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Research on grounded cognition suggests that the processing of a word or concept
reactivates the perceptual representations that are associated with the referent object.
The objective of this work is to demonstrate how behavioral and functional neuroimaging
data on grounded cognition can be understood as different manifestations of the same
cortical circuit designed to achieve stable category learning, as proposed by the adaptive
resonance theory (ART). We showed that the ART neural network provides a mechanistic
explanation of why reaction times in behavioral studies depend on the expectation or
attentional priming created by the word meaning (Richter and Zwaan, 2009). A mismatch
between top-down expectation and bottom-up sensory data activates an orienting
subsystem that slows execution of the current task. Furthermore, we simulated the data
from functional neuroimaging studies of color knowledge retrieval that showed anterior
shift (Chao and Martin, 1999; Thompson-Schill, 2003) and an overlap effect (Simmons
et al., 2007; Hsu et al., 2011) in the left fusiform gyrus. We explain the anterior effect
as a result of the partial activation of different components of the same ART circuit
in the condition of passive viewing. Conversely, a demanding perceptual task requires
activation of the whole ART circuit. This condition is reflected in the fMRI image as an
overlap between cortical activation during perceptual and conceptual processing. We
conclude that the ART neural network is able to explain how the brain grounds symbols
in perception via perceptual simulation.

Keywords: adaptive resonance theory, functional neuroimaging, grounded cognition, neural network model,

perceptual simulation

INTRODUCTION

The classical approach to knowledge representation assumes that a cognitive system contains
symbols that refer to an aspect of the external world. An important property of symbols is that
they are amodal or detached from specific sensory or motor experiences produced by the referent
objects. Another property is that symbols are arbitrarily related to their referents, that is, any
symbol can represent anything in the world; however, the specific meaning that will be attached
to the particular symbol is a matter of convention (Markman and Dietrich, 2000). These properties
of symbolic representation allow great flexibility in modeling cognitive processing because they
reduce the computational burden and allow the focus to be on the abstract relations between
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symbols (Fodor and Pylyshyn, 1988). However, purely symbolic
representations suffer from the symbol grounding problem; that
is, they are unable to tie the meaning of the symbol to its referent
object (Harnad, 1990; Glenberg and Robertson, 2000).

Grounded Cognition
An alternative approach to knowledge representation known
as grounded or embodied cognition suggests that abstract
symbols are not detached from the perceptual (or more
generally experiential) traces related to the objects they
represent (Glenberg et al., 2013). According to the theory of
perceptual symbol systems (PSS), a symbolic representation
of the concept retains certain features of the content of the
perceptual experience produced by the object to which the
concept refers. The central assumption of the PSS theory
is that concept retrieval reactivates the memory traces of
past perceptual experiences associated with denoting an object
(Barsalou, 1999, 2003). Such a reactivation is called a perceptual
simulation, and it solves the symbol grounding problem by
using a bidirectional flow of information between perceptual
and conceptual representations. Perceptual simulation is closely
related to mental imagery because it produces quasi-perceptual
experiences. However, an important difference is that mental
imagery is an effortful, conscious activity, whereas perceptual
simulation is automatically activated whenever a concept is called
to mind (Barsalou et al., 2003). Similar ideas have been expressed
by Glenberg and Robertson (1999) in an indexical hypothesis and
by Zwaan (2004) in the model of the immersed experiencer in
sentence comprehension.

Many behavioral studies have provided support for the claims
of the theories of grounded cognition (reviewed in Zwaan, 2004;
Pecher and Zwaan, 2005; Gibbs, 2006; Barsalou, 2008). For
instance, in one of the earliest experiments, Stanfield and Zwaan
(2001) used sentences such as

“He hammered a nail to the wall”

or

“He hammered the nail into the floor.”

The first sentence implies that the nail is oriented horizontally.
Conversely, the second sentence implies that the nail is oriented
vertically. When participants read these sentences, they invoke
different mental images of the orientation of the nail. If These
sentences are followed by a picture of the nail, the reaction time
to the image will be shorter in the match condition where the
orientation of the nail in the image has the same orientation,
as implied by the sentence relative to the mismatch condition,
where the orientation of the nail in the image is different from the
orientation implied by the sentence (Stanfield and Zwaan, 2001).
A similar effect has been found for the implied shape of an object
(Zwaan et al., 2002). Later studies revealed interactions between
word or sentence comprehension with visual motion (Kaschak
et al., 2005; Meteyard et al., 2007), color (Connell, 2007; Richter
and Zwaan, 2009), or spatial position (Šetić and Domijan, 2007;
Estes et al., 2008).

Perceptual simulation is not solely restricted to perceptual
attributes; it extends to emotions and motor planning. For

instance, Meier et al. (2004) showed that words for positive and
negative emotional states are differentially processed depending
on the color in which they are presented. Positive words are
processed faster when they are presented in a white color relative
to their presentation in black color. Conversely, negative words
are processed faster when they are presented in black. A similar
effect was found for spatial position because positive words were
processed faster in the upper visual field, and negative words were
processed faster in the lower visual field (Meier and Robinson,
2004). Similarly, comprehending sentences influences motor
control, as exemplified by the action-sentence compatibility
effect. When the sentence implied movement toward the
observer (“Open the drawer.”), participants were faster at
executing the pull movement with their hand. Conversely, if the
sentence implied movement away from the observer (“Close the
drawer”), participants were faster at executing a push movement
(Glenberg and Kaschak, 2002).

Functional neuroimaging studies have provided partial
support for perceptual simulation (Martin, 2007, 2009). Chao and
Martin (1999) showed that color perception activated lingual and
fusiform gyri of the occipital lobe. Interestingly, color naming
activated portions of the fusiform gyrus that are close to but
anterior to the site activated by color perception. However,
there was no direct overlap in cortical activation during color
perception and color knowledge retrieval, as the theory of PSS
would predict. Later studies in other modalities also found
that conceptual processing produces brain activation that is
located close to but usually anterior to the areas activated during
perception. This general trend observed in many neuroimaging
studies of conceptual processing was labeled anterior shift
(Thompson-Schill, 2003; Rugg and Thompson-Schill, 2013).
Simmons et al. (2007) argued that previous studies used passive
viewing, which does not activate the whole network of areas
dedicated to perception. Instead, Simmons et al. (2007) employed
demanding perceptual task involving luminance judgments and
found overlap in cortical activation of the left fusiform gyrus
during conceptual and perceptual color processing. Hsu et al.
(2011) found similar overlap in cortical activation in the left
fusiform gyrus and, to a lesser extent, in the left lingual gyrus.
Additionally, they found that the degree of overlap between
perception and conceptual processing depended on how detailed
the retrieval of color knowledge is.

Goal of the Current Work
An important critique of theories of grounded cognition,
such as perceptual symbol systems, is that they lack formal
specification (Barsalou, 2008). In other words, it is not
clear what neurocomputational mechanisms are capable of
performing perceptual simulation during conceptual processing.
In this study, we suggest that adaptive resonance theory is an
appropriate computational framework for understanding the
interaction between perception and conceptual comprehension
(Grossberg, 1980, 2012; Carpenter and Grossberg, 2003).
The ART is firmly based on biophysically plausible neural
mechanisms such as lateral inhibition, gain control and
associative (Hebbian) learning. Therefore, ART offers a firm
starting point to discuss the neural processing underlying
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grounded cognition. Preliminary results using real-time
implementation of the ART circuit with simulations of the
data regarding the interaction between motion perception and
motion words were presented in Domijan and Šetić (2009).

In this work, we will demonstrate how the adaptive resonance
theory can explain behavioral (Richter and Zwaan, 2009) and
fMRI data (Thompson-Schill, 2003; Simmons et al., 2007; Hsu
et al., 2011) regarding the interaction between color perception
and color words and how it deepens our understanding of the
neural basis of conceptual processing. We choose to model the
data of Richter and Zwaan (2009) because it is a rare example
of a study that includes control or neutral condition. Thus,
it was possible to distinguish between two possible behavioral
consequences of grounding: facilitation or faster response in
the match condition (when the simulation content matches the
content of perception) and interference or slower response in the
mismatch condition (when the simulation content is mismatched
with the content of perception). Additionally, several fMRI
studies employed color as stimuli (Simmons et al., 2007; Hsu
et al., 2011), providing an opportunity to unify the behavioral and
neural level of analysis. In their experiments, Richter and Zwaan
(2009) requested that participants make color discrimination
judgments between two sequentially presented colored squares.
After the presentation of the first (reference) square, but before
the presentation of the second (target), participants saw a word
that either denoted color or did not. The color word either
denoted the color used in the color discrimination task (match
condition) or did not (mismatch condition). The color words
used in the study were red, green, blue, yellow, cyan and
magenta. In the neutral condition, a word did not refer to any
color. The neutral words were raw, great, best, yeasty, cozy,
and marital. Richter and Zwaan (2009) found that reading of
the color word influenced the speed of the subsequent color
discrimination. In particular, participants were slower to respond
in the mismatch condition relative to the match and neutral
conditions. The similar effect was observed for the same and for
different responses. In this study, we will demonstrate how this
interference effect arises as a consequence of the dynamics of the
ART neural network.

MODEL DESCRIPTION

Design Principles of the ART
The ART was designed to solve the problem of the stability
of learning in a non-stationary environment (Grossberg, 1980,
2012; Carpenter and Grossberg, 1987, 2003). Many neural
network algorithms are able to detect and represent statistical
regularities in the input patterns. However, when input statistics
are altered (as often occurs in real-life situations), old codes
are quickly erased, despite the fact that they may continue be
predictive and useful. This occurrence is known as catastrophic
forgetting, which significantly reduces the capability of many
classes of neural networks to serve as a model of human memory
and concept learning (French, 1999). According to Grossberg
(1980), the solution to the problem of catastrophic forgetting is to
compare perceptual (bottom-up) data with learned (top-down)
expectations.

In the ART, the stability of conceptual learning is achieved
by division of labor between two processing subsystems:
attentional and orienting subsystems. An attentional subsystem
is responsible for storing activity patterns into long-term
memory. When perceptual (bottom-up) and conceptual (top-
down) signals are sufficiently similar, they generate resonance
in the attentional subsystem, which supports memorization
of current network activity. Conversely, a mismatch between
perceptual and conceptual signals triggers the activation of
the orienting subsystem, which sends a global reset signal to
the attentional subsystem. The reset signal temporarily disables
the currently active concept node and forces the attentional
subsystem to search for a new node. If there is no category
node that matches the input, a new concept node is dedicated to
learning the current input pattern. In other words, activation of
the orienting subsystem indicates that the network encounters a
new input pattern. An orienting subsystem operates as a novelty
detector, and it prevents the recoding of old memories when
confronting new input. Thus, the orienting subsystem ensures
the stability of old memories and simultaneously enables the
acquisition of new ones.

Top-down expectations could be read-out from long-term
memory in response to the presentation of input, or they
could be initiated internally to produce attentional priming
in a perceptual representation (Carpenter and Grossberg,
2003). Here, we suggest that the same top-down pathway
that is needed to stabilize learning and that is responsible
for attentional priming also supports perceptual simulation
during conceptual processing. In other words, perceptual
simulation arises from the same neural mechanisms that
prevent catastrophic forgetting, that is, they prevent interference
between previously established memory traces and new
patterns.

Real-Time Implementation of the ART
Neural Network
Specific implementation of the ART design principles used in the
current study is shown in Figure 1. A mathematical description
of the model is provided in the Supplementary Material. As
noted above, in the ART circuit, category learning is achieved
via interaction between two complementary processing streams:
an attentional and an orienting subsystem. The attentional
subsystem consists of three layers of nodes, which are labeled F0,
F1, and F2, and two gain control units, G1 and G2 (Carpenter
and Grossberg, 1987, 2003). F0 is an input layer that registers
the pattern of sensory stimulation. Additionally, it suppresses the
input noise via lateral inhibition and enhances the representation
of the target features via self-excitation. F1 reads-out the activity
pattern from F0 and combines it with the top-down expectations
arriving from the F2 layer. In the absence of top-down signals, the
F1 layer can generate supra-threshold activity because the gain
control unit G1 is not active. The activation further flows from F1
to F2 and passes through a filter of adaptive weights. Like F0, the
F2 layer employs lateral inhibition in order to implement choice
or winner-takes-all behavior that represents the category or the
concept that best matches the sensory input. When the F2 layer
makes a choice, the winning F2 node sends top-down signals to
F1 and to the G1 unit, which further inhibits the F1 layer. In this
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FIGURE 1 | Adaptive resonance theory (ART) circuit with two processing streams: attentional and orienting subsystems. The attentional subsystem
consists of three layers, denoted as F0, F1, and F2. The F0 layer registers the input pattern, and contrast enhances it via lateral inhibition. The F1 layer combines
feedforward activity from F0 and feedback projections from F2 to compute the intersection between bottom-up input and top-down expectations. The F2 layer also
employs lateral inhibition in order to choose the category node that best matches the input pattern. The gain control unit G1 inhibits the F1 layer and unit G2 inhibits
the F2 layer to prevent their activation during perceptual simulation. The G1 and G2 units are excited by the activity of the F2 layer. Furthermore, the G2 unit is inhibited
by the activity of the F0 layer. In the orienting subsystem, the R node computes the mismatch between the total amount of activity in F0 and F1. It also receives
recurrent projection from the F2 layer. The R node sends excitatory signals to the F3 layer, which inhibits F2. The F3 node is activated when it simultaneously receives
excitation from the F2 layer and the R node. Thus, the F3 layer specifically inhibits only the currently active node in F2 and ensures that it will not be activated again
during the course of a trial. The R node is activated when the total amount of activity in F0 exceeds that in F1 by a threshold specified by the vigilance parameter ρ.
Nodes labeled with 6 compute the sum over the activity of whole layer. Red (blue) lines denote excitatory (inhibitory) connections. Arrows indicate fixed connections,
whereas disks denote adaptive connections.

case, the F1 layer computes logical AND between its two sources
of input; that is, it attains a supra-threshold level of activity solely
if it simultaneously receives excitatory input from both F0 and
F2. Consequently, if the total activity in the F1 layer is similar to
that in F0, it signals that the chosen F2 node is a suitable match to
the sensory pattern registered at F0. Conversely, if the chosen F2
node does not represent the sensory pattern well, the total activity
in F1 will bemuch smaller relative to F0. Carpenter andGrossberg
(1987) discussed four different means by which F1 could perform
this matching. We choose the simplest one, which requires the
minimum amount of neural circuitry. The second gain control
unit, G2, inhibits the F2 layer and prevents its full activation in
the absence of sensory input, similar to how the G1 unit does
this for the F1 layer. Furthermore, the G2 unit is inhibited by
the activation of the F0 layer, which further disinhibits the F2
layer. Thus, the gain control mechanisms, G1 and G2, enable a
distinction to be made between sensory stimulation and internal
activation.

The orienting subsystem consists of the reset node, R, and a
layer, F3, of nodes that deliver specific inhibition to the F2 layer.
The R node computes the ratio between the total activation in

F0 and F1. The node produces a reset signal when this ratio
is smaller than a threshold denoted as a vigilance parameter ρ.
The vigilance parameter controls the precision of the category
coding, that is, how similar patterns should be to prevent the
activation of the orienting subsystem.When activated, the R node
delivers non-specific excitation to the F3 layer. The F3 layer has
the same dimensionality as F2, and they are mutually connected
in a one-to-one manner. Each F2 node sends excitation to its
corresponding F3 node and receives inhibition from it. The F3
node becomes active solely if it simultaneously receives two
sources of excitation. One source is the activity of the F2 node,
and a second source is activity from the R node. When activated,
the F3 node inhibits its twin F2 node and initiates a search for
another F2 node that will provide a better match to the sensory
pattern. Thus, the orienting subsystem enables learning of a new
category by inhibiting F2 nodes that are already committed to
encoding familiar categories.

One problem that arises during the real-time operation of
the orienting subsystem is that F0 is activated before F1 on the
first wave of the signal flow through the attentional subsystem.
Therefore, there is a short temporal window during which there
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is a mismatch between the activity of F0 and F1 that is not a
consequence of the mismatch between sensory and top-down
signals in F1 because F1 is not activated yet by F0. To prevent
premature activation of the orienting subsystem, we introduced
a recurrent projection from the F2 layer to the R node. This idea
was first proposed by Ryan and Winter (1987). Additionally, the
R node receives a tonic inhibition, which prevents its activation
by a mismatch signal alone. Consequently, the R node will
become active solely when it simultaneously receives a signal
from F2 and a mismatch signal. Thus, a reset signal could be
delivered to the attentional subsystem solely at moments when
the F2 layer is already active.

Interaction between the ART Modules
One ART circuit is capable of learning many categories in a
stable manner; however, it cannot attach symbolic labels to
learned categories. To solve this problem, Carpenter et al. (1991)
proposed an ARTMAP architecture that describes how two ART
modules arising from different input modalities can interact with
each other via an inter-ART associate map. We adopted the same
architecture to explain the interaction between color perception
and color words, as shown in Figure 2. In the model, the color
module is responsible for color perception and discrimination.
Resonance in this module indicates that the participant has
successfully discriminated a particular hue of color as familiar.
The visual word form (VWF) module is responsible for visual
word recognition. In this module, resonance develops between
letter shapes in the F1 layer and the appropriate recognition node
in its F2 layer. Therefore, resonance in the VWFmodule indicates
that the participant has successfully recognized a presented
pattern of lines as a familiar word.

Importantly, two modules are bi-directionally connected via
an inter-ART associative map, denoted as the F4 layer, which

FIGURE 2 | Inter-ART associative map (or F4 layer) as a link between

two ART modules. One ART module is dedicated to color perception and
categorization (Color module), and the second module is dedicated to written
word recognition (Visual Word Form module). Each ART module has
bidirectional excitatory connections with the associative map. Therefore,
activity in one ART module can produce perceptual simulation in other module
(supra-threshold activation of the F2 layer and sub-threshold activation of the
F1 layer). The inter-ART associative map provides a solution to the symbol
grounding problem because it connects a symbolic representation of color
words with a perceptual representation of the colors denoting them.

serves as a hub that directs communication between different
ART modules. Thus, neural activity in one module could spread
toward other modules if they share the same concept. For
instance, the word RED in the VWF module could activate the
F2 node, which represents red in the color module, although it
is not directly provided in the input. Thus, color processing in
the color module could activate the F2 layer in the VWF module,
thus creating an expectation regarding the word that could
be registered. We argue that this spreading activation between
modules constitutes a neural basis for perceptual simulation, as
described by the theory of perceptual symbol systems (Barsalou,
1999). In other words, an inter-ART associative map solves the
symbol grounding problem by binding activity from an abstract
representation of color words with the perceptual representation
of colors. Of course, it is possible to extend this architecture
with additional ART modules encoding other modalities, such as
auditory, tactile, gustatory, and modules for emotions and motor
actions. Interestingly, the structure described in Figure 2 is
similar to the model of semantic memory proposed by Patterson
et al. (2007).

Input Representation
Figure 3 illustrates input representations for colors and words
in their respective ART modules. Colors are represented as
distributed activations of sets of nodes in the F0 and F1
layers. Similar hues are represented by overlapping patterns of
activation, and the degree of similarity is reflected in the degree
of overlap in activation (Figure 3A).When resonance develops in
the ART color module, it means that the participant recognized
the presented color. How precise the color discrimination
is depends on the vigilance parameter. When the vigilance
parameter is set to a high value, the network is able to
discriminate among highly overlapping patterns. In the VWF
module, words are represented as template-like two-dimensional
patterns (Figure 3B).

Behavioral Output
To generate a model output that is comparable to human
performance and to simulate the data of Richter and Zwaan
(2009), we introduce two extensions with respect to the
architecture of the ART circuit depicted in Figure 4. First, we
introduce a working memory layer, denoted as F5, that holds
information about previous F2 activity over the course of a trial.
We assume that there is a one-to-one mapping from the F2 layer
to the F5 layer. Therefore, each F2 node has its own F5 node.
The F5 layer tracks the color of the stimulus that was presented
first (reference stimulus) in the color discrimination task, which
involves the sequential presentation of stimuli. Conversely, the
F2 activity encodes the color of the stimulus presented second
(target stimulus).

Second, we introduce a response network with two output
units that simulate decision making and response preparation.
Output units are designed to mimic the gradual accumulation of
evidence for particular response alternatives, as described by the
leaky competitive accumulator model (Usher and McClelland,
2001). The network is considered to have made a response when
one of the output units exceeds the threshold for activation that
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FIGURE 3 | Structure of the F0 and F1 layers in the color module (A)

and in the visual word form module (B). In (A), activity in a
one-dimensional array of nodes represents different hues of color. Similar
colors produce overlapping patterns, whereas dissimilar colors produce
non-overlapping patterns of activation. In (B), a two-dimensional array of
nodes represents written words. Black disks denote active nodes, whereas
empty circles denote inactive nodes.

triggers motor execution. Output units allow direct comparison
with behavioral data because they enable simulation of reaction
time data. In the color discrimination task, there are two
possible responses: same or different, depending on whether the
two stimuli matched in color or not, respectively. Therefore,
we employed two response units: the Same and Different
accumulator units. The Same unit receives excitatory input from
the comparison layer, C1. Nodes in the C1 layer compute logical
AND between inputs they receive from the F5 and F2 layers.
Each C1 node receives input from one F5 node and from one
F2 node, which are positioned at the same location within the
F5 and F2 layers. The computation of function AND is achieved
by the threshold, which is set to an elevated value. An elevated
threshold ensures that the C1 node will become active only if
it simultaneously receives excitation from the F2 and F5 nodes.
Effectively, the C1 layer detects juxtaposition of the neural activity
in the F2 and F5 layers. This will occur when the colors of two
stimuli are the same. Conversely, the Different unit receives input
from the C2 layer, which computes logical OR between inputs
from the F2 and F5 layers. The threshold for activation of the
Different unit is also set to an elevated level. Thus, the Different
unit will become active only if it receives simultaneous excitation
from two distinct C2 nodes. This will occur when the F5 and F2

FIGURE 4 | A neural network designed to generate a behavioral

response in the perceptual discrimination task based on the match of

content in F2 and in F5 or the working memory layer. Two comparison
layers (C1 and C2) receive topographically organized input from the F2 and F5
layers. The C1 layer computes logical AND between F2 and F5 outputs.
Therefore, the node in C1 becomes active only when both F2 and F5 nodes at
the same network location are active. Conversely, the C2 layer computes
logical OR. The node in C2 becomes active, although one of the nodes (either
F2 or F5) is active. The response units (Same and Different) are modeled as
leaky integrator units that accumulate evidence for the particular response
alternative. The Same unit will be activated if one of the C1 nodes is active,
providing evidence that the F5 activity matches that in the F2 layer. The
Different unit has an elevated threshold because it should be activated only if
two separate C2 nodes are simultaneously active, indicating that the content
of F5 is mismatched with the current F2 activity.

layers are active at different network locations, indicating that the
colors of the referent and target stimuli are different.

RESULTS

Simulation of Behavioral Data of Richter
and Zwaan (2009)
Several processes occur before the start of the simulation, and
these are explained first. At the beginning of each trial, a reference
color is presented that activates the ART color module. When
resonance occurs in the color module, activity from the F2 layer
is loaded into the F5 (working memory) layer, which retains
it for future comparison with the color of the target square.
Subsequently, when a participant reads a word, an ART module
for visual word form recognition is activated. When resonance in
the VWF module is established, that is, when the VWF module
recognizes the presented shape as a familiar word, the currently
active F2 node sends excitation to the corresponding node in
the associative map. Furthermore, the activated node in the
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Domijan and Šetić Resonant Dynamics of Grounded Cognition

associative map sends excitation to the F2 layer of the color ART
module. Thus, the associative map sends top-down expectation
to the color module consistent with the concept activated by
the color word. In other words, perceptual simulation of the
color is generated in the color module related to the meaning
of the color word. This situation is illustrated in Figure 6 for
three experimental conditions: (A) matching color word—RED;
(B) mismatching color word—GREEN; and (C) neutral word—
BEST. It is important to note that the mapping between the F2
layer in the color module and the associative map is not one-to-
one because different hues of the same color could be perceptually
distinguished, although we cannot name it differently. In other
words, the associative map is able to group different hues of the
same color under the same color label. Therefore, the same node
in the associative map activates several nodes in the F2 layer of
the ART color module.

Figure 5 shows the time course of activation of the
components of the ART color module. At the beginning of
simulation, expectations arising from the associative map are
read-out at the F2 layer. Due to the tonic inhibition from the G2

node, activity in the F2 layer is weak but supra-threshold so that
the F2 layer can excite the F1 layer. Conversely, activity in the
F1 layer is sub-threshold because the excitation from the F2 layer
is canceled by an equal amount of inhibition from the G1 node.
Here, it is assumed that the G1 inhibition is always strong enough
to keep the F1 layer below the threshold. Therefore, its weakening
may lead to resonance, although no stimulus is present. In other
words, activation of the F1 layer without accompanying sensory
stimulation from F0 leads to hallucinations.

At time point t1 = 40, a red square is presented that
activates the nodes in the F0 layer tuned to the red color. In
thematch condition (Figure 5A), the top-down expectation from

FIGURE 5 | The time course of neural activity of the different components of the ART color module is shown for three experimental conditions used in

behavioral study of Richter and Zwaan (2009): matching color word (A), mismatching color word (B), and neutral word (C). Red and green lines show the
activity of the node tuned to red and green, respectively. At the beginning of the simulation, color words create expectations by activating corresponding nodes in the
F2 layer. In (A), the word RED activates the node for red, will be presented subsequently. In (B), the word GREEN activates the node for green, which will not be
shown later. In (C), there is no top-down expectation because a neutral word such as BEST does not have access to the color module. At time point t = 40, input
consisting of a red square is registered at F0. In (A,C), there is no mismatch between the input pattern and top-down expectation; thus, there is no supra-threshold
activation of the R node. Conversely, in (B), the input mismatches with the top-down signals, thus activating the R node, which inhibits the trace of erroneous
expectation from the F2 layer.
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the F2 layer is confirmed by the sensory input from the F0
layer. In this case, the F1 layer is sufficiently active to prevent
(inhibit) activation of the R node. The R node exhibits sub-
threshold activation arising from the F2 layer, but this activation
never coincides with the mismatch signal. Consequently, the F2
node tuned to red quickly reaches its maximal level of activity
(or reached resonant state) without any interruption from the
orienting subsystem. It only receives disinhibition from the G2

unit, which is inhibited by the activity from F0 when it encodes
the input.

In the mismatch condition (Figure 5B), where the F2 layer
expects the green color, but red is registered at F0, the R node
attains a supra-threshold level of activity and inhibits the traces of
erroneous expectation in the F2 layer. The R node becomes active
because the mismatch signal is combined with the top-down
signal from F2. The mismatch signal arises because the F1 layer
simultaneously receives two sources of input, but it produces no
output because these input sources do not match each other. A
consequence of the activation of the orienting subsystem is that

the F2 node tuned to green is inhibited, which allows the F2 node
tuned to red to become active. However, this node reaches its
maximal level of activity at a later time point relative to that in
the match condition. Finally, if there is no expectation created
by the word as it occurs in the neutral condition (Figure 5C),
there is also no supra-threshold activation of the R node as in
the match condition. Therefore, the F2 node tuned to red reaches
resonant state at a point of time that is much earlier relative to
the mismatch condition and, to some extent, later relative to the
match condition.

Figure 6 shows how the dynamics of the F2 layer is
transformed into the behavioral response (same or different) in
the response network. The left column of Figure 6 (labeled F2—
Red) redraws the time course of the activation of the F2 node,
tuned to red, to directly compare responses in three experimental
conditions (i.e., match, mismatch, and control). Furthermore,
it shows how systematic variation of the speed of activation of
the R node in the orienting subsystem from fast (Figure 6A),
to medium (Figure 6B), to slow (Figure 6C) influences the

FIGURE 6 | Simulation of reaction times in a behavioral experiment of Richter and Zwaan (2009). Motor output is obtained by transformation of the activity of
the F2 node tuned to red (left column) into the activity of the Same unit in the response network (right column). Furthermore, we examined how the dynamics of the F2
layer and the response network are affected by systematic variation of the speed of the activation of the R node in the orienting subsystem, ranging from fast (A), to
medium (B) to slow (C). Each graph compares activity in three conditions: match (dashed line), mismatch (dotted line), and neutral (full line). A horizontal blue line in
the right column depicts The threshold for making the same response. As observed, facilitation in the match condition remains weak, irrespective of the speed of the
R node. On the other hand, interference in the mismatch condition becomes stronger as the R node becomes slower, suggesting that the activation of the orienting
subsystem in the mismatch condition is responsible for creating the behavioral effect of perceptual simulation.
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magnitude of the facilitation and interference effect. In particular,
it shows that the amount of facilitation in the match condition
remains weak under changes of the time constant of the R
node. On the other hand, interference in the mismatch condition
becomes stronger as the R node becomes slower.

The right column of Figure 6 (labeled as Same Unit) shows
the dynamics of the accumulation of evidence of the Same
unit until it reaches the threshold for response depicted by the
horizontal blue line. However, it should be noted that the same
explanation holds for the Different unit as well. In the mismatch
condition, the delay in the activation of the appropriate F2 node
is reflected in the similar delay in the activation of the Same unit.
Conversely, facilitation in the match condition remains small.
When we transformed simulated time units into a millisecond
scale via Equation (22), given in the Supplementary Material, we
found a negligible facilitation of just 3ms in the match condition
under all three settings of the speed of the R node. On the
other hand, interferences of 42, 60, and 87ms were found in
the mismatch condition with fast, medium and slow dynamics
of the R node, respectively. In experiment 1, Richter and Zwaan
(2009) also observed a weak facilitation of approximately 15ms,
but it was statistically unreliable in comparison with the strong
interference of 51ms in themismatch condition. Importantly, the
weak facilitation and strong interference observed in the model’s
output is not a byproduct of a particular choice of parameter
values used to generate behavioral response in Equation (22). For
instance, the threshold for motor response can be set anywhere
between 0.2 and 1 without affecting the asymmetry between the
magnitude of the facilitation and interference effect. To conclude,
our simulation suggests that the behavioral consequence of
grounding is interference in the mismatch condition, which is
attributed to the activation of the reset signal in the ART circuit.

Simulation of the Anterior Shift and
Overlap Effect in Functional Neuroimaging
The anterior shift observed in the left fusiform gyrus in
neuroimaging studies of color knowledge retrieval (Chao and
Martin, 1999; Thompson-Schill, 2003) is explained by the
observation that the ART circuit is a hierarchical network
composed of three processing layers, as shown in Figure 1. If this
processing hierarchy is stretched on the cortical surface of the
fusiform gyrus along the posterior-anterior dimension, the F0
layer will be positioned posterior to the F1 layer, and the F1 layer
will be positioned posterior to the F2 layer. Figure 7A illustrates
how averaged supra-threshold activity in the ART circuit
generates a hemodynamic response. Here, we assumed that the
passive condition produces additional inhibition in the gain
control nodes, G1 and G2, as explained in the Supplementary
Material. The activity of G1 is counted as part of the F1 layer
and activity of G2 is counted as part of the F2 layer. Column
Passive in Figure 7 shows that passive perceptual processing
activates only the F0 and F1 layers because there is no need for
further classification of input patterns. Therefore, the activation
of F2 is prevented by gain control G1, which suppresses the
output of the F1 layer. However, gain control node G1 is itself
active in this condition. Therefore, activation of both the F0 and
F1 layers should be observed. Conversely, passive conceptual

FIGURE 7 | Simulation of the hemodynamic response under different

task conditions (Passive vs. Active). We considered the space-time
average of supra-threshold activity (A) and the space-time average of the
absolute value of membrane potential (B) as an index of metabolic demand
and cerebral blood flow. Both measures produce similar results. Passive
perception activates only F0 and F1. Conversely, passive cognition (or
perceptual simulation) activates only F2. In a simulated metabolic response
contrasting perception with cognition, this situation would appear as
non-overlapping areas, thus producing the anterior effect (Chao and Martin,
1999; Thompson-Schill, 2003). When the network is engaged in a demanding
perceptual task, all three layers of the attentional subsystem are activated.
Conversely, active cognitive processing produces a signal in F1 and F2 layers.
In the simulated metabolic response, this would appear as an overlap between
perception and cognition in F1 and F2, as observed by Hsu et al. (2011) and
Simmons et al. (2007).

processing will activate only the F2 layer because its gain control
node G2 is active in this condition and it suppresses the activity
in F2. When network activities during passive perception and
passive cognitive tasks are contrasted with each other, the result
is the anterior shift in cortical activation during cognition
relative to perception. Importantly, our simulation suggests
that the existence of the anterior shift should not be taken as
evidence against grounding of conceptual processing (Chatterjee,
2010; Rugg and Thompson-Schill, 2013). Rather, it reveals two
distinct sides of the same neural network responsible for symbol
grounding.

Active perceptual processing, as it occurs, for instance, during
perceptual discrimination, requires engagement of the whole
processing hierarchy (column Active in Figure 7). In this case,
perception activates the F0, F1, and F2 layers because the network
must classify perceptual inputs into separate categories, and this
is possible only by engagement of the F2 layer. During active
cognitive processing, the F1 and F2 layers both show increased
metabolic response. F2 is active because of the excitatory signals
arriving from the associative map. On the other hand, F1 exhibits
a positive signal because of the activation of its gain control
node G1, which inhibits the F1 layer. When brain activity during
perception and conceptual processing are contrasted against each
other, we observe an overlap in cortical activation in F1 and F2.
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However, it should be noted that the overlap in the F2 layer is
not perfect because the F2 activity during perceptual simulation
is more widespread compared with focused activity during
perception. As explained above, the inter-ART associative map is
connected to more than one node in the F2 layer. For this reason,
additional cognition-related F2 activity that is not present during
perception should produce more-distributed activation in F2.

The above analysis rests on the assumption that the fMRI
signal directly reflects neural activity, that is, the neuron’s firing
rate (Heeger and Ress, 2002; Nir et al., 2008). However, this
may not be true. There is evidence that the fMRI signal better
correlates with the local field potential, which reflects processes
in the neuron’s input zone rather than the neuron’s firing
rate (Logothetis, 2002; Logothetis and Wandell, 2004). One
hypothesis is that the fMRI represents total synaptic activity
because transmitter synthesis and release are energy-demanding
processes (Horwitz et al., 1999; Arbib et al., 2000). Another
possibility is that dendrites are responsible for generating the
fMRI signal (Lauritzen, 2005; Domijan, 2011). Under these
interpretations, the fMRI signal reflects processing pathways
rather than neural outputs. However, Figure 7B shows that even
if the absolute value of membrane potential is taken as an index
of metabolic demand, the resulting pattern of cortical activation
remains similar. In conclusion, irrespective of the exact source of
the fMRI signal, activation of the ART circuit in response to the
passive perception or cognition should produce an anterior effect
(Thompson-Schill, 2003). Conversely, demanding perceptual or
cognitive tasks should produce overlap in brain activity during
perception and perceptual simulation (Simmons et al., 2007).

DISCUSSION

Our simulations show how adaptive resonance theory addresses
a number of issues in the study of grounded cognition. First,
properties of the ART circuit explain why grounding exists at
all. In the ART, grounding is a consequence of the solution to
the stability-plasticity dilemma, that is, it is a consequence of the
neural mechanisms that enable stable category learning. Stability
is achieved by the matching of bottom-up input and top-down
expectations. We argue that the same anatomical route used to
read-out top-down expectations (feedback projections from the
F2 to F1 layers) is co-opted by the cognitive system to perform
perceptual simulations during conceptual processing. Second,
the behavioral effects of grounding arise from the activation of
the orienting subsystem (reset signal) that is triggered whenever
bottom-up and top-down signals mismatched. The reset signal
inhibits the currently active node in the F2 layer and allows
the new node to become active. This process requires time and
consequently slows down the execution of the ongoing task.

Third, the ART explains why neural structures involved in
perception and cognition should never perfectly overlap. If there
were a strong overlap between perception and knowledge, the
cognitive system would not be able to distinguish between
perception and hallucination. This point was made by Martin
(2009). For this reason, the ART network does not have feedback
projections from the F2 to F0 layers or from the F1 to F0 layers.
Therefore, the F0 layer could not be perturbed by the top-down

signals. This prediction of the model is in contrast with fMRI
studies showing attentional influence on the visual cortex (Kok
et al., 2013; Vandenbroucke et al., 2014). However, it should be
noted that electrophysiological studies have revealed that some,
but not all, neurons in the visual cortex are susceptible to top-
downmodulations. For instance, Pooresmaeili et al. (2010) found
that approximately half of the neurons in the primary visual
cortex were modulated by attention but the other half were not.
Several studies have found a similar division between neurons in
the V4 (Luck et al., 1997; Reynolds et al., 2000). In the context
of the ART circuit, neurons that are not influenced by attention
are part of the F0 layer, which provides a veridical or reference
signal that is supplied to the orienting subsystem for detecting
possible match or mismatch with the top-down signals. On the
other hand, neurons that are modulated by attention are part of
the F1 layer, which serves as amatching point between bottom-up
and top-down signals.

Nevertheless, even if it turns out to be true that all neurons
in the visual cortex are subject to top-down modulations, the
prediction of the current model is that the source of feedback
signals to F0 should originate from a region outside the ART
circuit that is dedicated to semantic knowledge. One such source
of feedback signalsmight be fronto-parietal network (Ptak, 2012).
For instance, in a multi-object scene, F0 would initially register
features of all objects present. In this case, feature-based attention
to F0 may increase the saliency of one object and filter out features
of other objects, thus preventing the superposition catastrophe
(von der Malsburg, 1999). Conversely, feedback projections from
F2 to F1 solve a different computational problem, that is, the
stability of learning of a selected object (Grossberg, 1980).

An important point from the simulation presented in Figure 7
is that we show how the anterior shift arises under a condition
of passive perception or cognition (Thompson-Schill, 2003). In
this case, perception activates the F0 and F1 layers, whereas
conceptual processing activates only the F2 layer. When we
consider both cases together, there is no overlap in the brain
activation during perception and knowledge retrieval. Therefore,
the anterior effect should not be used as evidence against
grounding. Conversely, a partial overlap between perception
and conceptual processing is observed when a more demanding
perceptual or conceptual task is employed, as in the studies
of Simmons et al. (2007) and Hsu et al. (2011). In this case,
perception engages the whole ART network, including the F0, F1,
and F2 layers, whereas the conceptual processing activates the F1
and F2 layers, thus creating the overlap in the fMRI image.

In contrast with other computational approaches to grounded
cognition, which emphasize the beneficial effect of matching top-
down expectations with sensory-motor states (Roy, 2005; Pezzulo
et al., 2011, 2013; Hoffman, 2012), the present work suggests
that the behavioral effect of grounding is primarily observed in
the mismatch condition where expectations are not confirmed
by the current sensory input. For instance, Hoffman (2012)
showed how an artificial agent achieves faster visual recognition
when primed by the auditory percept. Early behavioral studies
(Stanfield and Zwaan, 2001; Zwaan et al., 2002) were unable to
disentangle the effect of facilitation in the match condition from
interference in the mismatch condition because they did not
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have a neutral or control condition for comparison. Richter and
Zwaan (2009) solved this issue by using neutral words that do not
produce perceptual simulation in the relevant color dimension.
The researchers found that the grounding effect arises from
the mismatch condition, where the performance in perceptual
discrimination is slower compared to that in the match and
neutral conditions. Conversely, the match and neutral conditions
did not differ in latency. This raises the possibility that the reset
signal is responsible for generating this interference effect, as
shown in the simulation presented in Figure 5.

A testable prediction derived from the simulation of
behavioral data is that a similar interference in the mismatch
condition without corresponding facilitation in the match
condition should be observed in other modalities (e.g.,
motion perception, spatial representation, emotion) when a
neutral condition is employed together with the match and
mismatch conditions. Another prediction of the model is that
comprehension of conceptual combinations requires multi-
modal simulation involving two or more ART modules. For
instance, perceptual simulation of the concept BLACK DOG
should involve attentional priming in the color module as well
as in the shape module. Subsequent presentation of the picture of
a brown dog or black cat should produce similar response delays
because both pictures violate part of the combined expectation,
thus triggering the reset signal within one of the primed ART
modules. The same reset mechanism may also be involved in
generating the modality switching cost in a property verification
task (Pecher et al., 2003). When participants are requested to
verify whether a given property belongs to the concept, they
are slower when the verified property comes from a different
modality relative to the property in the previous trial. An
explanation of the modality switching cost would require that the
inter-ART associative map have its own reset mechanism, which
would enable shifting of the attentional focus between different
ART modules.

With respect to the functional neuroimaging, the current
model predicts that activation of the orienting subsystem in
the mismatch condition along with the activation of attentional
subsystem should light up several new voxels in the left fusiform
gyrus in addition to those already activated by the match
or neutral condition. In a similar vein, it is expected that
attentional switching between modalities that occurs during
property verification should light up new voxels in the anterior
temporal lobe in addition to those already activated by the
property verification in the same modality.

Meteyard et al. (2012) offered a useful taxonomy of
theoretical viewpoints regarding the role of embodiment in
cognition and its neural underpinnings. They distinguished
among secondary, weak and strong embodiment. Proponents
of secondary embodiment maintain that although embodiment
exists, it is irrelevant for cognition per se. Rather, it is a
consequence of inadvertent spreading activation across the
cortical surface (Mahon and Caramazza, 2008; Chatterjee, 2010;
Caramazza et al., 2014). Our analysis suggests that the spreading
activation from the Associative Map to the F2 layer and from
the F2 layer to the F1 layer is not an irrelevant byproduct
of random cortical connectivity. Instead, it is a part of the

neural architecture designed to achieve stability in learning and
memory. We admit that the cognitive requirements of the task
used in the study of Richter and Zwaan (2009) are minimal
because participants just read the words. It may be argued that
this analysis does not prove the necessity of perceptual simulation
for conceptual understanding because the same behavioral
effect is also consistent with the secondary embodiment. A
more convincing argument would be to show how perceptual
simulation helps during more-demanding tasks such as sentence
comprehension (Stanfield and Zwaan, 2001; Zwaan et al., 2002).
However, the modeling in such studies would require a more
sophisticated neural network for sentence processing, which is
beyond the scope of this paper. We argue that during sentence
processing, the same pathway from the Associative Map to F2
and from F2 to F1 will be employed, and it will produce the
same behavioral effect of slowing down the motor response in
the mismatch condition.

At the other extreme, proponents of strong embodiment
claim that conceptual processing occurs directly in sensory and
motor systems (Gallese and Lakoff, 2005). Thus, there is no need
for separate amodal conceptual representation. Furthermore,
cognition and perception should be indistinguishable in
functional imaging. However, the structure of the ART circuit,
in which the F0 and F1 layers represent perceptual features
(e.g., colors, shapes), whereas the F2 layer represents a more
abstract grouping (categorization) of those features, suggests
that the neural basis of concepts cannot be equated with those
of perception. Consequently, perception and cognition will
never activate exactly the same cortical surface. Cognition
will always activate a region that is close but anterior to the
area activated during perception. However, this anterior shift
is not an argument against embodiment, as suggested by
Rugg and Thompson-Schill (2013). Moreover, the inter-ART
associative map has the property of the amodal conceptual
representation, which connects to and binds together distinct
modal representations in separate ART modules. The map’s role
in the conceptual processing is consistent with the activation of
the anterior temporal lobe (Binder et al., 2009). In conclusion, it
appears that weak embodiment, which combines properties of
modal and amodal representations, is most consistent with the
available behavioral and neural evidence (Meteyard et al., 2012;
Pulvermüller, 2013) and with the computational mechanisms of
the adaptive resonance theory.

CONCLUSION

We showed how the real-time implementation of the ART
neural network can successfully account for behavioral and
functional neuroimaging data on grounded cognition (Martin,
2007; Barsalou, 2008). The interference effect found in behavioral
tasks was attributed to the activation of the orienting subsystem.
Anterior and overlap effects in fMRI studies were attributed
to the layered structure of the attentional subsystem. Our
simulations suggest that the behavioral and fMRI level of
analysis are distinct manifestations of the same cortical circuit
that is capable of solving a symbol grounding problem by
perceptual simulation during conceptual processing as proposed
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by the theories of grounded cognition (Barsalou, 1999; Glenberg
and Robertson, 1999; Zwaan, 2004). Moreover, perceptual
simulation in the ART circuit arises naturally from the same
neurocomputational mechanisms that are needed to achieve
stability of learning and memory.
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Domijan, D., and Šetić, M. (2009). “Adaptive resonance as a neural basis of
conceptual semantics,” in Proceedings of the 31th Annual Conference of the
Cognitive Science Society, eds N. A. Taatgen and H. van Rijn (Austin, TX:
Cognitive Science Society), 2196–2201.

Estes, Z., Verges, M., and Barsalou, L. W. (2008). Head up, foot down: object
words orient attention to the object’s typical location. Psychol. Sci. 19, 93–97.
doi: 10.1111/j.1467-9280.2008.02051.x

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends
Cogn. Sci. 4, 128–135. doi: 10.1016/S1364-6613(99)01294-2

Fodor, J. A., and Pylyshyn, Z. W. (1988). Connectionism and cognitive
architecture: a critical analysis. Cognition 28, 3–71. doi: 10.1016/0010-
0277(88)90031-5

Gallese, V., and Lakoff, G. (2005). The brain’s concepts: the role of the sensory-
motor system in conceptual knowledge. Cogn. Neuropsychol. 22, 455–479. doi:
10.1080/02643290442000310

Glenberg, A. M., and Kaschak, M. P. (2002). Grounding language in action.
Psychon. Bull. Rev. 9, 558–565. doi: 10.3758/BF03196313

Glenberg, A. M., and Robertson, D. A. (1999). Indexical understanding of
instructions. Discourse Process. 28, 1–26. doi: 10.1080/01638539909545067

Glenberg, A. M., and Robertson, D. A. (2000). Symbol grounding and meaning: a
comparison of high-dimensional and embodied theories of meaning. J. Mem.
Lang. 43, 379–401. doi: 10.1006/jmla.2000.2714

Glenberg, A. M., Witt, J. K., and Metcalfe, J. (2013). From the revolution
to embodiment: 25 years of cognitive psychology. Perspect. Psychol. Sci. 8,
573–585. doi: 10.1177/1745691613498098

Gibbs, R. W. (2006). Embodiment and Cognitive Science. New York, NY:
Cambridge University Press.

Grossberg, S. (1980). How does a brain build a cognitive code? Psychol. Rev. 87,
1–51.

Grssberg, S. (1988). Nonlinear neural networks: principles, mechanisms,
and architectures. Neural Networks 1, 17–61. doi: 10.1016/0893-6080(88)9
0021-4

Grossberg, S. (2012). Adaptive resonance theory: how a brain learns to consciously
attend, learn, and recognize a changing world. Neural Networks 37, 1–47. doi:
10.1016/j.neunet.2012.09.017

Harnad, S. (1990). The symbol grounding problem. Phys. D 42, 335–346. doi:
10.1016/0167-2789(90)90087-6

Häusser, M., and Mel, B. W. (2003). Dendrites: bug or feature? Curr. Opin.
Neurobiol. 13, 372–383. doi: 10.1016/S0959-4388(03)00075-8

Heeger, D. J., and Ress, D. (2002). What does fMRI tell us about neuronal activity?
Nat. Rev. Neurosci. 3, 142–151. doi: 10.1038/nrn730

Horwitz, B., Tagamets, M.-A., and McIntosh, A. R. (1999). Neural modelling,
functional brain imaging, and cognition. Trends Cogn. Sci. 3, 91–98. doi:
10.1016/S1364-6613(99)01282-6

Hoffman, G. (2012). Embodied cognition for autonomous interactive robots. Top.
Cogn. Sci. 4, 759–772. doi: 10.1111/j.1756-8765.2012.01218.x

Hsu, N. S., Kraemer, D. J. M., Oliver, R. T., Schlichting, M. L., and Thomspon-
Schill, S. L. (2011). Color, context and cognitive style: variations in color
knowledge retrieval as a function of task and subject variables. J. Cogn. Neurosci.
23, 2544–2557. doi: 10.1162/jocn.2011.21619

Jadi, M., Behabadi, B. F., Poleg-Polsky, A., Schiller, J., and Mel, B. W. (2014).
An augmented 2-layer model captures nonlinear analog spatial integration
effects in pyramidal neuron dendrites. Proc. IEEE 102, 782–798. doi:
10.1109/JPROC.2014.2312671

Kaschak, M. P., Madden, C. J., Therriault, D. J., Yaxley, R. H., Aveyard, M.,
Blanchard, A. A., et al. (2005). Perception ofmotion affects language processing.
Cognition 94, 79–89. doi: 10.1016/j.cognition.2004.06.005

Frontiers in Psychology | www.frontiersin.org 12 February 2016 | Volume 7 | Article 139

http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00139
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
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