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Inter-individual touch can be a desirable reward that can both relieve negative affect
and evoke strong feelings of pleasure. However, if other sensory cues indicate it
is undesirable to interact with the toucher, the affective experience of the same
touch may be flipped to disgust. While a broad literature has addressed, on one
hand the neurophysiological basis of ascending touch pathways, and on the other
hand the central neurochemistry involved in touch behaviors, investigations of how
external context and internal state shapes the hedonic value of touch have only
recently emerged. Here, we review the psychological and neurobiological mechanisms
responsible for the integration of tactile “bottom–up” stimuli and “top–down” information
into affective touch experiences. We highlight the reciprocal influences between gentle
touch and contextual information, and consider how, and at which levels of neural
processing, top-down influences may modulate ascending touch signals. Finally, we
discuss the central neurochemistry, specifically the µ-opioids and oxytocin systems,
involved in affective touch processing, and how the functions of these neurotransmitters
largely depend on the context and motivational state of the individual.

Keywords: touch, top–down modulation, hedonics, oxytocin, opioids, social processing, placebo effect

INTRODUCTION

Inter-individual touch is frequently used to communicate positive messages, like reassurance,
comfort, sympathy, and support (Hertenstein et al., 2006b). For the recipient, touch from another
person can be soothing (Feldman et al., 2010b; Fairhurst et al., 2014), give rise to pleasurable
feelings (Löken et al., 2009; Morrison et al., 2010), and potentially suppress pain and negative
emotion (Coan et al., 2006; Liljencrantz et al., 2012; Mancini et al., 2014, 2015). On the other
hand the hedonic experience of touch can be flipped from pleasure to displeasure if the perceived
intentions or the identity of the toucher does not match the preferences of the recipient of touch
(Gazzola et al., 2012).

The hedonic value of touch, the pleasantness or unpleasantness, is intrinsically related to the
physical characteristics of tactile stimuli, like softness (Rolls et al., 2003), temperature (Schepers
and Ringkamp, 2009; Ackerley et al., 2014), force and velocity (Löken et al., 2009). However, as in
other sensory modalities, the signals from the peripheral receptors are processed and modulated
by several “top–down” mechanisms before the subjective experience of touch arises in the brain
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(Kveraga et al., 2007; Ellingsen, 2014). First, sensory information
enters subjective awareness through the gate of attention
(Johansen-Berg et al., 2000) – presuming you are sitting down
right now, you might not be aware of the physical pressure
of the chair pressing against your skin until this very moment
when your attention is directed toward this stimulus (Schubert
et al., 2008). Second, when sensory signals do gain access to
awareness, the resulting sensation is influenced by the brain’s
pre-existing models, or predictions, of what these sensory signals
mean, which are shaped by learning (Knill and Richard, 1996;
Kersten et al., 2004; Schmack et al., 2013). Third, other available
cues carrying information about the importance, relevance and
affective valence of this sensation, weigh in. For a given affective
touch stimulus, contextual information such as visual or auditory
cues about the toucher (Macaluso and Driver, 2001; Taylor-
Clarke et al., 2002), and internal motivational state or mood
(Kalaska, 1994; Montoya and Sitges, 2006; Triscoli et al., 2014;
Løseth et al., in press), is essential for deciding how important
this particular touch is (how much attention should be paid to
it), how desirable it is (positive or negative), and how to respond
behaviorally.

Most of the research on affiliative touch has been done
from the vantage point of the touch stimulus itself, e.g.
the neurobiology of mechanoreceptive skin receptors and
the ascending touch pathways (Vallbo et al., 1993; Wessberg
et al., 2003; Vrontou et al., 2013), observational studies of
animals’ engagement in specific touch behaviors (Harlow and
Zimmermann, 1959; Dunbar, 1991; Alberts, 2007), or human
psychophysical (Loken et al., 2011; Ackerley et al., 2014; Fairhurst
et al., 2014) and neuroimaging (Rolls et al., 2003; Olausson
et al., 2008; McGlone et al., 2012; Bjornsdotter et al., 2014;
Kaiser et al., 2015) studies assessing the sensations and brain
activity in respect to different touch stimuli. Much less is known
about the neurobiological processes whereby top-down factors –
cross-sensory, cognitive, and affective information – shape touch
signals.

Here, we review the neural circuitry and neurochemistry
underpinning top-down modulation of affective touch, and
suggest how the brain integrates sensory and prior information
into affective touch sensations. First, we discuss how context
modulates the meaning and in turn the hedonic value of
touch, and how this shapes both the affective experience
and the behavioral consequences. We will then review the
central neurochemistry, primarily µ-opioids and oxytocin,
underpinning the seemingly opposite stimulatory and soothing
effects of touch, and propose how these outcomes are highly
dependent on the individual’s affective-motivational state.

RECIPROCAL INFLUENCES OF TOUCH
AND CONTEXT

Much of human behavior is geared toward seeking pleasant
experiences, while avoiding unnecessary painful, or aversive
experiences. Hedonic valuation of sensation guides decisions
about which behaviors to engage in andwhich to avoid, rendering
hedonic processing essential to survival (For review, see Berridge

and Kringelbach, 2015). In order to be useful, however, these
systems need to take into account the individual’s short-term
and long-term needs. While high-calorie food is usually thought
of as a desirable reward, it loses its utility and ceases to be
pleasurable upon satiety (Small et al., 2001). Similarly, the
utility and consequently the hedonic experience of interpersonal
touch largely depends on the context and internal needs and
motivational goals.

Modulation of Touch Experience by
Context and Internal State
When being touched by another individual, inferences about
the identity, physical characteristics, and the intentions of the
toucher, conveyed through visual and auditory stimuli, gives
useful information about the importance of the touch and how
preferable it is (Suvilehto et al., 2015). This can dramatically shape
both the hedonic experience and the behavioral response (e.g.,
approach or withdraw).

In two similar experimental studies of interpersonal touch, the
recipient’s beliefs about the toucher affected the pleasantness of
gentle sensual caresses (Figure 1; Gazzola et al., 2012; Scheele
et al., 2014). The study participants, who were all heterosexual
men, rated experimentally applied sensual caresses as pleasant
when they were lead to believe, via a visual cue, that they were
being caressed by a female experimenter, but unpleasant when
the cue indicated a male experimenter. In reality the same female
experimenter, who was blinded to the cues, did all the caresses.
For the study participants, the visual information about the sex
and appearance of the believed toucher changed the meaning
and desirability of the touch, which in turn impacted the hedonic
touch experience – touch by an attractive female felt better.

Using a different design, we recently showed that the visual
presentation of faces with emotional expressions affected the
pleasantness of concomitant touch stimuli. Study participants
rated touch as most pleasant when combined with a photograph
of a smiling face and least pleasant when combined with a
frowning face (Figure 1A, Ellingsen et al., 2014). Interestingly,
this effect was seen even though participants were fully aware that
the person they saw in front of them was not the person touching
them. This suggests that affective cross-sensory stimuli that
are time-locked with the touch, but seemingly non-informative
(i.e., does not provide any specific information about the value
of the touch stimulus), can still influence the hedonic impact
of this touch. Along the same lines, a recent experiment
showed that disgusting odors presented simultaneously with a
gentle stroking touch reduced the pleasantness of this touch
(Figure 1B). Again, the participants were fully aware that
the stimuli originated from independent sources (Croy et al.,
2014). Instead of carrying information about the value of the
touch itself, these effects may appear as a result of a shift
in affective or motivational state, which in turn change the
hedonic impact of touch, perhaps similar to affective priming
(Winkielman et al., 2005; Schwarz, 2012). This bears similarity
to the tendency of unpleasant and pleasant sensory events
to exert immediate reciprocal inhibitory effects. For example,
pleasant images, odors, music, and food can reduce pain (For
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FIGURE 1 | Contextual modulation of touch pleasantness during identical tactile stimuli. (A) Touch pleasantness of both gentle stroking (human) touch and
equally intense vibratory (machine) touch is highest during concomitant presentation of smiling faces and lowest during presentation of frowning faces (Ellingsen
et al., 2014). (B) In a similar fashion, touch pleasantness is highest during concomitant presentation of pleasant (rose) odors and lowest during presentation of
disgusting (civette) odors (Croy et al., 2014). (C) People find the gently rubbing of a skin cream more pleasant when being told it is a “rich moisturizing cream”
(rubrich) relative to a “basic cream” (rubthin) (McCabe et al., 2008). (D) While one study found no effect of intranasal oxytocin on touch pleasantness (Ellingsen et al.,
2014), another study (E) found that oxytocin increased touch pleasantness in heterosexual men when they believed they were being sensually caressed by a
woman, but not when they believed the caresser was a man (Scheele et al., 2014). (E–F) Caresses are more pleasant when the caresser is believed to be a woman
relative to a man (Gazzola et al., 2012; Scheele et al., 2014). Figure adapted from (McCabe et al., 2008; Gazzola et al., 2012; Ellingsen et al., 2014; Croy et al., 2014;
Scheele et al., 2014). ∗∗p < 0.01.

review, see Leknes and Tracey, 2008). On the other hand,
pain and negative affect can reduce the capacity for pleasure,
as demonstrated by the strong comorbidity between chronic
pain, depression, and anhedonia (i.e., a lack of capacity for
pleasure; Pizzagalli et al., 2008; Elvemo et al., 2015; Romer
Thomsen et al., 2015). However, there are also cases where
pain can enhance the pleasure of reward (Carstens et al., 2002;
Rozin et al., 2013; Bastian et al., 2014; Leknes and Bastian,
2014), highlighting that the relationship between pleasure and
displeasure is not one of a simple, universal mutual inhibition,
but rather involves a complex integrative process weighing the
importance of contextual cues.

A widespread notion is that sensations in general are shaped
by inferences about the relative importance, or utility, of sensory
signals (Cabanac, 1971; Tindell et al., 2006) – how useful or
relevant these are in relation to the organisms’ goals, which are
often ultimately related to survival, well-being, and procreation.
The motivation-decision model of pain was put forward to

explain the often-dramatic variability in pain experience due to
the individual’s internal motivational state (Fields, 2006, 2007).
This framework describes brain mechanisms that reduce or
increase the hedonic impact of nociceptive events based on their
relative importance at the given time. The model was initially
developed to explain modulation of pain, but the basic idea is
applicable to affective touch, as well as other sensory events
that fall within a reward-punishment continuum. The model
postulates that, as a result of an unconscious decision-making
process, any concurrent or impending event deemed more
important to the individual than a pain stimulus should suppress
the hedonic impact of this pain. The event of superior importance
may be a greater threat or a potential reward. Likewise, anything
judged as more important than an impending reward – for
example a threat or a bigger reward – should suppress the hedonic
impact and motivation for this reward (Fields, 2011).

Like pain, touch stimuli usually happen in a multisensory
context. As a facet of this, the occurrence of touch can affect the
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experience of non-touch stimuli – just as other sensory stimuli
co-occurring with touch can affect touch experience (Taylor-
Clarke et al., 2002; Calvert and Thesen, 2004).

Behavioral and Cognitive Effects of
Touch
Being touched by another human being can evoke powerful
emotions. People are remarkably accurate in detecting a wide
range of emotional messages, even when these are communicated
exclusively through touch (Hertenstein et al., 2006a). A series of
observational studies has showed that brief, casual touch from
strangers can have positive behavioral effects in people, and
even make them more generous. Restaurant diners tip more if
the waitress casually touches them when returning their change
(Crusco and Wetzel, 1984), and people are more satisfied with
a library visit if the librarian casually touches their hand (Fisher
et al., 1976). Similar studies report that when casually touched,
people are more likely to return money left in a public phone
(Kleinke, 1977), spend money in a supermarket (Hornik, 1992),
rate salespeople at car showrooms more positively (Erceau and
Guguen, 2007), or give away cigarettes (Joule and Gueguen,
2007). There are also studies suggesting positive health effects of
touch in therapeutic relationships (Whitcher and Fisher, 1979;
Eaton et al., 1986; Monroe, 2009), and within romantic couples
(Grewen et al., 2003; Ditzen et al., 2007).

In most such studies, however, touch formed part of an
affectively congruent situation. Less is known about the effects
of, and appraisal of, touch in contexts where other available
information is affectively incongruent, such as being casually
touched by someone expressing anger. On the interplay between
touch and concomitant non-touch signals, touch has been
proposed to intensify the emotional display of other senses
(Knapp and Hall, 1997; Hertenstein et al., 2006a). Touch
ultimately means that someone – or something – is making
physical contact, for better or for worse, which often calls for
immediate action. A potential intensifying effect of touch on
other sensory signals might therefore facilitate a rapid decision on
whether the toucher is a friend or a foe, which is essential when
this person is close.

We recently found that gentle touch from another human
shaped social impressions of visually presented faces differentially
depending on the emotional expression of the face (Ellingsen
et al., 2014). Whereas concomitant human touch made
innocuous neutral and smiling faces seem more attractive and
friendly, it made angry faces seem less attractive and friendly,
relative to equally intense touch from a device. This effect was
potentiated by intranasal administration of an oxytocin receptor
agonist (Ellingsen et al., 2014) (See below for more on oxytocin).

BRAIN MECHANISMS UNDERPINNING
TOP–DOWN MODULATION OF TOUCH

To understand how affective touch experiences are created in
the brain, it is useful to examine first, how touch stimuli are
transmitted from the periphery to the brain, and second, how

these signals are modified by and integrated with top-down
information.

The processing of touch starts with the activation of
mechanoreceptive afferents in the skin, such as fast-conducting,
myelinated A-beta or slow-conducting, unmyelinated C-tactile
(CT) afferents (Olausson et al., 2010; McGlone et al., 2014). While
A-beta afferents respond to a wide variety of touch stimuli, CT
afferents may be more specifically tuned to respond to stimuli
slowly moving over the skin, like a caress, and their firing rates in
the peripheral afferent correspond closely to touch pleasantness
(Löken et al., 2009). Moreover, CTs activate most vigorously in
response to touch stimuli that are close to skin-temperature, but
less to colder or warmer stimuli, which again corresponds closely
to pleasantness ratings (Ackerley et al., 2014).

Less is known about the relationship between CT signaling
and positive affect during different contexts or motivational-
affective states (but see Croy et al., 2014). Notably, however,
recent studies suggest that CT afferents may play a role in
the tactile “hedonic flip” following injury or inflammation
of the skin (such as tactile hypersensitivity and allodynia),
whereby light gentle touch becomes less pleasant or even painful
(Liljencrantz and Olausson, 2014). Recent animal studies have
found that inflammation-induced hypersensitivity is reduced in
mice whose transmission of C-low-threshold mechanoreceptive
afferents (equivalent to CTs in humans) has been genetically
knocked out (Seal et al., 2009; Lou et al., 2013). In humans,
experimentally induced allodynia-like pain, provoked by light
touch to the skin overlaying an aching muscle, persists after
functional compression blockage of myelinated skin afferents
(Nagi et al., 2011). Other studies have found that, using the
experimental heat/capcaicin model of allodynia, light CT-optimal
touch (3 cm/s velocity) to the skin adjacent to the sensitized
area was more unpleasant than CT-suboptimal touch (30 cm/s),
reversing the relationship between velocity and pleasantness
seen under healthy conditions (Liljencrantz et al., 2014). This is
consistent with the view that a potential antinociceptive role of
CT is disrupted, or that CT afferents may even signal negative
affect, during injury or inflammation of the skin (Liljencrantz
and Olausson, 2014). Thus, it is possible that during such
physiological “threat conditions” (Fields, 2006; Porges, 2007), a
state-induced shift in the function of CT afferents may contribute
to the motivation to protect and care for a wounded limb.

Given the strong contextual influences on touch pleasantness,
it is unknown whether there are qualities of certain touch stimuli
that inherently carry a positive hedonic value (i.e., are pleasant
or give rise to positive affect), or whether the hedonic value of
touch is always dependent on other contextual or internal factors
(Ellingsen et al., 2015).

A-beta afferents from the upper and lower extremities
terminate in the cuneate and gracile nuclei of the dorsal column
(Perl et al., 1962; Petit and Burgess, 1968), where they synapse
onto neurons that transmit to the ventral posteriolateral nuclei of
the thalamus. C-tactile afferents likely take a different route to the
brain, through the spinothalamic tract (Andrew, 2010). From the
thalamus, touch signals are relayed to cortical sensory processing
areas such as the insular (Olausson et al., 2002; Bjornsdotter
et al., 2009) and primary and secondary somatosensory areas
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(McGlone et al., 2002; Gazzola et al., 2012) as well as to other
higher-order areas such as the prefrontal, orbitofrontal, anterior
cingulate cortices, and the superior temporal sulcus (Francis et al.,
1999; Lindgren et al., 2012; McGlone et al., 2012; Gordon et al.,
2013; Scheele et al., 2014). There is also evidence that subcortical
areas such as ventral striatum and amygdala, which are key
structures in the processing of affect and motivation in general,
are implicated in the processing of affective touch (Ellingsen et al.,
2013; Perini et al., 2015).

Although the subjective experience of pleasant touch is
thought to arise from cortical activation, it is not clear how
other information, such as visual contextual information or
memory, modulates the sensory signals. Does such information
target the neural systems that generate pleasure or displeasure,
e.g., hedonic hot and cold spots (Pecina and Berridge, 2005;
Ho and Berridge, 2013; Castro and Berridge, 2014), or does it
also modulate ascending sensory signaling? If so, at what levels
does this modulation take place? Evidence from different fields
indicates that top-down influences can modulate sensory signals
at early stages of sensory processing. Focused auditory attention
in humans can modulate signaling in the auditory sensory cortex
as early as 20 ms post stimulus (Woldorff et al., 1993). Moreover,
visual spatial attention can modulate pre-cortical signals in the
lateral geniculate nucleus of the thalamus, the first relay between
the retina and the cortex (McAlonan et al., 2008). It is well
documented that ascending nociceptive neurons in the spinal
dorsal horn are modulated by signaling descending from the
brain (Wall, 1967; Woolf, 2011). The periaqueductal gray (PAG)
in the midbrain controls incoming nociceptive signals indirectly
through the rostroventral medulla (RVM;Millan, 2002; Fields,
2004). Neurons in the RVM project to the spinal dorsal horn,
with inhibitory or excitatory effects on nociceptive transmission
(Urban and Gebhart, 1999; Neubert et al., 2004). The PAG
receives direct input from the limbic structures amygdala and
ventral striatum, and from the prefrontal cortex, constituting a
descending pathway by which affective or cognitive information
can influence ascending sensory information already at the spinal
dorsal horn (Fields, 2004).

Modulation of innocuous touch is less studied, especially
in humans. A few studies on somatosensory evoked potentials
(SEPs) have shed light on what levels of sensory processing
may be modulated by top-down influences. One study found
SEP differences as early as 50 ms post-stimulus when study
participants were attending to, relative to not attending to, tactile
stimulation of the index finger (Schubert et al., 2008). Another
study found SEP differences when people were led to expect
a more intense tactile stimulus, relative to an expected low-
intensity tactile stimulus (Fiorio et al., 2012). These studies,
in which the stimuli were identical regardless of attention
or expectation, suggest that somatosensory processing can be
modified by top-down processing at least as early as the primary
somatosensory area.

In rodents, there is electrophysiological evidence that
corticofugal projections, originating from the primary
somatosensory area (SI), modulate innocuous touch signals
in the cuneate and gracile nuclei of the dorsal column – the
earliest relay stages for many low-threshold mechanoreceptive

afferents (Nunez and Malmierca, 2007). Further, branches of
low-threshold mechanoreceptors synapse at the segmental level
in the spinal dorsal horn, but it is not known if central cognitive
or affective information can alter touch processing at this level
(Abraira and Ginty, 2013).

Brain Mechanisms Underpinning
Contextual Modulation of Affective
Touch
Modulation of hedonic sensations by context, expectations,
attention, and mood, can sometimes alter widespread sensory
processing in the brain (Small et al., 2001; Wager et al., 2004;
de Araujo et al., 2005; Petrovic et al., 2005; Nitschke et al., 2006;
Tracey and Mantyh, 2007; Berna et al., 2010; Knudsen et al.,
2011;Woods et al., 2011; Amanzio et al., 2013). Suchmodulations
have been widely studied in paradigms evoking placebo effects,
i.e., beneficial effects from clinical treatment due to patients’ or
study participants’ positive expectations or appraised contextual
meaning, rather than the active ingredient of the treatment
itself (Schedlowski et al., 2015; Wager and Atlas, 2015). In
these experiments, contextual cues are often manipulated to
alter the subjects’ expectations of the effects of the treatment,
which can be an inactive substance or procedure. Thus, one
can study how an unpleasant sensation or symptom, such as
pain, changes across different contexts. A series of functional
neuroimaging studies indicate that placebo improvement is often
underpinned by modulation of neural circuitry that traditionally
are considered pathways for bottom-up, ascending sensory
signals (Buchel et al., 2014). For example, placebo-induced
reduction of pain is often associated with widespread reductions
of somatosensory processing in thalamus, insula, primary and
secondary somatosensory areas, and dorsal anterior cingulate
cortex (ACC; Price et al., 2007; Eippert et al., 2009a; Lu et al.,
2010; Amanzio et al., 2013). Moreover, some studies suggest
that nociceptive processing in the spinal cord can be modified
by expectations of pain relief (Eippert et al., 2009b) or pain
worsening (Geuter and Buchel, 2013). Increased activity in a
set of brain regions collectively involved in cognition, valuation,
and affective processing, consisting of ventromedial (vmPFC)
and dorsolateral (dlPFC) prefrontal cortex, orbitofrontal cortex
(OFC), anterior insula, ventral striatum, amygdala and the
midbrain, is often observed in placebo studies (Petrovic et al.,
2002; Wager et al., 2004; Zubieta et al., 2005; Scott et al., 2007,
2008; Watson et al., 2009; Geuter et al., 2013; Pecina et al., 2013;
Bingel and Placebo Competence Team, 2014; Hashmi et al., 2014;
Kessner et al., 2014; Wrobel et al., 2014; Sevel et al., 2015),
and is thought to be responsible for the suppression of pain
processing. The functional architecture of modulatory networks
for placebo responsiveness has yet to be disentangled, but these
regions play central roles in hedonic valuation more generally, in
the monitoring and updating of expectation, and the integration
of available relevant information (Craig, 2009; McDannald et al.,
2011; Schoenbaum et al., 2011; Roy et al., 2012; Lebreton et al.,
2015; Lindquist et al., 2015).

There are relatively few investigations of the brain
mechanisms underpinning contextual modulation of affective
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touch. A handful of studies have used functional Magnetic
Resonance Imaging (fMRI) to investigate brain activity responses
to the same touch gentle stimulus during different contexts.
We recently investigated whether placebo improvement of
touch pleasantness (hyperhedonia) involves a modulation in
somatosensory processing circuitry and whether this is related to
activation of a prefrontal–subcortical modulatory neural circuit,
similarly to that observed in placebo analgesia (Ellingsen et al.,
2013). We suggested to a group of healthy volunteers that a nasal
spray would increase both the pleasantness of gentle touch and
reduce the unpleasantness of pain. After self-administration of a
placebo nasal spray, which the participants were lead to believe
would improve the affective aspects of both gentle touch and
pain sensations, they found touch more pleasant and pain less
unpleasant. While fMRI recordings during pain stimuli indicated
decreased somatosensory processing, recordings during gentle
touch stimuli showed instead increased activity in somatosensory
areas (SI, SII, and the posterior insula). Those participants
who showed the strongest placebo hyperhedonia and analgesia,
also had the strongest placebo-induced activity increase in
vmPFC, Nucleus Accumbens, amygdala, and brainstem regions.
Furthermore, the magnitude of this activity increase was related
to the modulation of somatosensory circuitry. Specifically,
those with the strongest placebo increase in functional coupling
between vmPFC and PAG also had the strongest hyperhedonic
increases and analgesic decreases in somatosensory areas
(Figure 2A), consistent with previous findings for placebo
analgesia (Wager et al., 2007; Eippert et al., 2009a). Another
fMRI study investigated the modulation of touch pleasantness
during the application of a skin cream, by the visual presentation
of labels saying either “rich moisturizing cream” or “basic cream”
(Figure 1C, McCabe et al., 2008). Although it was always the same
cream, participants reported the application of the rich cream
as richer and more pleasant. This improvement in hedonics was
associated with increased activations in the ventral striatum,
pregenual ACC (pgACC), SI/SII, and the parietal area 7. One
study found that when manipulating study participants’ beliefs
about the gender identity of the toucher, touch pleasantness of
“female caresses” increased, along with activation increases in SI
and the OFC (Figures 1E and 2B; Gazzola et al., 2012). Using a
similar design (Figure 1D; Scheele et al., 2014) partly replicated
these results, showing increased activation in the SI, as well as
the caudate, when participants believed the caresser was female.
Moreover, the intranasal administration of an oxytocin receptor
agonist further increased the touch pleasantness of the “female
caresses”, which was underpinned by activation increases in the
anterior insula, pgACC, and precuneus.

It has not yet been demonstrated whether the modulation of
pleasurable touch, like pain, involves descending modulation of
cutaneous afferents in the spinal cord, perhaps via the RVM.
Nevertheless, these findings suggest that, like negative hedonic
feelings such as pain, psychological modulation of pleasant
sensations may involve a more comprehensive modulation of the
underlying sensory processing, and not only within higher-level
valuation circuitry. One caveat, which is shared with research on
other sensorymodalities, is that although thinking in terms of one
ascending “sensory” system and one descending “modulatory”

system is useful, e.g., for forming testable research questions,
it may be too simplistic. It has been suggested that, instead of
functioning as separate systems where one can influence the
other, it may be more accurate to consider this as one recurring
sensory processing system with several integrative components,
such as feed-forward signaling, feedback loops, influences from
the “early” sensory processing of other modalities, and influences
from more abstract cognitive and affective information (Kinchla
andWolfe, 1979; Finkel and Edelman, 1989; Ullman, 1995; Siegel
et al., 2000; O’Reilly et al., 2013).

NEUROCHEMICAL BASIS OF THE
MOTIVATION FOR AFFILIATIVE TOUCH

In affiliative interactions such as rough-and-tumble play, where
touch has stimulatory or arousing behavioral or physiological
effects (Feldman et al., 2010a; Gordon et al., 2010), the touch
behaviors involved are typically different from interactions
where the intent is soothing, consolidation or relaxation (Holt-
Lunstad et al., 2008). These touch activities are likely driven
by different motivational modes, depending on the individual’s
underlying needs. There is evidence that primates and rodents
frequently engage in soothing and soft touch activities, like
social grooming and huddling, but rarely in rough-and-tumble
play, when they are distressed or in homeostatic imbalance (For
review, see Løseth et al., 2014). However, while stimulatory and
soothing touch may generally be differentiated by their stimulus
characteristics, the actual arousing or relaxing effects of a given
kind of touch depends on the appraised meaning (Ellingsen,
2015). For example, although a gentle caress can be soothing in
one context, it can be sexually arousing in a different context.
Furthermore, a caress can arouse negative affect and withdrawal
if coming from an unwanted person (Major, 1981).

State-Dependent µ-Opioid Modulation of
Affiliative Touch
The µµ-opioid receptor (MOR) system has a multi-faceted
role in reward, both social (Machin and Dunbar, 2011;
Chelnokova et al., 2014) and non-social (Drewnowski et al.,
1995; Yeomans and Gray, 1997). As is well known, MOR
activation promotes relief of negative affect (Hsu et al.,
2013) – e.g., drugs that activate MOR in humans have potent
analgesic effects (Zubieta et al., 2001). Moreover, opioids
have an inhibitory effect on Hypothalamic–Pituitary–Adrenal
(HPA) axis responses to environmental stress (Kreek, 1996;
Wand et al., 2002). Furthermore, MOR promotes motivation
for (Mahler and Berridge, 2012) and enjoyment of (Pecina
and Berridge, 2005) appetitive reward. A wealth of studies
using pharmacological manipulation of the MOR system in
a variety of mammalian taxa have demonstrated a key role
of the MOR system for affiliative touch behaviors, such as
social grooming (Keverne et al., 1989; Machin and Dunbar,
2011), social play (Panksepp and Bishop, 1981; Vanderschuren
et al., 1995), and huddling (Shapiro et al., 1989; Dunbar,
2010).
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FIGURE 2 | Contextual modulation of brain to affective touch. (A) After self-administrating a (placebo) nasal spray believed to have beneficial effects on gentle
touch and pain perception, placebo-induced increases in touch pleasantness and reductions in pain unpleasantness were underpinned by respective increases and
decreases in somatosensory processing of pleasant touch and pain (top). The individual magnitude of this somatosensory modulation was associated with the
degree to which placebo treatment increased the functional connectivity between the medial OFC (mOFC) and PAG (bottom, left), an important pathway for pain
modulation – those with the strongest increase in mOFC-PAG connectivity had the strongest somatosensory increases to pleasant touch (bottom, middle) and the
strongest somatosensory decreases to pain stimuli (bottom, right) (Ellingsen et al., 2013). (B) In heterosexual men, SI activity during gentle caresses was larger when
they believed a woman, relative to a man, performed the caress. The same pattern was seen across different sub-regions of SI, as well as (non-significantly) in the
ACC and insula (bottom) (Gazzola et al., 2012). Figure adapted from (Gazzola et al., 2012; Ellingsen et al., 2013). ∗p < 0.05, ∗∗p < 0.01.

Notably, the directionality of MOR agonism and antagonism
effects on affiliative touch behaviors has been diverging into two
opposing “camps” – 1) studies of primates and infant rodents
indicating that enhanced MOR signaling reduces affiliative touch
behaviors, and 2) studies of adolescent and adult rodents
indicating that enhanced MOR signaling increases affiliative
touch behaviors. We recently proposed the State-dependent
µ-Opioid Modulation of Social Motivation (SOMSoM) model as
a resolution to this apparent paradox, in that, instead of reflecting
a fundamental species-related difference in MOR function per
se, these differences may instead be due to consistent differences
in the animals’ motivational state during the experimental tasks
(Løseth et al., 2014). Most of these studies made use of some
variant of a “social relief paradigm”, where the animal was
separated for a certain amount of time before reunited with its
peers. Since primates and infant rodents rely on close social
bonds with others for survival and protection, they are often very
distressed by social separation (Panksepp et al., 1978). Adolescent
and adult rodents on the other hand, are not as reliant on
social support for survival or coping with stress, and typically
form more transient bonds for mating and parenting. Thus,
they are considerably less distressed by the social separation

that is inherent in the majority of these studies (Nelson and
Panksepp, 1998; van den Berg et al., 1999). Consequently, while
socially isolated primates and infant rodents may be distressed
and thus highly motivated for seeking relief and safety through
social contact, adult and adolescent rodents may have less need
for relief and thus more motivation for social exploration. The
SOMSoM model proposes that during negative affective states,
animals seek out affiliative touch interactions primarily for
comfort and relief of negative emotion. By providing relief from
distress, MOR activation by social contact or pharmacological
stimulation therefore reduces contact seeking, while disruption
of MOR signaling intensifies contact seeking. However, when
the animal is in emotional equilibrium, social interactions are
instead sought out for exploration, joy, and mating, which is also
promoted byMOR (Løseth et al., 2014). During this motivational
state, pharmacological stimulation of MOR signaling increases,
while disruption of MOR signaling reduces, contact seeking and
behaviors such as play.

Touch plays a central role in these interactions, and a body of
behavioral research indicates a specific role for affiliative touch
in health and wellbeing (for review, see Walker and McGlone,
2013). However, the social interactions in these studies are
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always happening in a rich multisensory context. An important
challenge for future studies is therefore to disentangle the role of
the MOR system in touch specifically.

Oxytocin, Social Affiliation, and Affective
Touch
The neuropeptide oxytocin also plays a central role in social
affiliation and attachment in mammals (Tops et al., 2007;
Feldman, 2012). Differences in oxytocin receptor distribution
in limbic brain areas across rodent species reflect differences in
social organization and bond formation (Young et al., 2011). The
monogamous prairie vole has higher densities of oxytocin and
vasopressin receptors in the ventral striatum than the closely
related, but promiscuous, montane and meadow voles (Ross
et al., 2009). Furthermore, the blockade of mesolimbic oxytocin
signaling in prairie voles prevents both maternal behavior (Cho
et al., 1999; Olazabal and Young, 2006) and the formation of
long-term pair bonds (Insel and Hulihan, 1995; Cho et al.,
1999; Ferguson et al., 2000). Oxytocin is also involved in a
range of social and emotional processing in humans (Bartz
et al., 2011; Leknes et al., 2013; Ellingsen et al., 2014), and has
anxiolytic effects (Heinrichs et al., 2003; Kirsch et al., 2005),
enhance parasympathetic responses (Gamer and Buchel, 2012),
and increase heart rate variability – indicating increased vagal
control (Kemp et al., 2012). Similar to the MOR system, oxytocin
is associated with promoting social approach both for appetitive
social reward (Panksepp et al., 1997; Nakajima et al., 2014),
and relief of negative affect (Campbell, 2008; Bosch, 2011).
Specific affiliative behavior such as social grooming (Drago et al.,
1986; Pedersen et al., 1988; Witt et al., 1992; Francis et al.,
2000; Champagne et al., 2001; Champagne, 2008) and maternal
nurturing (Pedersen and Prange, 1979; Pedersen et al., 1982;
Bosch, 2011) has been associated with oxytocin.

Several studies indicate that oxytocin suppresses the activity
of the stress-induced HPA axis. In humans, oxytocin reduces the
release of adrenocorticotropic hormone (ACTH; Chiodera and
Coiro, 1987) and cortisol (Legros et al., 1988) in response to
stressful stimuli. In rats, central blockade of oxytocin increases
basal and stress-induced release of ACTH and corticosterone
(Neumann et al., 2000b). However, a study using local injection
of an oxytocin antagonist indicates differential effects on stress
responses depending on the brain site. Local blockade in the
Paraventricular Nuclei (PVN) led to increased basal ACTH, but
reduced stress-induced release of ACTH, perhaps because of
the increased baseline. On the other hand, injections in the
amygdala and the medio-lateral septum, which projects directly
and indirectly to the PVN, did not alter basal ACTH levels, but
reduced stress-induced ACTH (Neumann et al., 2000a). Because
of the effect of oxytocin on both stress regulation and social
bonding, it has been suggested that the soothing and anxiolytic
effects of stroking touch in mammals is mediated by oxytocin
(Uvnas-Moberg et al., 2014).

In contrast to in rodent literature, relatively few studies
have employed pharmacological modulation of oxytocin in
primates. A recent study investigated pair-bonding in marmoset
monkeys, and found that huddling behavior was increased by the

administration of an oxytocin receptor agonist, but reduced by
an oxytocin antagonist (Smith et al., 2010). Another study found
that, in squirrel monkeys, intranasal oxytocin dampened the
increases of blood plasma ACTH in response to (stressful) social
isolation. However, plasma levels of cortisol were not affected
(Parker et al., 2005), and, since behavioral changes were not
assessed, it is difficult to directly relate this finding to affiliative
touch behavior.

Primate studies investigating peripheral levels of oxytocin
during social interactions provide indirect evidence for an
involvement of oxytocin in affiliative touch behavior (although
whether peripheral OT levels give an indication of central
OT levels is as yet unclear – see Jokinen et al., 2012;
Neumann and Landgraf, 2012; Kagerbauer et al., 2013). In
rhesus monkeys, engagement in social grooming activities
correlates positively with plasma (Maestripieri et al., 2009) and
cerebrospinal fluid (Winslow et al., 2003) levels of oxytocin. In
wild chimpanzees, increased urinary levels of oxytocin has been
reported to follow grooming events, which is mediated by bond
strength between the grooming partners, specifically grooming
interactions between animals with closer social bonds showed
larger increases in urinary oxytocin (Crockford et al., 2013).
Another study found no relationship between plasma oxytocin
and social behavior in free-ranging macaques (Schwandt et al.,
2007). A recent study on pair bonding in cotton-top tamarins
reported that inter-individual levels of urinary oxytocin co-varied
closely with grooming and mutual contact in females and with
sexual behavior in males (Snowdon et al., 2010). Moreover, one
study reported higher urinary levels of oxytocin during social
contact than during social isolation (Seltzer and Ziegler, 2007).
Together, these studies are in line with a notion that oxytocin
release is associated with the relief of negative states induced by
social isolation or rejection, and that low levels of oxytocin may
promote seeking of social support (Panksepp et al., 1997; Tops
et al., 2007). It has been proposed that oxytocin release in social
interaction may involve two “phases” – first, a social-salience
related release during motivation for approach, and second –
if leading to physical affiliative contact – an anti-stress related
release (Uvnas-Moberg et al., 2014). This model is derived from
the reports of oxytocin release in dogs and dog-owners, first in
response to auditory and visual cues that the other “individual”
is nearby, and then again when the owner strokes and caresses
the dog, together with reductions in plasma cortisol (Miller et al.,
2009; Handlin et al., 2011; Beetz et al., 2012; Rehn et al., 2014).

Similar to the effects of MOR system manipulations, the
behavioral effects of oxytocin administration seem to vary across
contexts and affective states (Bartz et al., 2011). In rodents,
oxytocin is associated with both protective behavior toward pups
and aggression against intruders (Campbell, 2008). Intranasal
oxytocin in humans increases the recognition of both positive
(Unkelbach et al., 2008; Marsh et al., 2010) and negative emotions
(Bartz et al., 2010; Fischer-Shofty et al., 2010; Leknes et al.,
2013), and increases empathizing and cooperation with in-group
members, but may increase aggression toward threatening out-
group members (De Dreu and Kret, 2015). We recently found
that oxytocin promotes a social-touch induced “sharpening”
of social impressions of others, relative to non-social touch
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(Ellingsen et al., 2014). Nevertheless, a single dose (40IU) of
oxytocin did not affect the pleasantness or intensity of the
actual touch experience. In contrast, a recent study found that,
in a group of heterosexual men, intranasal oxytocin increased
the pleasantness of sensual caresses specifically when they
believed that a woman was touching (Scheele et al., 2014).
However, oxytocin had no effect on touch pleasantness when the
participants believed the caresser was a man, further highlighting
the importance of multisensory context in oxytocin functioning.
A popular hypothesis about central oxytocin functioning is that
oxytocin may promote social approach behavior (in both positive
and negative contexts), and inhibit social avoidance (Kemp and
Guastella, 2010, 2011; Clark et al., 2013). However, while many
of the studies using intranasal oxytocin in humans involve
an experimental manipulation of context, they rarely assess –
or manipulate – more profound changes in motivational or
homeostatic state. Thus, it is not well known to what degree
oxytocinergic modulation of social approach and avoidance in
humans depends on the individual’s initial state. Interestingly,
it has recently been suggested that oxytocin might promote
approach behavior more strongly in novel contexts compared
to familiar contexts (Tops et al., 2014). One study found that
participants’ salivary oxytocin, during anticipation of a cognitive
task, was positively correlated with state trust at the initial
session, but negatively correlated with trust in the subsequent
session, when they were familiar with the task (Tops et al.,
2013). Similarly, another study reported that intranasal oxytocin
increased the expression of affiliation in a clinical interview for
depression, during an initial visit but not during a follow-up visit
(Brune et al., 2015).

A series of studies assessing endogenous peripheral levels of
oxytocin suggest a role of oxytocin in human affiliative touch
(Lupoli et al., 2001; Matthiesen et al., 2001; Uvnas-Moberg,
2004; Light et al., 2005), although the exact mechanisms are
unclear (Feldman, 2012). One study found that plasma oxytocin
levels in mothers during pregnancy and the early postpartum
period predicted maternal bonding behaviors such as eye gaze,
high-pitched vocalizations and affectionate touch directed at the
infant (Feldman et al., 2007). Another study reported that higher
plasma levels of oxytocin correlated with more frequent infant-
directed stimulatory touch by first-time fathers, but with more
frequent affectionate touch (e.g., hugging, kissing, and stroking)
by first-time mothers (Gordon et al., 2010). Furthermore, one
study found that couples who were instructed to perform
30 minutes of reciprocal “warm, sensual” touch on their partner’s
neck, shoulders, and hands, three days/week for 4 weeks, had
increased post-intervention levels of salivary oxytocin, as well as
reductions in stress-responsive markers such as blood pressure,
plasma cortisol, and alpha amylase, compared to a control
group (Holt-Lunstad et al., 2008). Unfortunately, this literature
commonly quantified oxytocin in plasma using methods in
which the validity has been questioned, and results may reflect
non-oxytocin substances (McCullough et al., 2013; Christensen
et al., 2014). Perhaps for this reason, along with potentially
fine-grained variations in context and motivational state across
studies, overall findings of touch-induced release of peripheral
oxytocin in humans are inconsistent. While some studies have

found peripheral oxytocin release in response to touch (Light
et al., 2000; Odendaal and Meintjes, 2003; Light et al., 2005; Holt-
Lunstad et al., 2008), others have found no effect (Turner et al.,
1999; Heinrichs et al., 2001; Wikstrom et al., 2003; Grewen et al.,
2005; Ditzen et al., 2007). Moreover, methodological limitations
like the lack of useful oxytocin antagonists for human testing,
as well as the current inability to assess oxytocin release in
the human brain, limits the understanding of the functional
neurobiology of oxytocin in humans. Finally, it is important
to note that, like the MOR system, many of the functions of
central oxytocin are not restricted to the social domain, but
instead may reflect more fundamental mechanisms involved in
generalized processing of salience, motivation, anxiety, and stress
regulation (Churchland and Winkielman, 2012; Harari-Dahan
and Bernstein, 2014).

Contribution of Other Neurotransmitters
In addition to MOR and oxytocin, neurotransmitters such
as vasopressin (Winslow et al., 1993; Panksepp et al., 1997),
serotonin (Insel and Winslow, 1998; ?), cannabinoids (Trezza
and Vanderschuren, 2008a,b; Trezza et al., 2012) and dopamine
(Champagne et al., 2004) modulate social touch behaviors in
mammals. For example, tickling – an activity primarily associated
with social play – increases NAc dopamine signaling in rats
(Maruyama et al., 2012; Hori et al., 2013). In humans, massage
therapy increases urinary dopamine and serotonin, and reduces
urinary and salivary cortisol (as reviewed by Field et al., 2005).
It is, however, unknown whether such peripheral assessment
reflects concentrations of these neurotransmitters in the brain.

These neurotransmitter systems likely interact with MOR and
oxytocin processing in key brain regions involved in social and
emotional processing (Hagelberg et al., 2002; Liu and Wang,
2003; Depue and Morrone-Strupinsky, 2005a; Lintas et al., 2011;
Colasanti et al., 2012; Tops et al., 2014). Understanding the nature
of these interactions is an important challenge for future studies
(Weisman and Feldman, 2013). Furthermore, in the periphery,
oxytocin interacts with other hormones to affect behavior. For
example, it has been reported that intranasal oxytocin increases
human fathers’ expression of eye gaze and affectionate touch
toward their infants, but only in those whose plasma testosterone
levels also increase after the oxytocin administration (Weisman
et al., 2014).

CONCLUSION

Although touch can be a source of safety, comfort, relief,
and pleasure, this effect is likely confined to instances where
contextual cues are affectively congruent with affiliative touch,
e.g., when the other individual is friendly, has good intentions,
and the touch is socioculturally appropriate. When touch
occurs in combination with contextual cues indicating that
the touch is undesirable, or is associated with danger, the
same touch stimulus may instead be appraised as unpleasant
or disgusting and promote avoidance. It is not yet known
whether there are aspects of touch that are inherently positive,
or if the hedonic value of all kinds of touch is dependent
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on context or internal state. Future research is needed to
determine the flexibility and boundaries of bottom-up versus
top-down influences on touch. Although relatively few, the
existing studies on the neurobiological underpinnings of top-
down modulation of affective touch indicate involvement of
modulatory prefrontal and subcortical circuitry key to valuation,
cross-sensory integration, and the construction of meaning
(Ellingsen et al., 2013; Ellingsen et al., 2015). These studies also
suggest that somatosensory processing in circuitry traditionally
considered part of a “bottom-up” pathway can be modulated
by expectations and contextual cues informative of the hedonic
value of touch. This mechanism bears similarity to that involved
in placebo improvement of negative hedonic experiences, such
as pain (Scott et al., 2007; Eippert et al., 2009a; Benedetti,
2014). µ-opioids and oxytocin are two of the neurotransmitters
that have been most extensively studied in relation to affiliative
touch. Pharmacological manipulation of µ-opioid processing
can dramatically influence touch behavior in mammals, but the
directions of the effects seems to depend on motivational state.
Whereas MOR antagonism increases social contact seeking when
the animal is distressed, it tends to decrease contact seeking
when the animal is in a non-stressed state, especially in animals
that rely on social relationships for emotion regulation, such
as primates and infant rodents (Panksepp et al., 1978). This
may reflect a bimodal role of opioids in both comfort seeking
and exploration for social reward, mirroring the dual effects
of MOR in pain relief and pleasure (Løseth et al., 2014). The
role of oxytocin in affiliative touch, and in social interactions
in general, is similarly dependent on context. One line of
research indicates that oxytocin may either increase the salience
of socially relevant cues, or promote approach behavior in

general (Shamay-Tsoory et al., 2009; Kemp and Guastella, 2010,
2011). Another line of research indicates an anxiolytic and
stress-reducing effect of oxytocin, and it has been hypothesized
to account for the relaxing and soothing effects of touch
(Churchland and Winkielman, 2012). Unfortunately, most of the
studies investigating the effects of pharmacological manipulation
of µ-opioids and oxytocin systems on social touch behaviors do
not give information about the contribution of touch relative to
other sensory modalities. The same issue applies to investigations
of the effects of interpersonal touch in naturalistic settings, where
touch is part of a complex multisensory interaction. A future
challenge is thus to disentangle the specific role of touch in
relation to other sensory modalities, and how touch is integrated
with other sensory signals. Isolating the specific role of touch in
social interactions, while still keeping a certain level of ecological
validity is particularly challenging, and poses an important task
for future research.
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