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| argue that cue integration, a psychophysiological mechanism from vision and
multisensory  perception, offers a computational linking hypothesis between
psycholinguistic theory and neurobiological models of language. | propose that
this mechanism, which incorporates probabilistic estimates of a cue’s reliability, might
function in language processing from the perception of a phoneme to the comprehension
of a phrase structure. | briefly consider the implications of the cue integration hypothesis
for an integrated theory of language that includes acquisition, production, dialogue and
bilingualism, while grounding the hypothesis in canonical neural computation.
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INTRODUCTION

Despite major advances in the last decades of language research, the linking hypothesis between
ever-more plausible neurobiological models of language and ever-better empirically supported
psycholinguistic models is weak, if not absent. Moreover, we are struggling to answer, and even
to ask well, questions like why is language behavior the way it is? How is language processed? What
is “processing difficulty?” What is the source of difficulty in psychological and neurobiological terms?
What can it tell us about the computational architecture of the language system? These questions,
however frustratingly difficult, speak to our persistent awe at the fact that we humans flap our
articulators, we move the air, and in doing so, stimulate formally-describable complex meaning in
the heads of other people. And then those people usually do it to us back. So how do we, or rather,
our brains, do it?

There must be a good reason for the weak link between psycho- and neurobiological theories
of language—namely that it is really hard to find a concept that would be explanatory on
multiple levels of analysis in cognitive science (see Marr, 1982). Questions like what makes
language the way it is probe the computational level of Marrs tri-level hypothesis, asking
what the system’s goal is, what computation is being performed and to what end. Questions
like how does the system do it occur at the algorithmic level, asking what the nature of the
mechanism that carries out the computation is. Recent debates in cognitive science have cast
these two kinds of questions in opposition, or at least, in opposing theoretical camps. Bayesian
modelers of perception and cognition form the statistical what camp, and non-Bayesians the
mechanistic how camp (Jones and Love, 2011; Bowers and Davis, 2012). The what camp is
purportedly less interested in how the mind “does it,” but is focused on reverse engineering how
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the natural world (or the statistics that describe it) makes
cognition the way it is. The how camp purportedly wants
to uncover the mechanism that the mind/brain uses, instead
of a statistical approximation (Jones and Love, 2011; Bowers
and Davis, 2012). T will argue that any model of language
computation must answer both how and what questions, and
the best model will most likely include both mechanistic
and probabilistic elements. The model articulated here asserts
a mechanistic psychological operation over representations
derived via Bayesian inference (or an approximation there of),
which are represented by neural population codes that are flexibly
combined using two simple canonical neural computations:
summation and normalization.

Rather than trying derive novel psychological mechanisms
specific to language, I will ask whether insights from
perception and psychophysiology can inform process models of
psycholinguistic theory to try to explain why language behavior
is the way it is and how formal linguistic representations
might be extracted from sensory input and represented by
the brain. First, I will briefly consider two recent advances in
psycholinguistic theory, the Cue-based Retrieval framework
(CBR) and Expectation-based parsing (EBP), which have shaped
the field in the last decade. Then I will briefly explore the
implications of sensory processing models in order to argue
that the main insights of these frameworks can be transferred
to psycholinguistics as a single mechanism derived from
neurobiological principles. Then I will attempt to apply this
principle to sentence comprehension, and briefly explore its
implications for production, dialogue, language acquisition, and
bilingualism. Finally, I will try to deliver predictions that could
falsify this approach.

Two Influential Theories: Cue-Based

Retrieval and Expectation-Based Parsing
The cue-based retrieval framework offers an account for
processing difficulty in language comprehension that is based on
architectures and mechanisms from human memory, specifically
recognition memory (McElree, 2000; McElree et al, 2003;
Lewis et al., 2006). It originates from the classic insight that
retrieval from memory might be needed to form grammatical
interpretations, especially for syntactic structures where words
that form a linguistic dependency are separated from each
other by other words (Miller and Chomsky, 1963). Quite
naturally then, CBR has focused on non-adjacent dependencies
of different kinds, mostly subject-verb dependencies (McElree,
2000; McElree et al., 2003; Lewis et al., 2006; Van Dyke, 2007;
Wagers et al., 2009; Van Dyke and McElree, 2011; Tanner et al.,
2014) but also pronouns, ellipsis and other situations with
referential or anaphoric consequences (Foraker and McElree,
2007; Martin and McElree, 2008, 2009, 2011; Xiang et al., 2009;
Martin et al., 2012, 2014; Dillon et al., 2013; Jager et al., 2015).
The appeal of the cue-based framework is the parsimony of
explanation—language behavior is the way it is because of the
architecture of human memory. Memory is content-addressable®,

n contrast to location-addressable systems, where data is stored irrespective of its
content and a search must be executed to retrieve a particular target item.

or organized by content, and therefore is highly susceptible to
interference (see McElree, 2000; McElree et al., 2003; Lewis and
Vasishth, 2005; Lewis et al., 2006; and see McElree, 2006; Van
Dyke and Johns, 2012, for reviews). Interference occurs when
the link between the cues used at retrieval and the intended
target representation is not diagnostic (McElree, 2000, 2006;
McElree et al., 2003; Martin et al., 2012). Therefore, according
to CBR, processing difficulty in language comprehension is due
to interference?, or more specifically, cue overload, the term
for the situation when the cues at retrieval are insufficient
to elicit the needed representation (McElree, 2006; Van Dyke
and McElree, 2011; Van Dyke and Johns, 2012). Whether cue
overload arises purely due to similarity between representations
and cues, or whether distinctive items in memory are somehow
disruptive during retrieval, is an on-going challenging question
(see Jdger et al.,, 2015, for an overview on effect reversals for
pronouns). Another important architectural assumption of CBR
is that retrieval speed is constant, so effects on performance
(either accuracy or reaction time) arise from differences in
representation, namely cue-target match vs. the match of the cue
to other items in memory (McElree, 2006; see Nairne, 2002 for
more on diagnostic cues). Additionally, representations appear
to be retrieved without a serial or parallel search (see Townsend
and Ashby, 1983; McElree and Dosher, 1989, 1993; Martin and
McElree, 2009, for details on how parallel search is falsified).
CBR has been well-implemented: Lewis and Vasishth (2005)
and Lewis et al. (2006) describe compelling symbolic models of
parsing implemented with only one additional parameter than
the standard ACT-R model (Anderson, 1983).
Expectation-based parsing has focused on modeling classic
sentence processing phenomena (syntactic ambiguity resolution
and relative clause processing asymmetries) in a Bayesian
framework (Hale, 2001; Levy, 2008, 2013; Smith and Levy,
2013). The approach aim to predict which parts of a sentence
will be more difficult to process as reflected in behavioral
measures. It marks a renaissance for the role of expectation
and its formalization in psycholinguistic theory (cf. MacDonald
et al, 1994; Altmann and Kamide, 1999; DeLong et al,
2005; Van Berkum et al, 2005). In EBP, parsing decisions
are based on probabilities built up from prior experience,
and difficulty stems from the violation of word-by-word
expectations of syntactic structure. In other words, the main
claim is that surprisal, or the degree to which expectations
are not met, is the best predictor of reading time slow
down and therefore, of processing difficulty (Hale, 2001;
Levy, 2008). This striking insight has a lot in common with
ideal observer models of perception, which I will review

2Cue-based retrieval interference, although some psycholinguistic work invokes
the notion of encoding interference, whereby representations fail to be stably
encoded when there are multiple similar items in memory (Hofmeister and
Vasishth, 2014). However, the spirit of that notion is usually cached out as
proactiveinterference in the recognition memory literature, whereby forgetting
occurs due to information learned or encoded prior to the onset of the study
item, but is still due to cue-overload (Anderson and Neely, 1996; Oztekin and
McElree, 2007; Martin and McElree, 2009; Van Dyke and McElree, 2011; Van Dyke
and Johns, 2012). Retroactive interference refers to forgetting due to information
acquired after the onset of the study item (Gillund and Shiffrin, 1984; Anderson
and Neely, 1996; McElree, 2006).
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shortly, by virtue of the fact that both are rational and
formalized with Bayes rule. EBP continues the tradition of
frequentist accounts of parsing (e.g., MacDonald et al., 1994)
and statistical learning in psycholinguistics (e.g., Charniak,
1996; Saffran et al., 1996; Tabor et al., 1997; MacDonald and
Christiansen, 2002). EBP’s advantage over previous statistical
learning accounts might be that it is formalized with a
probabilistic grammar and can be highly predictive of which
parse or where in a structure difficulty will be encountered (Levy,
2008).

Challenges for CBR and EBP

Each of these approaches is motivated by the central challenge of
parsing: incorporating incoming, new information (phonemes,
syllables, morphemes, or lexical items) into a continuously
unfolding complex representation. Each approach brings an
important insight from a related areas of cognitive science to
bear on language processing: (1) for CBR, the parsimony of
ACT-R principles and the explanatory concepts of cues and
interference, and (2) for EBP, the vital importance of prior
experience and expectations, and of formalizing uncertainty.
Despite these important insights, the architectural claims that
each approach makes are not fully articulated. CBR and EBP
might tell us about how an aspect of language processing is
carried out, but many questions remain about the nature of the
representations and mechanistic processes that are at stake.

The beauty of CBR is that its principles are independently
motivated by the architecture of human memory. But despite
this, many issues still need to be resolved. First, the psychological
mechanism that the additional CBR parameter might correspond
to would need to be hypothesized about and tested. Larger
architectural questions persist, such as whether retrieval is
identical during lexical access and dependency resolution,
and whether additional mechanisms besides retrieval might
be needed for a fully specified model of parsing. More
fundamentally, if grounding language processing in memory
processes is what gives explanatory power, then difficult issues
about memory processes, such as whether encoding and retrieval
ever really separate, need also be addressed. Similarly, complex
questions about cues remain: why some representations function
as cues and other not, how cues are learned and represented, and
how their weights are determined, and whether those weights
are determined dynamically all need to be established. The how
questions might be clearer in CBR, but the answer to what
questions is offloaded onto memory research.

Similarly, though Levy and colleagues have exacting
predictions as to where in a sentence reading slow down will
occur, EBP’s explanation for “processing difficulty” is not
psychological or mechanistic in nature. It is computationally
descriptive: re-ranking of probability distributions regarding
expected input. Re-ranking of probability distributions actually
has a neurophysiological appeal, but is not yet a psychological
concept. Since EBP focuses on capturing extant behavioral data
patterns and predicting patterns of reading slow down, rather
than deriving representational states and processing mechanisms
that are both neurobiologically and psychologically plausible,
it is not clear how EBP would answer how questions. Simply

put, EBP is not a process model. Architectural questions about
representation also persist, especially as to which representations
are being counted and why, and how are probabilistic estimates
of being in a parse given the input are formed. The origin
of these representations is also unclear, as is the mechanism
that is acquiring the statistics and the mechanism that is re-
ranking the distributions. If the claim of EBP is that ranking of
probabilistic representations what parsing difficulty is, it begs
questions as to how the system parses sequences that it has
never encountered before, or how it can parse something that
is highly unexpected at all, and moreover, what parsing is qua
mechanism. If experience is the basis of obtaining probabilistic
estimates of a given structural configuration, then it is unclear
how parsing might occur without lots of or sufficient experience.
Furthermore, how the system acquires experience about parsing,
if experience is what is used to generate representations of the
parse and probabilistic estimate regarding it, might lead to a
circular explanation.

For these reasons, I see the core principles of interference
and representing uncertainty as being valuable terms in a
larger mechanistic process model, which, hopefully, can also be
grounded in neurophysiological computation. By synthesizing
mechanistic and Bayesian approaches, we can pose questions
both about how language processing functions and why it is that
way. But that does not mean that mapping hypotheses about
representations and processes onto hypotheses about their priors
is will be straightforward.

Ideal Observer Models in Perception

Ideal observer models have dominated research on perception
because they lay bare the computational and statistical structure
of the complex problems that the brain solves. They force the
researcher to define the information available to the brain, and
to construct a quantitative, predictive account of performance
(Gibson, 1966; Marr, 1982). The ideal observer formally describes
human behavior in terms of optimal performance on a
given problem or task given uncertainty stemming from the
environment or sensory system (Trommershauser et al., 2011).
The main source of uncertainty in ideal observer models of visual
perception is the probabilistic relationship between a given cue
(e.g., contrast, color, shading) and a stimulus (e.g., an edge or
object) in the environment. In other words, uncertainty stems
from the probability of detection of the stimulus in the face of
sensory or neuronal noise (Fetsch et al., 2013). Past experience
weights the likelihood function of a cue. Thus Bayesian models
that incorporate the right combination of cues and priors have
become the best predictors of performance on motor control
and visual or multisensory perception tasks (Griffiths et al.,
2012; Ma, 2012), although some argue that they need not be
Bayesian nor rational to achieve this (Maloney and Zhang,
2010; Rehder, 2011). The psychological mechanism by which
the statistical relationship between the state of the environment
and internal representation is achieved is not the primary focus
of these models, rather finding the formal expression of the
statistical relationship between cues, uncertainty, and stimulus
such that human behavior is accurately predicted. Once the
“right” statistical relationship is uncovered, conclusions can be
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drawn about the algorithm that best reflects that relationship, and
inference can be made as to whether that is indeed what the brain
is doing (Griffiths et al., 2012). This approach implicitly assumes
that performance or information is optimized, which, of course,
does not have to be the case—in fact, a case can be made that
energy efficiency or processing time, not information, are what
cognitive systems optimize (Friston, 2010; Markman and Otto,
2011).

In any case, ideal observer models have not been prominent
in comprehension and production apart from models of reading,
speech perception, and rule learning in language (cf. Legge et al.,
1997; Norris, 2006, 2013; Goldwater et al., 2009; Frank et al,,
2010; Toscano and McMurray, 2010; McMurray and Jongman,
2011; Norris and Kinoshita, 2012). The paucity of ideal observer
models in sentence parsing is particularly striking given that
we arguably might know more about the formal descriptions
of the representations being processed during language use
(i.e., formal linguistic representations, perhaps especially during
speech perception) than we do about the formal descriptions
of levels of representations for visual objects and scenes, or
multi-modal sensory representations. One reason ideal observer
models might not have taken theoretical hold in parsing, apart
of EBP, might be the difficulty in constraining or separating the
likelihoods of language processing outcomes that are embedded
in the perceptual tasks (button pressing, reading, and making
overt linguistic judgments) that most psycholinguistic studies
employ. Differences in the task demands of these paradigms may
mask, or at least mix in non-straightforward ways, with reliably
estimating “pure” language processing likelihoods. Moreover, the
source of priors and how they are acquired and updated remains
unknown. However, core principles from ideal observer models
of perception, namely that including estimates of uncertainty can
expose the nature of the problem the brain solves, may be suitable
for the addressing the computational challenges that language
processing presents.

Cue Combination and Integration

In both psychophysical and neurobiological models of
perception, cues are any signal or piece of information that
reflect the state of the environment (Fetsch et al., 2013). For
example, when perceiving and localizing an object to act on, such
as trying to catch a toddler who is screaming while running away
from you, one cue is likely the visual contrast information created
by the toddler moving across the visual scene, and another is
the screaming, or more accurately the change in interaural time
of the screams as the toddler moves in relation to your ears.
And lastly, cues can come from any proprioceptive or tactile
stimulation that is generated as you prepare to grab your toddler
before s/he runs into traffic. Our brains combine and integrate
these cues, often from different modalities, to form a stable
percept upon which to act (see Figure 1, Ernst and Biilthoff,
2004). The key to stable and robust perception given sampling
uncertainty is the integration of multiple sources of sensory
information via two important psychophysiological operations,
cue combination and cue integration. Cue combination is
the process of combining cues via summation, and describes
interactions between cues that are not redundant in the

Sensory Sensory
combination integration
V S
N /Y@ L1

FIGURE 1 | lllustration of cue combination and integration of the
perception during knocking on wood from Ernst and Biilthoff (2004).
Sensory cue combination occurs between sensory signals that are not
redundant, which can be represented in different units or coordinate systems,
and which might reflect complementary aspects of the environment, for
example visual or auditory information (Ernst and Bulthoff, 2004). This figure
from Ernst and Bulthoff (2004) depicts how three sensory estimates about the
location (L) of the knocking event are combined to form a stable percept.
Information from visual (V), auditory (A), and proprioceptive (P) sensory
percepts comprise three different signals about location. Before these signals
can be integrated, V and A signals can be combined with the proprioceptive
signals (N) to be transformed into body-centric coordinates with the same
units. Following that, the three signals (L1, Lo, L) are integrated with their
reliabilities to form a coherent percept of the location of the knocking event.
Sensory cue integration occurs between so-called redundant signals, or
signals that are in the same units or coordinates and that reflect the status of
the same aspect of the stimulus in the environment.

information they carry. Cues may be in different units during
combination, and may signal complementary aspects of the same
environmental property. For example, when knocking on a door,
one perceives the knock as emanating from the location where
one knocked. This percept is the result of the combination of
sensory signals from vision, audition, and proprioception (see
Figure 1). After cue combination, comes integration, or the
weighting of the cues by estimates of their reliability as cue to the
true stimulus. Cue integration describes an interaction between
cues of the same units that may carry redundant signals, and
that regard the same aspect of the environment. Evidence across
different domains and species implicate cue integration as the
mechanism from which stable percepts emerge (Deneve et al,
2001; Ernst and Bulthoff, 2004; Fetsch et al., 2013). Summation
is the canonical neural computation, and Carandini and
Heeger (2012) argue that normalization, the principle operation
underlying cue integration, is also a canonical population-level
neural computation for brains of all levels of complexity.

Cue integration is typically expressed in an estimate of the
likelihood of the stimulus being present in the environment (S)
given the cues® (cj...c,) and scaled by the reliability of those cues

(f1...74):
n

S= E Citi + ... cntn, ;’:7
i=1

Equation (1) From Ernst and Bilthoff (2004) the equation above
describes the processing moment at the onset of a stimulus. It

3Summation of the activation of the neural population tuned to a given stimulus
or feature of the environment.
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describes the activation state of a neural population that codes for
a given sensory representation. This representation can be said to
emerge from integrated sensory cues.

An estimate of cue reliability (7) is the inverse variance of the
distribution of inferences made based on a given cue (Biilthoff
and Yuille, 1996; Jacobs, 2002). The smaller the variance in the
relationship between cue and stimulus, the more reliable the
cue is. Correlation between cues also affects their reliability: a
cue is regarded as more reliable if the inferences based on it
are consistent with the inferences based on other cues in the
environment (Averbeck et al., 2006). If a cue is inconsistent with
other cues, it is regarded unreliable. Studies on cue reliability have
shown that cues that have not changed their value in the recent
past are weighted more strongly (Jacobs, 2002). Thus, returning
to our example of the screaming toddler, cue combination
summates activation from the sensory populations associated
with the visual, auditory, proprioceptive, and tactile stimuli that
issue from chasing a screaming toddler. Upstream from these
primary sensory cue population codes, other neural populations
code for combined or composite representations of these cues.
At each stage of representation, cue integration weights the
representation by that cue’s reliability. The reliability of combined
cues is equal to the sum of the individual cue reliabilities, so the
only neurophysiological operations required are summation and
normalization (Fetsch et al., 2012). I will discuss the appeal of this
point in Section A Neurophysiologically Inspired Mechanism
for Neurobiological Models of Language. Whether cue reliability
is best thought of as a prior in a Bayesian framework, or as a
probabilistic variable in a Statistical Decision Theory framework
is an open question (Maloney and Zhang, 2010; Rehder, 2011).
In any case, even non-optimal weighting by cue reliability is
probably a better estimate than an individual trial data or single
sample measurements (Ernst and Biilthoft, 2004).

CAPTURING MULTIPLE DISTINCTIONS IN
PARSING

A desideratum of psycholinguistic theory is a taxonomy of
the mental representations and computational mechanisms that
language use requires. A particularly satisfying theory would
unify the mechanisms occurring during diverse computations
such as speech perception, word recognition, parsing into phrase
structures, establishing referential and agreement relations,
forming long-distance dependencies, and forming discourse
representations. Such a theory would have general principles
derived from domain general canonical neural computations,
and would hold for both for comprehension and production.
Processing difficulty would be predictable from first principles,
that is, from how the representations at stake are generated.
Traditionally, mechanistic theories of language comprehension
and production have proposed multiple language-specific
mechanisms, often operating at distinct levels of linguistic
representation. These have been as diverse as lexical access,
reanalysis, binding, lemma selection, and unification (Frazier
and Fodor, 1978; Marslen-Wilson and Welsh, 1978; Swinney,
1979; Clifton and Frazier, 1989; Ferreira and Henderson, 1991;

Levelt, 1999; Hagoort, 2005), or have invoked heuristics like
Minimal Attachment, Late Closure, the Active-filler Strategy,
Attach Anyway (Frazier and Rayner, 1982; Frazier and Clifton,
1996; Fodor and Inoue, 1998). Other impactful approaches to
parsing have focused on metrics to quantify the difficulty of
certain structural configurations in terms of capacity limits on
memory, or the number of dependencies to be resolved, or the
number of parses to be considered, but not on mechanism per
se (Just and Carpenter, 1992; Gibson, 2000; Vosse and Kempen,
2000). Yet other dynamical systems approaches to parsing derive
empirical phenomena, such as local coherence, where local match
between constituents’ features can override the global parse from
architectural aspects of the model (Tabor et al., 2004; Tabor and
Hutchins, 2004). A notable antecedent psycholinguistic theory
based on cues, albeit with a different goal and level of analysis,
comes from Bates and MacWhinney (1987)’s Competition Model
(CM), a lexicalist framework focused on the acquisition of
grammar in the face of the challenge of cross-linguistic variation.
As its name suggests, its main processing claim is that lexical
representations compete with each another for case and thematic
role assignment during comprehension, and that languages
differ in how information is expressed via cues. The CM is an
important antecedent for cue integration because it invokes both
the notions of cues and cue reliability, but in different senses
than in the perceptual literature and thus, than herein. It posits
that languages vary in how their forms cue meaning, and in
how linguistic form and function are related by cues, and is
largely concerned with how different linguistic representation
types cue argument relations in different languages and how
cues and their reliability facilitate language acquisition. However,
the framework I will outline draws strongly on the notion of
cues and their reliabilities as internal representations, processed
by a neurophysiologically plausible mechanism, rather than on
cross-linguistic variation in how information is carved up to cue
between form and meaning.

In some ways, mechanistic approaches are just as vulnerable to
the criticism of falsifiability that Bayesian approaches are—just as
you can change the priors to fit your data—you can, similarly,
change the number of hypothesized mechanisms at stake, fail
to generate falsifiable hypotheses or testable predictions, or
arbitrarily change the architectural bottlenecks in your process
model to account for your data (Bowers and Davis, 2012;
Griffiths et al., 2012). How does one keep from “over fitting”
a process model? Moreover, the frameworks that developed
past hypothesized language-specific mechanisms were steeped
in the modularity debate, which naturally focused on questions
about what operations are language specific or not (Fodor,
1983), and whether processes operated in serial or in parallel
(Frazier and Clifton, 1996). Though there is less worry now
about sterility and modularity of linguistic representation, and
more about incrementally in language processing, it remains a
fact that the brain can be said to be modular in its organization
(Carandini and Heeger, 2012; cf. Fedorenko et al., 2012) though
likely with interesting and important overlap or redundancy in
coding in diverse systems (e.g., Schneidman et al., 2003; Puchalla
et al., 2005; Rothschild et al., 2010). This presents our desired
linking hypothesis between psycholinguistic and neurobiological
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theories with a conundrum wrapped in a mystery: capturing the
incrementally of language processing within a modular system
of neural populations, whose coding we do not yet know how
to read. In other domains of cognition focused population
codes, the relevant questions become: what factors determine
the organization of neural populations, what are populations
coding for, and how are those representations transformed from
population to population (see Pouget et al., 2000; Averbeck
et al., 2006)? Translating these questions to a psycholinguistic
level of analysis, we then must ask whether signals in brain or
behavior that reflect representation of linguistic units can be
detected, whether such a modular neural architecture can indeed
capture important distinctions for linguistic representation and
processing, and whether cue combination and integration alone
can account for language processing from speech and visual onset
all the way to higher level meaning.

Language Comprehension as Cue

Combination and Integration

Can a satisfying analogy can be made between language
comprehension and perceiving a complex natural environment?
Like object perception or localization, scene perception, or motor
control, language processing is multimodal. In conversation,
language comprehension minimally involves integration of
auditory and visual information®. All this must occur while
planning and producing language in return. Furthermore,
language use is highly goal-directed and joint, an issue that is
rapidly gaining theoretical importance (Pickering and Garrod,
2004; Gambi and Pickering, 2013; MacDonald, 2013). But aside
from the issues of modality and joint-action, language may
present a processing situation that fundamentally differs in
the kind of representational relationships that the brain must
form in order to explain linguistic taxonomy. Information
from multiple, sometimes hierarchical, sources of formally
discriminable representations must be perceived from the
environment. Extracting linguistic representations from a speech
or visual input may be, in some ways, analogous to the binding
problem in vision and attention (cf. Treisman, 1999). In both
situations, information that is distributed over time and space at
different frequencies must be grouped or bound into higher-level
representations for processing to occur. Cues, whatever they may
be, from each sensory input level are combined and integrated
with their reliability estimates, and emerge as a linguistic
representation, e.g., a phoneme or phrase. Populations coding
the reliability of a given representation as a cue to higher-level
representations are activated and updated. Those reliabilities
are integrated with the population code representation for a
given representation, which in turn produces the next level of
representation.

As in the psychophysical literature, most of the explanatory
work would be carried out by cues, a notion that is difficult
to define both in the positive (what cues are), and in the
negative (what can’t be a cue). In fact, often the term “cue”

4Though the highest levels of hierarchical representation are reached via an
arguably single modality in phone conversations, sign language, and reading—it
is an empirical question as to whether processing in these cases activates linked
representations generated from other modalities.

is treated as if should be implicitly understood, as in, as
if it has no specialist or jargon meaning. In the perception
literature, a cue is any sensory information that gives rise
to an estimate of the state of the environment (Ernst and
Biilthoft, 2004). Here I will augment that definition as follows:
a psycholinguistic cue is any internal representation that signals,
indicates, or is statistically related to the state of some property
of the environment relevant for language processing. Thus, a
cue to a given psycholinguistic representation is simply any
representation that is reliably related to that given representation,
in contrast with a representation that is not related to it. The only
way for this simple definition of cue to become explanatory is
if it can speak to how abstract linguistic representations might
be formed from perceptual inputs, or more specifically, formed
from an interaction or convolution of sensory percepts with
extant knowledge (read: other representations) in the brain’.
The problem of satisfactorily defining a cue for functional use
in a process model bumps up against the even harder problem
of defining mental representation, or defining what perceptual
or cognitive features are. Both of these philosophical challenges
are, luckily, beyond the scope of this model. However, the
functional role of cues may be to simply to map out the structure,
path, or links between representations as they are activated in
moment-to-moment processing. In this sense, is it not so much
what cues precisely are that matters (although that is no doubt
an important, troubling question), but which representations
cue which other representations to form a map of language
processing, from percept to abstract representation that matters
for amodel. Thus, cues are representations of linguistic input and
what links those representations in a “chain” for processing from
sensory input to abstract representations. I will sketch how a cue
integration model might handle processing from speech onset
to phrase or sentence comprehension (see Figure 2 for visual
illustration). I simplify the representational levels at stake as:
phonemes, syllables, morphemes, words, phrases, syntactic and
event structures, and discourse context.

Sensory Resampling to Recover

Hierarchical Representations

In the case of linguistic representations, aside from the first
perceptual cues to enter the processing stream, further cues must
come from the same sensory input: a sort of resampling of
the sensory percept, or a form of perceptual inferencing (Ernst
and Biilthoft, 2004). This resampling would recover hierarchical
representations in memory that are activated by that percept,
via the same cue integration mechanism that is hypothesized to
work for exogenous cues. In other words, cue integration can take
as its input an endogenously stimulated representation or set of
sensory features (e.g., phonemes from acoustic features, or on a
higher level, morphemes and lexical entries), and output another

Such an assertion then attributes most of the burden (and magic) of online
language processing onto language acquisition. In a system of representation where
only cues and their reliabilities are computed to activate the next representation, it
is this existing knowledge that parses input and links up the right representations
properly. But how in the world are these all important, pre-existing, parse-making
representations acquired? See Section Cue Integration in Language Acquisition
and Bilingualism for more discussion but no definitive answers.
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pattern of activation or representational state (e.g., syllables from
phonemes, or on a higher level, phrases). The representations
from the last cycle of processing serve as cues to the next level
of representation or cycle of processing.

The architectural hypothesis is that each level of
representation is a cue to higher levels of representation,
resulting in a cascaded architecture: phonetic features are
cues to phonemes that are cues to syllabic and morphemic
representations, which in turn are cues to lexical and phrasal
representations, leading to phrase-based parsing and larger
sentential or event structures. Figure2 illustrates how the
phrase Times flies like an arrow would be processed using cue
integration. Activation can spread such that cueing of the next
representation occurs before processing of the current set of
features completes, such that emerging representations can serve
as cues to related representations, where a word or phrase level
representation can receive stimulation from a morphemic or
syllabic or prosodic representation, and vice versa® (see Figure 2
for illustration). As the phonemes in time are parsed, they cue
the morpheme and word representations of “time,” which in turn
activates syntactic or structural representations, and conceptual
representations associated with time (e.g., phonotactically
licensed syllables, verbs, phrases, related semantic knowledge).

Population coding parameters would constrain how
information is represented in the model, but how can such
a radically interactive and redundantly coded system be
represented? An efficient way to represent a true multitude of
representations without overcommitting neural “real estate”
might be opponent channel processing. In color vision, a
multitude of colors are perceived from photons interacting
with photopsin proteins that are tuned to different frequency
spectra in cone cells in the retina. The activation patterns of
these cells together form opponent channels, where a given
channel can be said to detect the difference in activation between
cone cells (with different photopsin proteins) tuned to two
opponent ends of a spectrum of light (e.g. red and green, blue
and yellow), rather than representation via a series of cells or
ensembles dedicated to each color or frequency band. Such an
opponent system has also been implicated for spatial coding in
auditory cortex, where, while most auditory neurons respond
maximally to sounds located to the far left or right side, few
appear to be tuned to the frontal midline (Stecker et al., 2005).
Paradoxically, psychophysical performance reflected optimal
acuity in the frontal midline, thus the existence of an opponent
process system synthesized these apparently conflicting findings
(Stecker et al., 2005). Opponent processing may be a possible
architectural feature to represent a multitude, or even a discrete
infinity, of linguistic representations via cue integration (e.g.,
of minimal pairs or other representations in complementary
distribution), though it thus far observed has only been observed
in much more primary or lower-level sensory processing stages.
An opponent channel representational system, operated on by
cue combination and integration, would likely be able to flexibly
and efficiently code the number of representations needed for

6 Also in feedback or top-down connections, which Singer (2013) claims are more
numerous in neocortex than feed-forward connections.

such a massively interactive architecture without taking up an
implausible amount of neural real estate.

While cues determine which representation is activated, cue
reliabilities determine the strength of the evidence for a particular
representation and thus how good of a model of the world the
system has. To create and maintain an accurate and robust set of
representations reflecting the linguistic environment, reliabilities
need to reflect local context as well as latent knowledge, or a
global prior. Cue integration can account for processing variables
in one of two ways: either by modulating the information
expressed in the cue reliabilities, or by modulating the circuit
of representations, the order or domain of cue computations.
Information from memory might be expressed as both an
immediate prior (), representing recent processing and the local
environment, similar to the notion put forth by Jaeger and
Snider (2013), and as a more stable, long-term set of global
priors () that reflect information like discourse context and
pragmatic meaning, and semantic and world knowledge. In the
set of expressions below, I separate reliability into two terms
(see Equation 2). Although both terms are subject to summation,
I want to make it clear that they represent different sources
of uncertainty, that are likely to be represented by different
populations, or redundantly on different levels.

n n
SZZCi;’ili‘l‘n-Cn’A’nln’ 7= LZ’ lZZ%
i=1 ci i=1 ¢
Equation (2) Ernst and Biilthoff (2004)’s expression of likelihood
of activation adapted to parsing. It describes the activation state
of a neural population that codes for a given representation. This
estimate of activation is composed of cues (e.g., representational
features or any representation), weighted by their reliability, or
the likelihood that the stimulus is in the environment given the
cue. Estimate of S is the likelihood a level of representation is
activated by the cues or representational features denoted by ¢,
weighted by their reliability 7, the recent inverse variance of the
link between that cue and its related or antecedent representation,
and by its latent reliability J, the global reliability of that cue over
a longer time scale. Estimates of S would describe the activation
represented by any of the shapes denoted in Figure 2, while
estimates of r and | would be denoted by the arrows feeding
forward on back between each level of representation.

To unpack the cue integration process, we can take the
example phrase “Times flies like an arrow...” from Figure 2, and
examine how the first two words time and flies would be extracted
from the phonemic stage to achieve the morphemic- lexical
stage. I will outline how Equation (2) would describe this step in
processing. The phonemic string /tajmflajz/ has been parsed from
acoustic information’, so the next step is for /tajmflajz/ to cue
the morphemes/words [tajm|time] and [flajz|flies] into the phrase
time flies:

Cartoon process: /tajmflajz/-> [taj][m][flajz]-> time, flies ->
Time flies

7Out of fear, and for simplicity’s sake, I am skipping how acoustic representations
are transduced into phonetic and then phonemic representations.
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Equation (3) Describing processing moments from the phonemic
representation of /tajmflajz/ cueing the words time and flies, and
finally the phrase Time flies

We can already see that the description of the activation of
the model or system as described by Equation (3) is completely
dependent upon the time step or processing moment that we
choose to analyse or observe. The importance of time step may
not be an issue for implementing a computational model based
on cue integration that is dynamic in its activation, but it certainly
is a theoretically troubling issue. Would processing moments
or cycles be determined solely by the external stimulus, e.g., by
speech envelope? Or would the current state of the system upon
input instead structure processing time, for example, actually
result convolving current activity with the incoming physical
(and later, the abstract linguistic) properties of the input? I will
explore this problem more in Section A Neurophysiologically
Inspired Mechanism for Neurobiological Models of Language.

A second important consequence of cue integration is
that it implies a hybridized notion of modularity: perceptual
representations might still be encapsulated in the Fodorian
sense, but once representations become either multi-modal,
or are resampled as the cue other representations further up
the processing stream, they are no longer so. In fact, as a
reviewer pointed out, higher levels of representation in such
a model would flatly deny Fodorian modularity (see Fodor,
1983). Another way of putting it is that, under cue integration,
early representations, which tend to be perceptual, may be
encapsulated until they are summated with other cues. This
hybridized modularity would also play out in terms of deeming
the pathways and networks that process the representations to be
domain-specific or not.

Returning to the important psycholinguistic notions captured
by EBP and CBR, how would a cue integration model cache
out surprisal and interference? Surprisal might be cached out
in terms of sub-optimal cue integration with reliability, poor
trading off of global cue reliabilities for recent ones, such that
global reliabilities are overweighting the current representation.
Interference would amount to sub-optimal cue combination,
where the cues for a competing parse or related representation

activate an “attractor” representation, instead of the true
stimulus. It would arise when sub-threshold activation is shared
between representations that share features with the input, a
form of cue overload, and may or may not fully activate the
“attractor” representation. Cue overload in such a system would
still depend upon how diagnostic a cue, or summated cue set,
is to a unique representation in the system. Garden-path effects
and other parsing ambiguities might be cached out in terms of
poor estimates of recent reliabilities compared to global ones,
such that summated cues point to ultimately ungrammatical
representations. A cue integration process model would extend
the notion of cue combinatorics during retrieval and formation
of non-adjacent dependencies (Clark and Gronlund, 1996; Lewis
and Vasishth, 2005; Van Dyke and McElree, 2011; Kush et al.,
2015) to a general processing principle and makes a claim about
how cues are combined with one another. The model would
assert that processing difficulty is essentially always a form of cue
overload, which stems from architectural first principles of how
activation of representations occurs and how uncertainty flows
through the system dynamically.

Even the first input step in sketching a processing stream is
grossly oversimplifying and glossing over important and vibrant
subareas, especially in the neurobiology of speech perception
(Hickok and Poeppel, 2007; Poeppel, 2014). Recent compelling
evidence suggests that neural populations entrain with an
auditory stimulus using acoustic-phonetic “sharp edges” to latch
onto the speech envelope (Luo and Poeppel, 2007; Doelling
et al, 2014; see Poeppel, 2014 for discussion). Giraud and
Poeppel (2012) show an emerging role for oscillatory activity
as entrainment with speech envelope and syllable structure.
This entrainment could be performing cue combination and
integration of phonetic features into phonemes, but a clear
experimental question is if cues and their reliabilities are coded
in or recoverable from oscillatory activity. Such a simple process
model must be able, at minimum, to capture the vagaries of
speech perception, it being the stage of language processing most
firmly grounded in perceptual processing (Samuel, 2001; Samuel
and Kraljic, 2009).

Representations and Grammar
An issue that will clearly determine the success of a cue
integration process model is the nature of the representations
the model posits. The basic representational claim of a cue
integration process model is that representational features make
up a level of representation, and serve as cues to subsequent
levels. They do so in a cascaded way and incorporate at least
two error terms. This would mean that the system’s organization
comes from, or even just is the grammar of the language it was
trained on. But probably any cue-based model also makes that
claim that ungrammatical representations might be formed if the
rest of the cues, i.e., non-structural ones, point toward a given
representation. One way to avoid the “bag of words” problem
(Harris, 1954), where semantic and other non-structural features
dominate over structural relations would be to simply weight
syntactic features more strongly in their reliability.

Without a traditional mechanistic structure that assumes
multiple operations, one possible consequence is that
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representations need to be similar to something like slash
categories in a combinatorial constituent grammar, as in
Combinatorial Categorical Grammar (CCG; Szabolcsi, 1989,
2003; Steedman, 1996, 2000; Jacobson, 1999). If they were, then
the dependencies that are cached out as empty categories in
other grammars, as well as other forms of dependency, could
be carried forward during processing without the need for
positing constructs like buffers or maintenance®, because the
dependency is represented as a grammatical feature that can
“percolate® to the highest tree, representation or population
code. Separate operations for retrieval and interpretation may
also become moot if grammatical features (of which dependency
is now just one example of) can percolate up the path of
population codes. By caching out problems like non-adjacent
dependency as representational feature parsing, CCG, and
perhaps cue integration, perform the classic programmer’s
trick of changing data structures to increase expressive power
when of the processing architecture. However, this trick
only means that the difficulty is merely transmogrified—now
the cue integration process model is generating hypotheses
about both psychological processing mechanisms and about
the nature of representation. This is especially problematic
because traditional dependent measures (e.g., performance
on a task, brain responses, but especially reaction times)
cannot discriminate between effects arising from differences
in processing speed (a proxy for mechanism) and differences
in representation strength or other aspect (Wickelgren, 1977;
Davidson and Martin, 2013). This means that experimental
designs will have to be careful not to conflate predictions about
representation with predictions about mechanism itself. The
speed-accuracy trade off procedure (SAT; Reed, 1973) offers
a way to measure effects of processing speed orthogonally
from representation-based differences, but it relies on an overt
metalinguistic judgment. Given cue integration’s grounding
in perception, it is not unreasonable to think that SAT could
be applied to study both the representations of cues and their
reliabilities, especially because discriminability between signal
and noise, or d, is composed of hits (yes responses to trials
from the signal distribution) and false alarms (yes responses to
trials from the noise distribution). Nonetheless, deriving testable
predictions about the natures of the representational architecture
in a cue integration process model for behavioral data will be
challenging.

A NEUROPHYSIOLOGICALLY INSPIRED
MECHANISM FOR NEUROBIOLOGICAL
MODELS OF LANGUAGE

How can we formulate a meaningful linking hypothesis between
a psycholinguistic process model and current circuit-based
neurobiological theories of language? First we must try to
formulate it in term of mechanisms that are both grounded in

8 Along with the notion of search, both theories of grammar and processing often
tacitly assume buffers and maintenance in the architectures they imply.

By “percolate” I mean persist in being represented or coded in active neural
populations as processing proceeds.

canonical neurophysiological computation and psychologically
meaningful. The class of neurobiological models exemplified by
Hickok and Poeppel (2004, 2007) focus on sub-lexical processing
and speech as the first information-processing hurdle. Such
models tend to have more fine-grained, detailed claims about
neurobiological architecture than models that focus on syntactic
or semantic processing (Hagoort, 2005, 2013; Friederici, 2012),
although some very recent phrase and sentence level models
are becoming much more articulated in the complexity of the
dual-stream circuitry and in claims about directionality and
interaction of processing streams (Rauschecker, 2012; Hagoort
and Indefrey, 2014; Bornkessel-schlesewsky et al., 2015; Friederici
and Singer, 2015). In any case, trying to find a mechanistic
foothold can be difficult. Cue combination and integration maps
broadly onto the general concept of Unification from Hagoort
(2005)’s Memory Unification and Control model, as a mechanism
to combine processing units into larger, hierarchical structures.
In MUG, unification is separated by modality or representational
type, such that phonological, syntactic and semantic unification
are separate, as are the processing streams that deal with them
(Hagoort and Indefrey, 2014). A cue integration model would
not stipulate encapsulation by formal representation class but,
rather, by order of cue summation and thereby connectivity of the
populations, which may or may not turn out not to be equivalent
to representation class.

The cue integration model also differs from Unification in that
it makes the claim that uncertainty, specifically cue reliability,
is integrated with the population activation for a given cue or
cue set. This would mean that cue reliabilities would need to be
dynamically updated, and more broadly, that the representations
carried by a given neural circuit would need some element of
flexibility and would be robust due to redundant coding of
features across certain populations. They would also need to be
robust, and so redundantly represented in multiple populations.
Friederici and Singer (2015) propose that the sparse, flexible,
feature-based coding that is seen in other cognitive systems
applies to linguistic representations in the brain. In such a system,
there is both temporary coupling of populations coding cues or
features of larger representations, as well as lasting couplings
or “firmware” of anatomical assemblies, as outlined in Singer
(2013). Careful experimental work would be needed to test this
hypothesis and to determine if flexible sparse coding can handle
formally complex linguistic representation, and furthermore,
to determine which aspects of phonological, lexical, syntactic,
semantic, discourse, or pragmatic representations are flexibly
coded or “hard coded.” Such an architecture would be highly
suited to a cue integration process model but in combination
with redundancy in coding to generate robust representations.
Such an architecture may enable the system to represent discrete
infinity.

To emphasize, the only computational mechanisms stipulated
in a cue integration process model would be summation,
the neurophysiological mechanism for cue combination, and
normalization, the neurophysiological mechanism that integrates
a cue with its reliability. If parsing and other language processing
phenomena can be accounted for using only these two stalwart
neurobiological mechanisms, it would be a step in the direction
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toward a unified theory of human information processing that
includes language but is based on “brain-general” processes.

Cue Integration and Forward Models

Another powerful capacity that any process model would need
to account for is the role of predictive processing in language
behavior. Forward models from vision and motor control have
already had some influence on theoretical work in cognition
and language (Pickering and Garrod, 2007; Pickering and Clark,
2014), but have yet to be fully specified in models with clear
predictions for language processing. In a classic computational
model of vision, Rao and Ballard (1999) describe an architecture
wherein top-down feedback connections carry predictions about
bottom-up or lower-level population codes, and feed-forward
connections carry residual error between those top-down
predictions and the actual input. They illustrated that in this kind
of forward model, architectural facts about the visual system, such
as receptive field characteristics and surround suppression'?,
emerge naturally. This seems to suggest that such architectural
features occur as a result of cortico-cortical feedback, and that
cortico-cortical feedback is a promising candidate mechanism
for predictive coding (Rao and Ballard, 1999). Synthesizing
predictive coding via cortico-cortical feedback with a cue
integration process model, feed-forward connections would
carry bottom-up activity corresponding to integrated cues and
reliabilities. A subset of feed-forward cue reliability activity
would be the error signal in response to predictive activation
forecast via the top-down feedback circuit. Although predictive
coding and forward models will no doubt play a larger role in
psycholinguistic theory in the coming years, the fact that we can
understand the unpredicted or unexpected utterances at all, or
with reasonable ease, suggests that prediction is not the core
language processing device (see also Jackendoft, 2002; Rabagliati
and Bemis, 2013; Huettig, 2015; Huettig and Mani, 2016). But
the fact remains that predictive coding plays a huge role in most
sensory processing domains, so any model of language ought to
have an architecture that can implement it using existing neural
infrastructure.

Cue Integration in a Neurobiological Circuit
A cue integration process model could make contact with
neurobiological models in two ways: (1) in terms of the claims
being made about the cue-based computations being carried
out in various neural circuits, and (2) in terms of the implied
population codes or representations needed in a given circuit.
The first issue returns to the question of how to falsify hypotheses
about the number and kind of processing mechanisms. A way to
circumvent the problem is to focus on the end-state computation
or the transformation that a representation undergoes in a given
processing stream.

In a similar spirit, Bornkessel-schlesewsky et al. (2015) derive
a dual-route model for human language processing from speech

0Surround suppression is a characteristic of neurons in primary visual areas
wherein a given neuron’s activity is reduced in the presence of a stimulus outside
its receptive field; lateral inhibition from neurons with different receptive fields is
one possible mechanism through which surround suppression may arise (Xing and
Heeger, 2000).

to syntax that is rooted in primate audition (Rauschecker and
Tian, 2000). The key differences between the antero-ventral
and postero-dorsal pathways in Bornkessel-schlesewsky et al.
(2015) is time invariance or order sensitivity: the antero-ventral
stream processes or extracts increasingly complex hierarchical
auditory representations with commutative properties whilst
the postero-dorsal stream processes sequence information or
is order sensitive. The postero-dorsal stream makes use of
forward models via an efferent copy that carries predictions
and detects error, enabling sequential order-sensitive processing
(Bornkessel-schlesewsky et al., 2015). The cue integration process
model does not make any claims about the location or make-
up of language circuits, nor does it have fundamentally different
assumptions about basic representation types (phonetic features,
phonemes, lexical, phrasal, event, etc.) that many extant models
posit. Rather, cue integration makes a specific claim about (1)
the psychological and neurophysiological mechanism underlying
formation of these representations (i.e., summation of population
codes for cue combination and normalization of those codes
for integration with reliability), and (2) the representational
infrastructure (e.g., dynamic and redundant population-level
encoding of feature-based representations and uncertainty about
them).

The debate about the modularity of language from other
cognitive systems has featured compelling arguments that
theories of language evolution must shape or constrain theories
of language and language processing (Hauser et al, 2002).
The claim that language evolved too recently to derive a new
domain-specific neural mechanism is linked to the notion that
brain processes can be repurposed to suit timely organism-
environment interaction needs (see Gervain and Mehler, 2010
for discussion; Knops et al.,, 2009). Cue integration is a good
candidate for such a repurposed process. However, though the
cue integration architecture can represent recursion in principle,
that fact alone cannot explain why recursion is not more widely
found in other representational systems in cognition (Jackendoff
and Pinker, 2005). That is unsatisfying, especially if, in a hardline
reductionist thought experiment, one really wants to claim that
there is only one neurophysiological brain process relevant for
cognition (or extraction of further representations from sensory
input), and that process is cue integration. To entertain such a
thought experiment further, or for such a reductionist position
to be tenable, language also needs to be learnable using only cue
integration over the cue-based architecture with reliabilities.

CUE INTEGRATION IN LANGUAGE
ACQUISITION AND BILINGUALISM

A crucial aspect of any theory of language is that it must be
learnable. How might representations be acquired under the
assumptions of a cue integration process model?

The cue integration model does not radically differ from
current thought on language development—it would hypothesize
that linguistic representation develops in the infant as a function
of perceptual cue decoding via statistical learning (Saffran et al.,
1996), but that first hierarchical representations depend on
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acquiring a cue-based architecture and cue reliabilities, which
in turn shape the development of the assembly networks.
Much of the same how-why camp tension exists in language
acquisition between pure statistical learning-based accounts and
nativist process models (Kuhl, 2004; Gervain and Mehler, 2010).
Gervain and Mehler (2010) argue that the hard work for
language acquisition theorists is discovering how the system
combines statistical learning and rule acquisition or language-
specific cues. Only from this combination can an account
capture cross-linguistic variation and sensitivity to language-
specific cues in infants and neonates (Kuhl, 2004; Gervain
and Mehler, 2010). To this end, Gervain and Mehler (2010)
synthesize nativist and statistical learning accounts of speech
processing up to the acquisition of morphology, concluding
that some types of linguistic representations may be more
suited to statistical learning (e.g., consonants) than others (e.g.,
vowels). But the challenge lies in how acquisition occurs in
learning situations where, for example, frequent monosyllabic
speech that arises as in some infant directed speech and even
in some languages, which renders statistics like transitional
probability useless (Gervain and Mehler, 2010). Under their
account, acquiring complex hierarchical representations must
capitalize on both the statistical information from the linear
of sequences, and on language-specific cues, or the formal
representations of a particular language, but how that tradeoff
or interaction occurs is of course unknown. The cue integration
process model offers an architecture that may be able to capture
both statistical learning aspects (via reliabilities) and rule-based
aspects (through assemblies or cascaded cues networks). In order
to avoid some of the same criticisms lodged earlier in this article,
the cue integration model needs to be able to derive abstract
hierarchical representations from noisy, sparse inputs with few
priors. That seems dubious at the moment, mainly because
the representations or the bias toward forming certain types of
representations would have to be innate. This situation echoes
the learning problem that statistical models usually face: how do
you parse input without the representations to do so? In other
words, how do you count anything if you don’t know what it is
you are trying to count? I turn to a model of concept learning for
inspiration because learning by analogy seems to avoid many of
the pitfalls of both nativist and statistical accounts (Doumas and
Hummel, 2005), as well as having some striking computational
overlap with current neurobiological models of language.

At least at the level of the sentence, the tension between
statistical and nativist perspectives might be eased somewhat by
well-articulated claims about acquisition of relational concepts
like above, bigger, or more. The Discovery of Relations by
Analogy (DORA) model of relational concept development by
Doumas et al. (2008), uses associative learning to create symbolic,
hierarchical relational concepts from linear input sequences.
DORA learns multiple argument predicates using time or onset
of activity in sub-nodes, or systematic synchrony or asynchrony
of firing of the sub-nodes representing each argument!!. In other

'Note the similarity in time-based mechanisms with Bornkessel-schlesewsky
et al. (2015) and Giraud and Poeppel (2012), and similar to the notion of noise
correlation in population coding put forth by Averbeck et al. (2006).

words, DORA learns bigger than (X, Y) by predicating larger (X)
and smaller (Y) and combining these single argument predicates
by their occurrence in time, such that the model can discriminate
between X is bigger than Y and Y is bigger than X (see Doumas
et al., 2008 Figure 3 for illustration). Such a strategy would
work well in a redundant, flexible architecture that is also self-
organizing and associative in nature (cf., Singer, 2013; Friederici
and Singer, 2015). Firing asymmetry offers an additional level
of description or representational state for the model without
positing another psychological mechanism or neurophysiological
process. Modeling, in combination with empirical work, would of
course be needed to substantiate any of these claims.

For the bilingual brain, the cue integration model has modest
implications but casts several existing questions in relief. First,
that reliabilities and cue architecture may or may not be
shared between languages (Nieuwland et al., 2012). Second,
that age of acquisition might determine how assemblies are
formed (Nieuwland et al, 2012). Third, proficiency may be
cached out as differences in network density, representational
interconnectedness, or unstable reliabilities, all of which could
underlie non-native performance for bilinguals. If assemblies are
malleable until the critical period is over, at which point only
reliabilities are in flux as a function of language experience,
any subsequent language learning would require the system to
use alternate circuits to form new language-related assemblies,
resulting in differing neural infrastructure that can (but does not
have to) affect the competence and performance of late bilinguals.

Cue Integration in Production and Dialogue
Regarding performance, the challenges facing an integrated
theory of comprehension and production endure. Questions like
whether the same representations are used in comprehension and
production or whether analogs or “mirror image” representations
are working in concert during production and comprehension
are exciting but difficult to test. Brain imaging evidence
suggests that similar areas are engaged during production and
comprehension (Rauschecker and Scott, 2009; Menenti et al.,
2011) but whether the representations at play are identical or
analogous is not yet clear. Certainly an important interaction
occurs that leads to suppression of activity in auditory cortex
in response to one’s own speech (Numminen et al., 1999). Cue
integration would make a claim about the process through which
representations are activated during production, and there is no
principled reason why the cue integration process and cue-based
architecture cannot be the same in both processes. However,
reliabilities pertaining to the representations might need to
be different for comprehension and production. Regarding the
claim that prediction is based on production (Pickering and
Garrod, 2007, 2013) and the claim that production difficulty
is at the root of comprehension difficulty (MacDonald, 2013),
cue integration forces an opposing view. Cue integration
stipulates that the cue-based architecture for language arises
from perceptual processing. There are several difficult challenges
for the account to claim otherwise: first, if cue integration is a
repurposed neurophysiological mechanism from perception, and
it gives rise to linguistic representations from auditory percepts,
then it is fundamentally based on comprehension, at least during
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acquisition. Secondly, comprehension occurs before production
during development, furthering support for basing at least the
origins of linguistic representation in comprehension. Third,
receptive vocabulary is larger and accrues faster in development,
and is larger in bilinguals (Benedict, 1979; Laufer, 1998), so it is
unclear how these facts fit into a model where comprehension
and production draw on exactly the same representations. These
arguments do not exclude the possibility that a significant portion
of cue reliability during comprehension is uncertainty stemming
from dynamic production-based experience in the adult, leading
to a situation where comprehension difficulty is rooted in a
production-based variable, as MacDonald (2013) argues.

Producing an utterance in the cue integration architecture
would go as follows: activation for an event structure cascades
down representational levels in a planning-cycle-sized chunk.
The cue-architecture basically fires in reverse order, and
reliabilities include uncertainty from articulatory planning and
other production-based priors. Predictive coding would also
have to operate in the opposite direction. The system would
still be susceptible to cue overload whether or not production
and comprehension representations are identical. Coupling
between processing streams or analog representations during
both production and comprehension could occur.

During dialogue, language production often based on
comprehension of what was just by an interlocutor. If production
reverses what is top-down and bottom-up and changes the
predictive coding direction, then dialogue is a cascaded
engagement of this stream coupled with the comprehension
stream. In dialogue, these streams become coupled between two
brains, forming a sort of ultimate cacophony of synchronous
and asynchronous firing. The only new claim a cue integration
model would make is that cue reliabilities would then have
endogenous and exogenous sources, from the speaker and
interlocutor, and would crucially have to contain predictions
about the interlocutor’s representational states. Alignment then
might be cached out as how well-entrained dialogue partners’
cue reliabilities for each other are. Cues in dialogue might also
place more weight on non-linguistic percepts or cues, which may
end up influencing the reliabilities of linguistic representations,
for example, gaze, facial expression, gesture, and goal-directed or
joint-action contexts and behavior. Turn-taking and other time-
based behaviors between interlocutors would be entrained with
or based on asynchronous firing across speakers (Stephens et al.,
2010).

Predictions from Cue Integration and
Persistent Challenges for any Cue-Based
Model

The real work for this developing theory is generating testable
predictions. What can a simple process model based on
psychophysiological principles mean for brain data and for
behavior?

Given the architectural nature of the claim, a starting point
might be computational models of language that are based
on primate and avian auditory processing (a la Doupe and
Kubhl, 1999; Rauschecker and Tian, 2000; Bornkessel-schlesewsky

et al., 2015) using associationist learning to acquired symbolic
representations. If such a computational model can approximate
human learning and processing of language, it would still be
a form of confirmatory evidence rather than an attempt at
falsification. But such an implemented computational model
might be able to generate finer grained predictions for
electrophysiology and behavior.

Another approach to falsification might be via the
manipulation of the cue relationships between representations,
and of cue reliabilities, in an artificial language. This approach
would try to manipulate the reliability of a phoneme as a cue to a
morpheme, or a morpheme as a cue to a phrase structure, to see
if participants track reliabilities and if manipulating them affects
reading time. Cue integration also predicts that a noise term for
each level of representation should exist. An elegant point from
Maloney and Zhang (2010) is that one way to falsify Bayesian
accounts it to observe that estimates of priors transfer onto other
trials or related tasks. Thus, estimates of priors might be expected
to transfer onto other item sets, syntactic structures, lexical items,
discourse or information structures. It is yet unknown how much
of a role individual differences in language experience might
contribute to both recent and global priors or cue reliabilities.

Another class of predictions the cue integration model
might make regard neuroimaging data. Although the
relationship between something like a population code and an
electrophysiological frequency band or event-related component
is highly speculative at best, I will try to generate predictions both
on the population level (though they are not yet measureable in
humans apart from intracranial electrocorticography), and try
to predict an analog for a signal our existing psycholinguistic
electrophysiological dependent measures can detect. First,
formal linguistic distinctions in a particular language should
determine population codes. Under an opponent processing
system, the opponents in a channel would be determined by
that language’s minimal pairs at various levels of representation.
Beyond the population level, such a language-specific population
coding architectures first fundamental prediction is, certainly
for abstract constructs like event-related brain potentials (ERPs),
for variety of indices (i.e., different ERP components elicited
by strings with the same meaning across languages) showing
sensitivity to different processing variables across languages (see
Bornkessel-Schlesewsky et al., 2011).

Second, if firing asynchrony is important for perceptual
grouping (both in processing and in learning), then a
cue integration approach predicts a lack of phase in
electrophysiological signal with stimulus onset. This “delay”
should be true for population codes, oscillatory activity, and
ERPs. But there should be some temporal relationship with onset
as a function of the number or complexity of representations
being extracted from the auditory percept (Luo and Poeppel,
2007; Giraud and Poeppel, 2012; Golumbic et al., 2013), though
discovering what that relationship seems very challenging.
Nonetheless, discovering the relationship may make contact with
neurophysiological principles about oscillatory activity, namely
regarding questions as to how oscillatory activity is driven
both by the temporal properties of the incoming, exogenous
stimulus and by the current endogenous processing moment,
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and what the nature of the relationship between those two
oscillation timescales is. Third, the cue integration model,
which is built on cue reliabilities, or the representations of the
probabilistic relationship between a given cue and an upcoming
representation, predicts that there should be some neural signal
that is related to the reliability of each level of representation as a
cue to the next.

At least two fundamental problems seem to endure for a
cue-based model. First, a persistent challenge is understanding
why processing similar representations before or after the onset
of a target representation is sometimes facilitatory (resulting in
priming) and at other times inhibitory (resulting in interference).
Is firing asynchrony somehow underlying the spectrum of
priming and interference? Second, how might long-distance
structural relationships, syntactic domains, and scope be encoded
in a cue-based direct-access system (see Kush, 2013 for a
discussion of c-command)? How does the parser “know where
it is” to carry out these computations?

Summary
I have argued that any model of language computation must
answer both how and why questions, and that the ideal model
should be a fusion of mechanistic and probabilistic elements.
I have sketched a framework for language processing based
on the psychophysiological mechanism of cue integration.
The cue integration framework asserts a mechanistic
psychological operation over probabilistic representations,
which are represented by neural population codes that
are flexibly combined using two simple canonical neural
computations: summation and normalization. Together these
operations comprise the cue integration mechanism. By
restricting computation to canonical neural mechanisms, cue
integration may be able to form a linking hypothesis between
psycholinguistic, computational, and neurobiological theories of
language.

The heart of this mechanistic claim is that the relationship
between a given level and the next level of representation
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