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Animals have evolved complex foraging strategies to obtain a nutritionally balanced
diet and associated fitness benefits. Recent research combining state-space models
of nutritional geometry with agent-based models (ABMs), show how nutrient targeted
foraging behavior can also influence animal social interactions, ultimately affecting
collective dynamics and group structures. Here we demonstrate how social network
analyses can be integrated into such a modeling framework and provide a practical
analytical tool to compare experimental results with theory. We illustrate our approach
by examining the case of nutritionally mediated dominance hierarchies. First we show
how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies
can be used to generate social networks. Importantly the structural properties of our
simulated networks bear similarities to dominance networks of real animals (where
conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics
from social network analyses can be used to predict the fitness of agents in these
simulated competitive environments. Our results highlight the potential importance of
nutritional mechanisms in shaping dominance interactions in a wide range of social and
ecological contexts. Nutrition likely influences social interactions in many species, and
yet a theoretical framework for exploring these effects is currently lacking. Combining
social network analyses with computational models from nutritional ecology may bridge
this divide, representing a pragmatic approach for generating theoretical predictions for
nutritional experiments.

Keywords: animal behavior, dominance hierarchy, geometric framework, nutrition, nutritional geometry, social
networks

INTRODUCTION

Animals, from insects to human, have evolved sophisticated foraging strategies, which allow them
to acquire nutrients in amounts and balances that maximize fitness (Simpson and Raubenheimer,
2012; Senior et al., 2015b). Over recent years, research in nutritional ecology has begun to
reveal how these individual strategies can influence the ways animals interact within groups
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and populations, with far reaching consequences for collective
dynamics and social structures (Simpson et al., 2006; Eggert et al.,
2008; Salomon et al., 2008; Dussutour and Simpson, 2009; Bazazi
et al, 2011; Lihoreau et al., 2015; Machovsky-Capuska et al.,
2015). A striking example is the mass migrations of swarming
crickets and locusts, where food depletion increases cannibalistic
interactions and triggers the onset of the coordinated migration
of tens of thousands of insects marching together in search of
protein and mineral salts (Simpson et al., 2006; Bazazi et al,
2011).

Nutrient regulation strategies and their social consequences
can be studied within a single modeling framework, which
integrates state-space models used in nutritional geometry
studies and agent-based models (ABMs) used in collective
animal behavior studies (Lihoreau et al., 2014, 2015). In
nutritional geometry, individuals, foods and their interactions
are represented in a single nutritional space delimited by two
or more nutrients (see examples in Figures 1A,B; Simpson
and Raubenheimer, 1993, 2012; Simpson et al., 2015). The
challenge for an individual is to eat the available foods
so as to regulate its acquisition of nutrients and reach
a nutritional state (NS) that maximizes fitness, known as
the intake target (see examples in Figures 1A,B). Within a
group or a population, these individual decisions may be
complicated by social and competitive interactions, potentially
creating conflicts over nutrient acquisition among the different
foragers. Implementations of such nutritional geometry focused
ABMs, in which multiple individuals simultaneously attempt
to regulate their nutrient balance, illustrate how these simple
nutritional behaviors can critically affect a range of social
interactions and social structures across group types, species and
ecological contexts (Lihoreau et al., 2014, 2015; Senior et al.,
2015a).

Perhaps one of the best-documented examples of nutritionally
mediated social structures are dominance hierarchies, where
experimental studies point toward a direct role of diet in
determining individual dominance and subordinate statuses
(Baker et al., 1981; Whitten, 1983; McCarthy et al., 1992; Eggert
et al., 2008; Salomon et al., 2008; Stears et al., 2014; Wright
and Robbins, 2014). In social spiders (Stegodyphus sp.), for
instance, the largest females of the colony tend to monopolize
prey high in lipids through contest competition and thus become
breeders, whereas smaller individuals that are deprived of lipids
act as helpers (Rypstra, 1993; Whitehouse and Lubin, 1999;
Salomon et al., 2008). In these cooperatively breeding groups,
differential nutrition triggers significant skews in body size, with
reproduction limited to just one or two larger females (Rypstra,
1993; Ulbrich and Henschel, 1999; Whitehouse and Lubin, 2005).
Nutritional geometry focused ABMs, such as those outlined
above, succinctly capture how contest competition over limited
nutrients can lead to clear and stable dominance hierarchies
where fitness is highly skewed toward a few individuals (Lihoreau
et al.,, 2014; Senior et al., 2015a). In these models, access to
foods is limited and individuals must engage in contests to gain
a meal. The group is initially homogeneous, and early contests
for access to foods have stochastic outcomes. However, after a
few “contested meals,” small differences in the NS of individuals

can emerge purely by chance (Senior et al, 2015a). Given
the assumption that better nourished individuals outperform
more poorly nourished competitors in future contests, positive
feedback amplifies initial small differences in NS into a hierarchy
where a few individuals monopolize nutrients, thereby gaining
considerable fitness benefits. Similar mechanisms have been
observed in animal dominance hierarchies arising from various
types of non-nutritionally related conflicts, and are called
“winner effects” (Dugatkin, 1997; Franz et al., 2015; Kura et al.,
2015).

So far these models have explored the effects of the nutritional
environment on individual fitness (as measured by their NS)
and its variance within groups or populations. Less studied
however, but of fundamental importance, is the behavior of
individuals, the dynamics of their interactions and the associated
consequences for social structures. Social network analyses,
which are increasingly used in behavioral studies to characterize
pairwise interactions between all members of a group or
population (Krause et al., 2007; Croft et al., 2008; Sih et al.,
2009; Sueur et al., 2011; Pinter-Wollman et al., 2013), constitute
a well-developed analytical framework with which to explore
the role of nutrition in mediating social interactions and their
evolution. This approach is particularly powerful when it comes
to characterizing complex dominance relationships in animal
groups (e.g., identifying dominant individuals and how they
interact with other group members based on traits such as
kinship, age, sex or previous experience), and understanding the
processes that underlie the network structures and dynamics
(Croft et al., 2008; Shizuka and McDonald, 2012; Nandi et al.,
2014).

Here we argue that social network analyses can bring
fundamental new insights into research on nutritional behavior,
and the consequences of these behaviors for group dynamics.
We demonstrate this concept using the well-known example of
nutritionally mediated dominance hierarchies. We first show that
the networks generated by simple nutritional models simulating
the emergence of dominance bear striking structural similarities
to those networks of dominance hierarchies observed in animal
groups across contexts (i.e., conflicts not necessarily related to
food access). We then go on to show that metrics from social
network analyses predict the future fitness of agents in these
simulated competitive environments. Our analyses demonstrate
how network analysis of data from these nutritional models
can be used to form new empirically testable predictions for
studies on social groups, bridging the gap between theoretical and
experimental data.

METHODS
Agent Based Model

An overview of our ABM’s process is given in Figure 1C. The
basal model has been previously defined in Lihoreau et al.
(2014) and a detailed description (as recommended for ABMs;
Grimm et al., 2006, 2010) is available in Senior et al. (2015a).
The complete code, written in NetLogo version 5.1.0 (Wilensky,
1999), is available in the Supplementary File S2.
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FIGURE 1 | (A) Nutritional geometry used to model the nutrient space available for two nutrients; e.g., the macronutrients protein and carbohydrate may be
represented on the x- and y- axis respectively. Foods are represented by food rails, which project through the nutrient space with a slope denoting the nutrient content
for the two foods modeled. In this example the environment contains three foods. Food A is high in nutrient X relative to nutrient Y (ratio = 16:1), food B is balanced for
the two nutrients and food C is low in nutrient X relative to Y (ratio = 1:16). The optimal nutritional state for an individual is represented by the Intake Target (IT), which
is shown as a red crosshair. (B) An individual’s position in the nutrient space is its (x, y) coordinate, which moves as the individual eats. Here we show how two
different individuals move as they eat two meals. Individual 1 (black) first eats food C then food A. With respect to the IT, these two foods are nutritionally
complementary and as such the individual can get close to the IT. In contrast, individual 2 (red) has first eaten food A, then food B. These two foods are not
complementary, and as such the individual cannot reach the IT. Given that the IT is the optimal nutritional state, individual 2 would have a lower fitness that individual 1.
(C) An overview of the sequence of events in the agent-based model. Individuals are processed in a random sequence. Complete code is available in Supplementary

The ABM incorporates principles of nutritional geometry
as described in Figures 1A,B. For simplicity we consider an
environment containing just two nutrients (nutrients X and Y)
in a Cartesian (x, y) coordinate system termed the “nutrient
space.” Foods are represented as radials at angles determined by
the balance of the nutrients they contain. An individual’s (x, y)
position in the nutrient space is their NS, which moves as they
eat the foods that are available. At any one time only a single
food can be eaten, thus individuals move their NS in parallel to
the food rail that constitutes the food consumed. A single (x, y)
coordinate, the IT, represents the point in the nutrient space that
is an individual’s optimal state. As such, when an individual’s NS
reaches the IT, fitness is maximized. Here we assume that fitness
declines as the Euclidean distance between the NS and the IT
increases (see Equation 6 in Senior et al., 2015a).

All individuals are initiated with the same NS (0, 0), and
are given a fixed number of iterations, or “meals,” to reach the
IT. Each food has a different nutritional composition, and these
foods may be eaten in a number of combinations in order to reach
the IT (Figures 1A,B). On each iteration, individuals attempt to
eat one of the foods in the environment. However, each food
has an upper limit and can thus only support a limited number
of foragers. If individuals select a food that is already at this
limit, they must first displace a randomly selected competitor
via a dominance interaction. We began by exploring scenarios
where the capacity of foods to support individuals, and thus
the intensity of contest competition, was varied (manipulated
via the “competition intensity” parameter c). Although we later

focus solely on analyses of networks generated in scenarios
where competition is intense (discussed further below). All data
presented in the main text come from an environment containing
three different foods (equivalent to that in Figure 1A). In a
previous analysis of this model such a three-food environment,
composed of one balanced food (i.e., individuals can reach
their IT by eating only this food) and two imbalanced but
complementary foods (i.e., individuals can reach their IT by
mixing their intake of the two foods), produced results indicative
of a wide range of environments (i.e., containing combinations of
foods with different levels of nutritional complementarity; Senior
etal., 2015a). Additional explorations of the model with only two
imbalanced foods (equivalent to that in Figure 1A but without
food B) yielded qualitatively identical results. These analyses are
presented in the Supplementary Materials (Figures S1-S3).

In the model, the probability of an individual defeating
another in a contest is a function of the NS of the two, as given by
Equation (1):

1
14+ e~ N(Fi—F)

Qij = =1-Qj, (1)

where Qj is the probability of the ith individual defeating the
jth, e is the natural exponent, F; and F; is the fitness of the two
individuals, and 7 is a constant that scales how the difference in
fitness between the two individuals governs the outcome of the
contest (here fixed at 25; see Senior et al., 2015a). Accordingly,
an individual with a NS closer to the IT is more likely to defeat a

Frontiers in Psychology | www.frontiersin.org

January 2016 | Volume 7 | Article 18


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Senior et al.

Nutritionally Derived Social Networks

competitor with a NS further away. Contests between individuals
with NSs close to one another have highly stochastic outcomes
(this model of contest competition is based on that published by
Bonabeau et al., 1996).

In previous studies involving nutritional geometry focused
ABMs, the outcomes of individual interactions, have been largely
overlooked. Rather, the analyses focused on the fitness and NSs
of individuals after thousands of interactions, and in turn the
effects that these interactions have on the evolution of nutritional
strategies (e.g., Senior et al., 2015a). We here modified the model
to record the outcomes of each specific individual contest at a
number of different time steps with the aim of characterizing the
dynamics of network growth and structure.

Network Analyses

For each simulation of the model, we constructed a time series of
(after 1, 3, 5, 7, 10, 15, and 20 meals) “contest matrices.” In these
matrices each row and column represents an individual, and the
cells in a specific row give the total number of contests that a
specific individual (given by that row) won against each other
group member (in each column). Contest matrices were used to
build a time series of weighted and directional networks (one for
each time point), where each node represents an individual and
edges represent contests between two individuals. The size of the
node represents the current fitness of the individual relative to
the rest of the group. The directionality of the edge denotes the
outcome of the contest (arrow points toward the loser), and the
weight gives the total count of contests between those individuals
at that time point (i.e., previous contests are not “forgotten”). We
began by using simple network visualization techniques for small,
easily visualizable, social groups of seven individuals. Network
graphs were implemented with the “plot.igraph” function in the
igraph package (Csardi and Nepusz, 2006) for R version 3.2.1
(R Development Core Team, 2015), to demonstrate how the
network and individual fitness (a function of NS), co-vary over
time in different nutritional environments.

In studies of animal dominance, deconstructive approaches
where networks are separated into their constitutive triads,
or “motifs,” are increasingly popular tools for understanding
social network structure (Shizuka and McDonald, 2012; Pinter-
Wollman et al., 2013). We used this approach to compare
the structures of dominance networks generated via nutritional
mechanisms in our model with the typical structure of published
animal dominance networks (based on the comparative results
of McDonald and Shizuka, 2013). We ran replicates of the model
assuming an environment where foods had a very low capacity
to support individuals (i.e., where competition was intense and
contests over foods frequent), and also using larger more complex
social groups of 20 individuals (a group size more comparable
to that of most published animal networks; McDonald and
Shizuka, 2013). In these later analyses we focus solely on a food-
limited environment, where competition intensity is high (¢ =
0.8). We restrict our analyses to these environments because,
where foods are more abundant and competition intensity is
weaker, between-agent variance in fitness is low, and strong
dominance hierarchies/meaningful social structures do not arise
(see Lihoreau et al., 2014).

The “contest matrices” produced by these models were
converted to binary “outcome matrices,” where for any given pair
of individuals the dominant is that which won the majority of
contests. We also allowed for draws, or “mutual” relationships
(i.e., instances where individuals won equal number of contests
against one another, which were also coded as 1). Triads can
take one of 16 different configurations, ranging from null triads
(no interactions) to completely reciprocal relations between all
three nodes, and we refer to these triads according to the Mutual
Asymmetric Null (MAN) system (Holland and Leinhardt, 1970,
1976). We used the “triad.census” function in the R package
statnet (Handcock et al., 2008, 2015) to get counts of each type
of triad in each network. We also simulated 1000 equivalent
random matrices (using the “rguman” function in statnet), to
estimate the difference in occurrence of each triad type between
our ABM-derived networks and random networks with the same
number of nodes, edges and null dyads (similar to the method
of McDonald and Shizuka, 2013, although they did not include
draws). Whilst it is clear that differences between our networks
and random networks are to be expected (e.g., we know that
nutritionally derived networks are based on winner effects),
we were primarily interested to see whether our simulated
networks differ from random expectations in similar ways to
published animal dominance networks. We also calculated the
triangle transitivity (¢yi) of networks, a statistic that denotes the
“orderliness” of the group where 0 indicates a completely non-
linear group (equivalent to a random network) and 1 a perfectly
ordered linear hierarchy (McDonald and Shizuka, 2013). We
calculated ty following the method described in Appendix 2 of
Shizuka and McDonald (2012).

Finally, we assessed whether individual network statistics
applied to dominance networks can be used to predict the
final fitness of individuals in a social group (again using 20
individuals). To do this, we generated a weighted directional
network at a number of time points as above (based on
contest matrices and again where competition was intense). We
calculated the (normalized) closeness of each individual (node)
within the network at a given time with the “closeness_w”
function in the R package tnet (Opsahl, 2009). In weighted
directed networks such as which we generated, the closeness of
a node is a function of: (1) the direction between two nodes
(implying that the shortest path between nodes i and j is not
necessarily equal to the shortest path between nodes j and i), (2)
the number of edges a node has, and (3) the weight of those edges
(Opsahl et al., 2010). The tradeoft between the influence that
these last two characteristics have on closeness is governed by the
tuning parameter « (Opsahl et al., 2010). Where « is zero, only
the number of edges influence node closeness; where « is between
0 and 1 both the weight and the number of edges positively
influence closeness; where o = 1 closeness depends solely on
the sum of the weight of edge weights; and where o > 1 higher
weights positively influence closeness and increasing numbers
of edges reduce closeness (Opsahl et al., 2010). We explored
closeness calculated via a number of different a-values (0, 0.5, 1,
1.5, and 2) and their biological interpretation is discussed further
in the results. We then compared individual closeness to other
predictors of final fitness, using linear regression implemented
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with the “Im” function in the base package in R. In these models
the response was the fitness of the individual after 20 meals logit
transformed for model fitting (fitness is bound at 0 and 1 in
our models; Warton and Hui, 2010), and back-transformed for
plotting.

RESULTS

Figure 2 shows examples of the development of three dominance
networks over time in different three-food environments (i.e.,
identical to Figure 1A) where foods are either abundant,
moderately available or scarce. The same analyses for two-
food environments (i.e., foods A and C in Figure 1A) yielded
qualitatively similar results (Figures S1-S3).

Where foods are more abundant, there are relatively few
contests to gain access to foods. As a consequence the network
is poorly connected even after 20 meals (Figure 2A). However, as
food availability decreases, individuals must engage in contests
to gain food access and networks become more connected
(Figures 2B,C). A direct consequence of this is the increase of
variance in the relative fitness of individuals within the group
(variance in the size of the nodes in the network; Figures 2B,C).
In the three environments all group members initially have
the same fitness, but where food is less available variance
in fitness gradually emerges and increases as contests and

meals accumulate. For instance, in the low food environment,
individual 4 has already lost multiple contests after only 10 meals
(Figure 2C). After 20 simulated meals, this individual has lost
a large number of contests, has the lowest fitness and a clear
fitness skew has emerged. In this environment, individual 6 is
the fittest, and the difference between individuals 4 and 6 is large
(individual 4 is only 26.67% as fit as individual 6; Figure 2C). In
contrast, where foods are relatively abundant, and networks are
less connected (i.e., fewer contests), the difference between the
fittest and least fit individuals in the group is less pronounced (the
least fit individual is only 50.77% as fit as the fittest; Figure 2A).
There are 16 possible configurations of triads in networks
that are both directional and contain mutual ties (Figure 3).
In our simulated dominance networks in competition-intense
environments (¢ = 0.8), the most frequent types of triads were
012, 030T, 021U, 021D, and 021C (Table 1, see also Figure 3
for visualizations of these triad types). However, these results
are most informative when compared to “null expectations”
derived from random networks. Figure 3 displays the difference
between the triad census (% of each type of triad) of ABM
derived networks and random networks. There were on average
4.52 more 021U (i.e., the difference in the % of 021U triads
in ABM networks and random networks was 4.52), 3.34 more
021D, and 3.01 more 030T triads than would be expected
purely by chance. In addition, there were on average 7.47 less

A High Food B Moderate Food c Low Food
Availability Availability Availability
Meal 1 Meal 3 Meal 1 Meal 3
® e ® 9 ® @ ®
® ® i ®4 °
/ \ /
e © o @ o © » @
Meal 5 Meal 10 Meal 10
@
. //, . .\ .
o o/ R
e | ) N ] @
'y .
o @ o ©® @

Meal 15

Meal 20

FIGURE 2 | Examples of the development of three different dominance networks in three different nutritional environments containing three foods
(identical to Figure 1A) at (A) high, (B) moderate, and (C) low food availability after 1, 3, 5, 10, 15, and 20 meals, in groups of 7 individuals. Each network
is directional and weighted. Each node represents 1 of 7 individuals, and the plotted position of each individual remains constant across meals in each environment
(individual identities are given for meal 1). Edges represent contests, with the direction of the edge denoting the victor of the contest and the loser (recipient). Edges
are weighted by the number of contests. The size of each node represents individual fitness relative to the rest of the group (larger nodes denote fitter individuals, that
have nutritional state closer to the IT). The degree of food availability equates to a “competition intensity” (c) of 0.4, 0.6, and 0.8, as described in Senior et al. (2015a).
The script is available in Supplementary File S2.
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FIGURE 3 | Differences in the representation (%) of triad types between networks generated from the agent-based model and random networks with
similar properties (same number of nodes, edges and null dyads) in a three-food environment (identical to Figure 1A). We created 10 different networks
for groups of 20 individuals using our model, with a high level of “competition intensity” (c = 0.8) and after 20 meals. For each network we calculated the difference
between itself and 1000 randomly generated networks, and took the mean of these 1000 differences. These results give the mean of the 10 sets of mean differences
(black dots) and the 0.025-0.975 quantiles of these 10 (black bars). Triads are labeled according to the MAN labeling system (Holland and Leinhardt, 1970, 1976).
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021C (even though among the most common type of triads
in our simulated networks; Table 1) and 3.20 less 030C triads
in the simulated dominance networks than would be expected
in a random network (Figure 3; note that 0.95 quantiles for
these differences exclude 0). The mean t,; of these networks
was 0.77.

To assess whether network metrics could be used to estimate
an individual’s performance and hierarchical rank, we examined
how well closeness centrality after 5, 7, 10, and 15 meals predicted
future fitness after 20 meals in environments where competition
was intense, and between-individual variance in fitness high. We
first explored how the tuning parameter « influenced the power
of closeness to predict future fitness. At most time points (meals),
linear models fitting closeness with « > 0 had higher R? than
those with « = 0 (Table 2). In addition, at early time points «-
values of 0.5, 1, and 1.5 tended to have better fit than o = 2.
These findings indicate that both the number of conspecifics an
individual has defeated in contests (i.e., number of edges), and
the number of times it does so (i.e., weight of edges) influence
future fitness (as opposed to only one of these factors being
of relevance). For instance a strategy whereby an individual
dominates one or two conspecifics a large number of times (large
«a) early on in the simulation, may not be better than dominating
all other conspecifics in a similar number of contests (« ~ 1).

Within our ABM, mechanisms of winner effects based on
current NS (fitness) operate. Thus, in theory the best predictor
of final position in the dominance hierarchy at any given
time point should be current fitness. Accordingly, closeness
(calculated with any «-value) did not appear to be as good
a predictor of future fitness as current fitness (i.e, R?> for
models fitting closeness were consistently lower than those fitting
current fitness; Table 2). However, closeness values did correlate
strongly with future fitness (Table 2 and Figure 4). Importantly,
at earlier time points, between-individual variance in closeness
was much greater than between-individual variance in current
fitness (Figures 4A-C). Thus, closeness is a valuable predictor of

future fitness in experimental studies on nutritionally mediated
dominance hierarchies, as it is easy to quantify from behavioral
data and less sensitive to measurement inaccuracies that NS.

DISCUSSION

We combined social network analyses with ABMs of nutritional
geometry to generate new insights into the role that nutrition
can play in the formation of dominance hierarchies in animal
groups. We found that network graphs based on contest matrices
constitute succinct tools for characterizing the emergence of
dominance hierarchies and for comparing those hierarchies
across simulated nutritional environments and through time. As
a well-established and widely implemented analytic framework
(Krause et al., 2007; Croft et al., 2008; Sih et al., 2009; Sueur et al.,
2011; Pinter-Wollman et al., 2013), social network analysis thus
represents a promising tool for investigating the role of nutrition
in mediating social interactions in animal groups.

One of the main advantages of nutritional geometry focused
ABMs is that their predictions can also be tested using established
experimental protocols from the same framework (Simpson
and Raubenheimer, 1993, 2012; Simpson et al, 2015). For
instance, our models predict a relationship between current
and future NS of individual animals, and consequently their
future position in a dominance hierarchy as well as their fitness
relative to the rest of group (Lihoreau et al., 2014). A specific
difficulty of evaluating such predictions is the logistical problem
of quantifying NS/fitness in social groups that are relatively
“young” (recently formed groups where few social interactions
have occurred). Specifically, between-individual variance in
fitness will likely be low at early stages (Figures 2, 4), making
accurate quantifications of the relative state of individuals
difficult. In addition, without manipulative or lethal approaches,
quantifying between-individual differences in NS is hard. Here,
we have shown that simple measures of network centrality,
such as closeness, can be used as good predictors of future
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TABLE 1 | Mean (and standard deviation, SD) counts of each type of triad based on the triad censuses of 10 networks generated by our agent-based

model with a high level of “competition intensity” (c = 0.8) and after 20 meals.

Triad Type
003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300
Mean 78.70 3314  22.90 145.6 159.0 129.8 2950 22.40 176.5 10.80 1.800 12.40 8900  8.800 1.400  0.100
SD 15.35 14.93 11.05 18.87 23.39 17.13 10.05 6.950 27.18  5.490 1320 6.700 5320  4.370 1.430  0.320

The 16 possible triad types are labeled according to the MAN system (Holland and Leinhardt, 1970, 1976), and visualizations of each type are given in Figure 3.

TABLE 2 | R2 from linear models estimating fitness after 20 meals (logit
transformed) as a function of closeness and fitness at 5, 7, 10, and 15
meals when there is a high level of “competition intensity” (c = 0.8).

The estimated transitivity of networks generated by our model
was high (ty; = 0.77), although lower than previous comparative
studies of empirically determined animal hierarchies (0.88;
McDonald and Shizuka, 2013). One possible explanation is the

Meals Closeness Currentfitness  frequency of mutual ties in our networks (i.e., A and B dominate
«=0 «=05 o=1 o=15 a=2 each other an equal number of times), which are known to be

rare in animal networks, and have been excluded in calculations

5 0281 0297 0311 0319 0314 0.631 of transitivity in previous analyses (McDonald and Shizuka,
7 0.421 0433 0437 0429  0.404 0.837 2013; Shizuka and McDonald, 2015). We can identify two non-
10 0528 0537 0536 0516 0473 0.884 mutually exclusive explanations for the abundance of mutual
15 0590 0629 0666 0693 0710 0.971 ties in our networks. Firstly, if previously published studies are

Closeness was calculated using a of 0, 0.5, 1, 1.5, and 2 (see main text), and we see how
these values affect the power of closeness to predict final fitness. Higher R? is indicative
of better model fit.

fitness. These global network metrics, among others, are easier
to experimentally quantify than NS or fitness, and can be
calculated based on behavioral data gleaned from simple group
observations. A side note is that integrating weights in to
analyses of the dominance networks that we generate here is
of some importance, having consequences for the biological
interpretation of the formation of a dominance hierarchy.
However, accurately assessing the importance to ascribe to
weights in calculations of closeness (i.e., which «a-values is most
appropriate) requires a detailed and systematic examination of
the parameter space.

Local metrics are also very informative. Motif analyses
revealed significant excesses of certain triads within the
dominance networks generated by our model relative to random
networks. Specifically, we found that triads with transitive
properties (i.e., that indicate orderliness, or a linear hierarchy)
were over-represented in our model. In contrast cyclical triads
(A dominates B, who dominates C, who dominates A), which
indicate the lack of a clear hierarchy were under-represented.
Comparative analyses, which collate data from many different
forms of social conflict (i.e., the proximate cause of conflicts
was variable) and across taxa, have revealed similar excesses
and deficits of these same transitive triads in real world animal
dominance networks (McDonald and Shizuka, 2013; Shizuka and
McDonald, 2015). In addition, previous analyses of dominance
networks in animals have shown an excess of “double dominant”
(021D) and a lack of “pass along” (021C) triads to be common
in the early stages of hierarchy formation (Chase and Rohwer,
1987; Shizuka and McDonald, 2015). We repeated our analyses
after only seven (out of a possible 20) simulated meals and found
similar properties among these early networks (Figure S4).

based on hierarchies that were well established at the time of
observation, they may overlook very early interactions between
individuals, which can have stochastic outcomes as the hierarchy
has a poor linear formation. Secondly, in our model individuals
pick competitors at random, and individuals do not identify
another’s state, or their contest history with other conspecifics
(i.e., bystander effects; Dugatkin, 2001). Future inclusions of
mechanisms of social recognition in our models, such as
status or individual recognition (Barnard and Burk, 1979), may
lead to fewer mutual ties and an increased overall triangle
transitivity.

Because our approach is grounded into nutritional ecology,
it is perhaps one of a handful of methods with which it
is possible to generate theoretical networks based on an
explicit biological mechanism (i.e., interactions governed by N§).
Previously, random networks with desired structural properties
have been generated using tools based on graph theory, where
the underlying algorithm for generating the network is entirely
dependent on the final desired properties thereof. Perhaps the
most popular mechanism of non-random network generation in
biology remains the preferential attachments model, where nodes
are more likely to generate edges with “more popular” nodes (i.e.,
those with the most edges; Barabasi and Albert, 1999; Akbas et al.,
2015; Carletti et al., 2015; Zuev et al., 2015). Whilst preferential
attachment models seem realistic for interactions involving
communication and/or cooperative behavior, they seem less
applicable to animal interactions related to nutrition (e.g.,
predation, food webs, or contests over food access). In contrast
to the standing paradigm, using our models it is possible to
generate networks from the bottom up, starting with an explicit
(and fully testable) nutritional mechanism, which then gives
rise to individual interactions and subsequent emergent network
structures (apparently similar to those properties observed in
animal groups). To our knowledge, this is the first time such an
approach has been documented.
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Closeness values presented were calculated using « = 1 (see Opsahl et al., 2010).

FIGURE 4 | Fitness of individuals within a simulation after 20 meals, as a function of current fitness (black) and network closeness (red), after (A) 5
meals, (B) 7 meals, (C) 10 meals, and (D) 15 meals for groups of 20 individuals in a three-food environment (identical to Figure 1A). The networks are
based on an environment with a high level of “competition intensity” (c = 0.8). Curves are linear model estimates of fitness after 20 meals, as predicted by current
closeness or fitness. Note that fitness after 20 meals was logit transformed for model fitting as fitness is bound at 0 and 1, before being back-transformed for plotting.
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Social network approaches have become increasingly popular
in behavioral and ecological research, enabling extensive analyses
of simultaneous interactions among multiple individuals and
across long periods of time (Krause et al.,, 2007; Croft et al,
2008; Sih et al., 2009; Sueur et al.,, 2011; Pinter-Wollman et al.,
2013). Our study now illustrates how this approach can benefit
research on nutritional behavior, ultimately helping to elucidate
complex interactions between the environment, the nutritional
strategies of individual animals and the consequences thereof
for social interactions and collective phenomena. Beyond the
example of nutritionally mediated dominance hierarchies, the
broader integration of social network analyses into nutrition
research has potential for investigating the nutritional ecology
of species exhibiting a great diversity of social forms, from
temporary aggregations of feeding animals to permanent and
fully eusocial colonies of cooperatively foraging nestmates
(Krause and Ruxton, 2002). These interactions may include
several types of nutrient driven social networks, including social
and competitive interactions among foragers (as in this study),
transfer of social information about food resources, and exchange
of foods (or specific nutrients) or microorganisms (symbionts
or pathogens) between individuals. Predominantly, behavioral
research utilizing network analyses has focused on descriptive
approaches that identify the structure of animal interactions.

However, recent developments show that network approaches
can be exploited to study the temporal dynamics and the function
of interaction patterns (Pinter-Wollman et al, 2013). Thus,
network approaches may be used to study both the causes of
complex nutritional strategies (i.e., modeling social interactions
that influence the nutritional behavior of individuals; e.g., Senior
etal., 2015a) and their associated consequences (as in this study).
Here, we have dealt with networks and social structures that
arise from entirely homogenous groups, but this need not be
the case and the ABM may be initialized with a heterogeneous
group. For example, each individual may express one of several
different nutritional strategies (e.g., young and adults, males and
females, producers and scroungers, healthy or diseased animals,
or individuals with differing gut microbiota; Flint et al., 2015),
allowing one to explore the role that such traits play in governing
the emergence of complex social structures. Importantly, our
geometric approach identifies explicit nutritional mechanisms,
raising the possibility of generating system-specific, empirically
testable, predictions about network formation in different
nutritional environments and animal groups. Ultimately, a
more detailed assessment of the nutritional basis of social
behavior, as afforded by social network analyses, will inform
our understanding of how nutrition can drive the diversity of
social forms observed in nature, a major challenge for future
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research in nutritional and behavioral ecology (Lihoreau et al.,
2015).
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