cross-loadings and residual covariances, which better reflects
substantive theory. The analysis yielded positive results regarding

the factorial validity of the OEQ-II, in contrast to the maximum
likelihood CFA and EFA models which could not generate a

satisfactory model fit. The hypothesized factor loading pattern

was not fully recovered by the EFA results, due to the existence of
manyminor residual covariances. Freeing all residual covariances
in a frequentist analysis would lead to a non-identified model.
Alternatively, modifying the model using modification indices

may capitalize on chance (MacCallum et al., 1992), with a large
risk of model misspecification (Muthén and Asparouhov, 2013b).
However, Bayesian analysis allows for all residual covariances
to be inserted into the model using zero-mean, small-variance
prior distributions, therefore overriding the problem of non-
identification. Moreover, the BSEM approach “informs about
model modification when all parameters are freed and does so in
a single-step analysis” (Muthén and Asparouhov, 2012, p. 313).
BSEM led to good model fit, as evaluated by means of Posterior
Predictive Checking, which is less susceptible to slight, negligible
model misspecifications compared to the chi-square statistic for
assessing model fit (Muthén and Asparouhov, 2012). It also led to
less inflated factor correlations compared to CFA, and satisfactory
loading pattern recovery with substantial target loadings.

However, one major factor loading, namely the loading of
item y2 (“I can take difficult concepts and translate them
into something more understandable”) on the latent factor of
intellectual overexcitability, was not found to be substantive
(although the standardized coefficient of the loading was the
largest for this item). Although the content of y2 is consistent
with the content of the other items that load significantly on the
latent variable of intellectual overexcitability, perhaps a higher
standard is required to yield the response of agreement. The level
of conceptual difficulty is not defined in more detail and can be
interpreted differently by various people. The study by Van den
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Broeck et al. (2014) also revealed a low but significant factor
loading (λ = 0.33) for the respective item. Future validation
studies of theOEQ-II will have to affirmhow y2 compares relative
to the other factor indicators and in relation to the construct of
intellectual overexcitability.

Regarding the results of the higher order model, we may
conclude that the construct of psychomotor overexcitability,
as captured by the OEQ-II, behaves differently to intellectual,
imaginational, emotional, and sensual overexcitability. The
latter forms of overexcitability all load substantially on
the superordinate latent variable of positive developmental
potential. According to Dabrowski’s theory, the presence
of only psychomotor and/or sensual overexcitability in an
individual hinders advanced development (Dabrowski, 1972;
Mendaglio, 2012). However, according to the results of this
study, the construct of sensual overexcitability is strongly
related to three of the most important drivers of personality
growth. Piechowski (2013, p. 105) stated that under emotional
tension, psychomotor overexcitability can be manifested as
“compulsive talking and chattering, impulsive actions, nervous
habits (tics, nail biting), workaholism, acting out,” and sensual
overexcitability can be expressed as “overeating, self-pampering,
sex as pacifier and escape, buying sprees, desire to be in the
limelight.” Only one item of the OEQ-II is related to the
expression of psychomotor or sensual overexcitability under
difficult emotional circumstances (i.e., “When I am nervous, I
need to do something physical”). All of the items representing
sensual overexcitability are expressed in a positive way, and
are indicative of a very perceptive personality, as are the other
three forms of overexcitability which are considered essential to
advanced personality development. The 40 items of the OEQ-II
representing intellectual, imaginational, emotional, and sensual
overexcitability seem to be indicative of a conscious, complex,
creative, deeply emotionally engaged, sensitive, and perceptive
personality with a strong susceptibility to wonder. Psychomotor
overexcitability, as represented by the OEQ-II, does not have
that same kind of spirit, but is more neutral and related to
intense physical activity and competitiveness. Mendaglio and
Tillier (2006) rightly emphasize the importance of further
elaborating the empirical research on developmental potential
by incorporating specific talents and abilities, dynamisms, and
features of the environment alongside overexcitabilities in future
studies. The results of this study also demonstrate the importance
of more thoroughly examining the specific, possibly mediational
role of psychomotor overexcitability in the process of personality
growth, as viewed from the perspective of Dabrowski’s
theory.

Results of simulation studies indicate that approximate
measurement invariance with highly precise priors outperforms
full and partial measurement invariance in the case of (many)
small differences in measurement parameters across groups (van
de Schoot et al., 2013). In our study, which applied BSEM-
based alignment with approximate measurement invariance, the
absence of non-invariant factor loadings and intercepts across
gender was indicative of the psychometric quality of the OEQ-
II. The results of our study revealed a significantly higher
score for females on emotional and sensual overexcitability, and
a significantly lower score on the construct of psychomotor

overexcitability compared to males. These results are mostly
consistent with the findings of the previous studies mentioned
above. However, no difference could be established in the level of
intellectual overexcitability across both gender groups. The rather
intellectual homogeneity of the sample may explain this result.

BSEM is an innovative and flexible approach to statistics,
allowing the application of zero-mean, small-variance priors
for cross-loadings, residual covariances, and differences in
measurement parameters across groups, which leads to better
model fit and less overestimation of factor correlations compared
to CFA (which postulates exact parameter constraints and is
usually too strict;Muthén, 2013;Muthén andAsparouhov, 2013a;
Fong and Ho, 2014).

More generally, the Bayesian approach to statistics has
many advantages over the frequentist approach. Bayesian
analysis makes it possible to incorporate prior knowledge—
with different degrees of uncertainty, as indicated by the
variance of the prior distribution—into parameter estimation,
and is well suited for testing complex, non-linear models with
non-normal distributions, regardless of sample size (Kruschke
et al., 2012). Even in the case of very limited prior knowledge
(non-informative prior) with little influence on the posterior
distribution, the Bayesian credibility interval nevertheless allows
direct probability statements about the parameter values given
the data (Kruschke et al., 2012).

With regard to the limitations of this study, we have to note
that although the BSEM approach to factorial validation and
measurement invariance analysis better represents substantive
theory and avoids the need for a long series of model
modifications with a substantial risk of misspecification, it is an
innovative method that requires further research. Muthén and
Asparouhov (2012) rightly emphasize the difficulty of balancing
the need for small-variance priors for cross-loadings and small
prior variances for residual covariances, which is supported by
the results of the sensitivity analysis of the higher order model
in this study. Moreover, the degree of susceptibility of the PPp
to model misspecification warrants further research. This is of
major importance given the strong influence of small-variance
priors on the posterior parameter distributions, even in medium-
sized samples. Furthermore, the susceptibility of the PPp to
specific model features, the number of variables, and variable
distributions needs to be investigated inmore detail (Muthén and
Asparouhov, 2012). One reviewer rightly stressed the limitation
of the use of rather small sample sizes in this study—especially
with regard to the male sample—according to standard criteria
applied in conventional CFA and SEM analyses. Although the
PPp has been found to perform better with small sample sizes
than the maximum likelihood chi-square statistic, and to be
less prone to negligible model misspecifications (Muthén and
Asparouhov, 2012), the susceptibility of the PPp to the number
of observations as well as the performance of BSEM estimation
under varied sample sizes (and model features) should definitely
be examined further. Future BSEM studies should investigate
which sample size is required according to the number of
degrees of freedom included in the model in order to ensure
optimum performance. However, preliminary studies indicate
that Bayesian SEM performs better with small sample sizes than
does maximum likelihood SEM (Lee and Song, 2004).
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In any case, using Bayesian analysis, either as a pragmatic
or meta-analytic approach, it is crucial to perform sensitivity
analyses which investigate the effect of varying the means and
variances of prior distributions on the parameter estimates
and model fit. The performance of the alignment optimization
method under varied conditions also needs to be investigated
further, as it represents a novel technique for measurement
invariance analysis under certain assumptions.

A second limitation of this study is the use of a convenience
sample to simultaneously investigate the factorial structure of
the OEQ-II, as well as approximate measurement invariance
of factor loadings and intercepts across gender. Future studies
should preferably use independent randomized samples to cross-
validate the OEQ-II and investigate (approximate) measurement
invariance across varied conditions.

Apart from this, the results of our study coincide with the
findings of the study by Van den Broeck et al. (2014), and are
supportive of the psychometric quality of the OEQ-II.

The Mplus scripts for the main BSEM analyses in this study
are available as Supplementary Material.
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