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Recent studies have demonstrated participants’ ability to learn cross-modal
associations during statistical learning tasks. However, these studies are all similar
in that the cross-modal associations to be learned occur simultaneously, rather than
sequentially. In addition, the majority of these studies focused on learning across sensory
modalities but not across perceptual categories. To test both cross-modal and cross-
categorical learning of sequential dependencies, we used an artificial grammar learning
task consisting of a serial stream of auditory and/or visual stimuli containing both
within- and cross-domain dependencies. Experiment 1 examined within-modal and
cross-modal learning across two sensory modalities (audition and vision). Experiment
2 investigated within-categorical and cross-categorical learning across two perceptual
categories within the same sensory modality (e.g., shape and color; tones and non-
words). Our results indicated that individuals demonstrated learning of the within-modal
and within-categorical but not the cross-modal or cross-categorical dependencies.
These results stand in contrast to the previous demonstrations of cross-modal statistical
learning, and highlight the presence of modality constraints that limit the effectiveness
of learning in a multimodal environment.

Keywords: statistical learning, implicit learning, sequential learning, cross-modal learning, multisensory
integration, modality constraints, artificial grammar learning

INTRODUCTION

Many organisms have the ability to detect invariant patterns and associations from a seemingly
chaotic environment. One such ability, statistical–sequential learning, involves the learning of
statistical patterns across items presented in sequence (Saffran et al., 1996; Daltrozzo and Conway,
2014). Statistical learning appears to be central to the development of many cognitive functions,
especially language (Saffran et al., 1996; Conway et al., 2010; Misyak et al., 2010; Nemeth et al.,
2011; Arciuli and Simpson, 2012; Kidd, 2012; Misyak and Christiansen, 2012). Traditionally,
statistical learning has been studied in a unimodal manner, presenting participants with stimuli
to a single sensory modality, such as audition, vision, or touch (Saffran et al., 1996; Fiser and
Aslin, 2001; Kirkham et al., 2002; Conway and Christiansen, 2005). However, in many natural
circumstances, such as spoken language, multiple sensory modalities are involved. For example,
sighted individuals make extensive use of visual facial information, such as the movement of the
mouth, to aid in speech perception (Rosenblum, 2008).

Despite the importance of multisensory integration in language processing and other areas of
cognition, only recently has multisensory integration been investigated in the context of statistical
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learning. Toward this end, Mitchel and Weiss (2011) presented
unimodal auditory and visual input streams simultaneously to
participants and manipulated the audiovisual correspondence
across the two modalities. They found that learners could extract
the statistical associations in both input streams independently
of the other (consistent with the findings of Seitz et al., 2007)
except when the triplet boundaries were desynchronized across
the visual and auditory streams. In such conditions, learning
was disrupted, suggesting that statistical learning is affected by
cross-modal contingencies. Other studies have similarly shown
that input presented in one modality can affect learning in a
second concurrently presented modality. For instance, Cunillera
et al. (2010) showed that simultaneous visual information could
improve auditory statistical learning if the visual cues were
presented near transition boundaries (see also Robinson and
Sloutsky, 2007; Sell and Kaschak, 2009; Mitchel and Weiss,
2010; Thiessen, 2010). More recently, Mitchel et al. (2014) used
the McGurk illusion to demonstrate that learners can integrate
auditory and visual input during a statistical learning task,
suggesting that statistical computations can be performed on an
integrated multimodal representation.

Although these studies are all clear demonstrations of
multimodal integration during statistical learning tasks, they
use concurrent auditory and visual input. That is, the visual
and auditory inputs were presented simultaneously, and learners
were tested on their ability to learn these simultaneous cross-
modal associations. No studies to our knowledge have tested the
extent that cross-modal statistical associations can be learned
and integrated across time as elements in a sequence, in
which an auditory stimulus (e.g., a tone) might be associated
with the next occurrence of a particular visual stimulus (e.g.,
a shape) or vice-versa. In addition, previous studies have
used multi-sensory patterns containing cross-modal regularities
across sensory modalities, but none to our knowledge have
tested learning of dependencies across different perceptual
categories but that are within the same sensory modality
(i.e., color and shape or tones and non-words). It is possible
that learning cross-modal dependencies may have different
computational demands than the learning of cross-categorical
dependencies, perhaps due to differences in perceptual or
attentional requirements.

The aim of the present study, therefore, was to investigate
the limits of cross-domain statistical–sequential learning. From a
purely associative learning framework, it might be hypothesized
that statistical patterns should be learned just as readily between
stimuli regardless of their modality or perceptual characteristics
(i.e., learning a dependency between items A and B should
not be any different than learning a dependency between
items A and C). Such an unconstrained view of statistical
learning was common in its early formulations (see Frensch
and Runger, 2003 and Conway et al., 2007 for discussion).
However, it is now known that statistical learning is constrained
by attentional and perceptual factors. For example, statistical
learning of non-adjacent relationships is heavily influenced by
perceptual similarity, with learning improving when the non-
adjacent elements are perceptually similar to one another (i.e.,
have a similar pitch range or share some other perceptual cue;

Creel et al., 2004; Newport and Aslin, 2004; Gebhart et al.,
2009). Likewise, Conway and Christiansen (2006) proposed
that statistical learning is analogous to perceptual priming, in
which networks of neurons in modality-specific brain regions
show decreased activity when processing other items within
the same modality that have similar underlying regularities or
structure (see also, Reber et al., 1998; Chang and Knowlton, 2004;
Conway et al., 2007). Recent neuroimaging evidence confirms
that statistical learning is mediated at least in part by processing
in unimodal, modality-specific brain regions (Turk-Browne
et al., 2009) – in addition to involving “downstream” brain
regions that appear less tied to a specific perceptual modality
including Broca’s area, the basal ganglia, and the hippocampus
(Lieberman et al., 2004; Opitz and Friederici, 2004; Petersson
et al., 2004; Abla and Okanoya, 2008; Karuza et al., 2013; Schapiro
et al., 2014). Thus the existing literature suggests that statistical
learning involves a combination of bottom-up perceptual
processing via unimodal, modality-specific mechanisms, but also
more domain-general learning and integration processes that
perhaps occur further downstream (Keele et al., 2003; Conway
and Pisoni, 2008; Daltrozzo and Conway, 2014; Frost et al.,
2015).

Thus, the learning of sequential patterns appears to be at least
partly constrained by the nature of the sensory and perceptual
processes that are engaged. Another way to think of this is that
statistical learning is likely influenced by Gestalt-like principles
that make it easier to learn associations between items in the same
modality or that share perceptual features (Newport and Aslin,
2004). Consequently, statistical learning of cross-modal or cross-
categorical sequential associations might be more challenging
than the previous empirical research seems to indicate. It
is possible that the previous demonstrations of multisensory
integration during statistical learning tasks that used concurrent
auditory and visual input (e.g., Cunillera et al., 2010; Mitchel
and Weiss, 2011; Mitchel et al., 2014) were less cognitively
demanding than learning elements across a temporal sequence.
It is currently an open question to what extent statistical–
sequential cross-modal and cross-categorical dependencies can
be learned.

To test cross-modal and cross-categorical statistical learning,
we employed an artificial grammar learning (AGL) paradigm,
commonly used to study implicit and statistical learning (Seger,
1994; Perruchet and Pacton, 2006), in which stimuli are
determined by a finite state grammar. Unlike previous statistical
learning or AGL tasks, our paradigm used a series of inputs from
different sensory modalities and/or perceptual categories, with
each individual unit presented in succession. In this manner,
we could test whether participants can learn cross-domain
dependencies across the temporal sequence. The grammar itself
(see Figure 1), created by Jamieson and Mewhort (2005) and
also used by Conway et al. (2010), has certain advantages over
other artificial grammars commonly used. First, unlike most
other grammars including the classic “Reber” grammar (Reber,
1967) and countless others, there are no positional constraints.
That is, each element of the grammar can occur at any position,
with equal frequency, preventing position information – such
as which elements or pairs of elements occur at the beginning

Frontiers in Psychology | www.frontiersin.org 2 February 2016 | Volume 7 | Article 250

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00250 February 24, 2016 Time: 16:8 # 3

Walk and Conway Cross-Domain Statistical Learning

FIGURE 1 | The artificial grammar used in both Experiments. “V” and
“A” refer to visual and auditory stimuli, respectively.

versus the ending of sequences – from becoming a confound.
Second, there are also no constraints on sequence length. A large
set of stimuli can be generated at a particular length (such as
length 6 used in the present study), preventing sequence length
from becoming a confound. Finally, the grammar describes
the probability in which a successive element (n+1) can occur
given the previous element (n). This means that primarily first-
order element transitions are contained in the grammar; thus,
“learning the grammar” in this case generally means one thing:
learning the forward-transition, adjacent element statistics1,
making interpretation about what is learned or not learned
relatively straightforward. Consequently, this also makes it easy
to design sequences containing both cross-domain and within-
domain dependencies.

In Experiment 1, participants were exposed to input sequences
generated from the artificial grammar that were composed of
tones interspersed with pictures of shapes. Importantly, the
sequences consisted of both within-modal (e.g., tone–tone or
shape–shape) and cross-modal associations (e.g., tone–shape or
shape–tone). In Experiment 2 the sequences were composed of
stimuli from two different perceptual categories within the same
sensory modality (shapes and colors for the visual stimuli and
tones and single syllable non-words for the auditory stimuli),
allowing us to test cross-categorical learning. By incorporating a
combination of within- and cross-modality stimuli (Experiment
1) and within- and cross-category stimuli (Experiment 2), we
were able to examine to what extent participants naturally
learn statistical–sequential patterns across sensory domains and
perceptual categories.

EXPERIMENT 1: LEARNING ACROSS
SENSORY MODALITIES

Materials and Methods
Participants
Fifteen undergraduate students from a Midwest university
participated (Age Range = 18–23; Mean Age = 18.93;
Females = 9). All were fluent English speakers. All participants

1As pointed out by one of the reviewers of the current manuscript, non-adjacent
dependencies are also contained in the grammar that could possibly be learned
by participants. Each element in the grammar has two within-domain non-
adjacent dependencies and one cross-domain non-adjacent dependency, with each
following with equal probability (0.33 each). For example, A1 can be followed
by A3 (with an intervening A2), V2 (with an intervening V1 or A2), or A2
(with an intervening V1). To what extent these non-adjacent dependencies impact
performance will be discussed in more detail in the Section “Discussion.”

were enrolled in college at the time of their participation.
Participants received credit toward partial fulfillment of an
undergraduate course as compensation for their time. The
study was carried out in accordance with the recommendations
of the Saint Louis University Institutional Review Board. All
participants gave written informed consent in accordance with
the Declaration of Helsinki.

Stimulus Materials
We used an artificial grammar consisting of three visual and three
auditory elements. The visual elements were abstract black and
white shapes used previously in a study by Joseph et al. (2005) and
considered difficult to verbally label. The auditory elements were
three pure tones that were generated using Audacity software,
having frequencies of 210, 286, and 389 Hz, which neither
conform to standard musical notes nor have standard musical
intervals between them (as used in Conway and Christiansen,
2005).

Each sequence was generated by an artificial grammar
with constrained probabilities (similar to those used in
Jamieson and Mewhort, 2005 and Conway et al., 2010; See
Figure 1). The grammar dictates that any given element
can be followed by one element from the same sensory
modality and one element from the other sensory modality.
For example, if V1 is the starting element, it can be
followed by either A2 or V2 with an equal probability
(50/50%). Thus, V1–A2–A3–V3–A1–V1 is an example of
a sequence that could be generated by this grammar; it
contains four cross-modal dependencies (V1–A2; A3–V3;

FIGURE 2 | A possible grammatical sequence used in Experiment 1
(V1–A2–A3–V3–A1–V1).
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V3–A1; A1–V1) and one within-modal dependency (A2–A3; see
Figure 2).

Using the grammar presented in Figure 1, a single “learning”
stream was generated and used for all participants, consisting of
180 stimuli presented in sequence. In addition, three types of
six-item test sequences were constructed: grammatical sequences,
ungrammatical sequences containing within-modal violations,
and ungrammatical sequences containing cross-modal violations.
To create within-modal violation sequences, all within-modal
dependencies were altered so that they violated the grammar,
with the cross-modal dependencies remaining grammatical. For
cross-modal violation sequences, all cross-modal dependences
were altered so that they violated the grammar, with the within-
modal dependencies remaining grammatical. For example, in the
case of a within-modal violation sequence, if the grammatical
sequence was V1–A2–A3, the element A3 would be replaced with
the other auditory element, so that the sequence would become
V1–A2–A1. From that point, the grammar would be renewed and
would continue correctly until another within-modal transition
occurred. We constructed 20 grammatical test sequences, 10
within-modal ungrammatical test sequences, and 10 cross-modal
ungrammatical test sequences. The total number of violations in
the within-modal violation stimulus set (28 violations total or 2.8
violations on average per sequence) and cross-modal violation
stimulus set (25 violations total or 2.5 violations on average per
sequence) were roughly equal and not statistically different from
each other (t = 0.669, p = 0.512). All test sequences are listed in
the Appendix (Table A1).

Procedure
All participants completed a learning phase and a test phase.
In the learning phase, participants were seated in front of
a computer monitor with a pair of headphones. They were
instructed to pay attention to the pictures and sounds that were
displayed. Participants were exposed to the continuous stream
of 180 shapes and tones that was generated using the grammar.
The durations for both the auditory and visual stimuli were
1000 ms each, with an ISI of 1000 ms, giving a total learning phase
duration of 6 min.

In the test phase of the experiment, participants were told
that the input stream they had observed was created according
to certain rules that determined the order that each element
was presented. Participants were then presented with each of
the six-item test sequences and were asked to determine if
each item “followed the rules” (i.e., was grammatical) or “did
not follow the rules” (i.e., was ungrammatical). Participants
responded by pressing one of two buttons to indicate their
choice. Participants were exposed to the novel grammatical,
within-modal ungrammatical, and cross-modal ungrammatical
sequences in random order. Within each test sequence, the
stimulus durations (1000 ms) and ISI (1000 ms) were the same
as used in the learning phase. Participants had as much time
as needed to make their response, after which the next test
trial began. Note that for both the learning and test phases
the auditory and visual tokens were randomly assigned and
mapped to the elements of the grammar. For one participant
A1 might be the 210 Hz tone, but for another participant A1

might be the 286 Hz tone, etc. Thus, even though each participant
received the same learning and test items in terms of their
underlying structural patterns, the actual tokens that mapped
onto these patterns differed for each participant, determined
randomly.

Results and Discussion
Results are shown in Table 1, displaying the percentage of test
items classified correctly for each test item type. Performance
on the within-modal violation sequences was numerically
the highest (M = 64.00%) followed by performance on the
grammatical sequences (M = 60.67%), and lastly the cross-modal
violations (M= 48.67%). To explore the accuracy of participants’
performance on the three item types, a repeated measures
analysis of variance (ANOVA) was conducted, indicating a
significant main effect of sequence type [F(2,28) = 4.893,
p = 0.015, η2

p = 0.259]. A test of simple comparisons with
a Bonferroni correction indicated that there was a statistically
significant difference between performance on the within-modal
violations and the cross-modal violations (p < 0.05). A series
of single sample t-tests was run to test the average performance
on each item type to chance (50%). The analysis indicated
that participants performed significantly above chance on the
grammatical items (t = 4.00, p ≤ 0.05, Cohen’s d = 1.04) and
the within-modal ungrammatical items (t = 4.18, p ≤ 0.001,
d = 1.08), but not on the cross-modal ungrammatical items
(t = –0.31, p ≥ 0.10, d = 0.08).2

The findings from Experiment 1 indicate that participants
were more proficient at detecting within-modal violations –
that is, violations occurring between stimuli in the same
sensory modality – than at detecting cross-modal violations
that occurred between stimuli in different modalities. In fact,
participants were completely unable to successfully detect
violations of cross-modal contingencies. The lack of cross-modal
learning stands in contrast to previous studies of multimodal
statistical learning, which differed from the present study by

2Due to a design error, two within-modal violation test items (#25 and #26)
were found to be problematic. Instead of all within-modal transitions being
ungrammatical, each had one within-modal dependency that was not violated. In
addition, these two items began with a repetition of a single stimulus, which could
add unwanted salience to those items. Thus, all statistical analyses were rerun after
taking out participant responses to these two items. The overall pattern of results
remained similar: participants performed statistically better than chance on the
grammatical items (M = 60.67%, t = 4.00, p = 0.001, d = 1.03) and the within-
modal violation items (M = 60.00%, t = 2.70, p = 0.017, d = 0.70) but not on the
cross-modal violation items (M = 48.67%, t = –0.31, p= 0.764).

TABLE 1 | Mean Performance (percent correct) and standard deviations
for Experiments 1 and 2.

Experiment 1
(Within- vs.

cross-modal)

Experiment 2
(Within- vs. cross-category)

Visual Auditory

Grammatical 60.67 (16.85) 51.88 (17.11) 60.63 (11.81)

Within-modal/category 64.00 (12.98) 65.00 (18.97) 80.63 (15.69)

Cross-modal/category 48.67 (10.33) 51.25 (21.25) 50.63 (19.14)
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their use of simultaneous rather than sequential cross-modal
dependencies.

EXPERIMENT 2: LEARNING ACROSS
PERCEPTUAL CATEGORIES WITHIN A
SINGLE SENSORY MODALITY

The results of Experiment 1 demonstrate that when exposed
to multimodal sequential patterns, within-modal but not cross-
modal violations can be detected. In Experiment 1, the cross-
modal associations were multisensory (i.e., consisting of audio–
visual or visual–audio links). Another way to probe multimodal
learning is to test the ability to learn associations that are within
the same sensory modality (e.g., vision or audition) but that exist
between different perceptual categories (e.g., tones and words or
colors and shapes).

Materials and Methods
Participants
A new group of 32 undergraduate students from the same
Midwestern University participated in the study (Age
Range= 18–22; Mean Age= 19.54, 1 not reported; Females= 20,
2 not reported). All students were fluent speakers of English.
All participants were enrolled in college at the time of their
participation and received credit toward partial fulfillment
of an undergraduate course as compensation for their time.
Participants were randomly assigned to one of two conditions,
auditory or visual. The study was carried out in accordance with
the recommendations of the Saint Louis University Institutional
Review Board. All participants gave written informed consent in
accordance with the Declaration of Helsinki.

Stimulus Materials
For Experiment 2, four types of stimuli were used: the same black
and white shapes and same pure tones as before, as well as three
colored circles (red, green, and blue) and three single-syllable
non-words (“dak,” “pel,” and “vot”). This provided us with four
sets of perceptual categories, two sets (tones, non-words) for the
auditory modality and another two sets (shapes, colors) for the
visual modality.

The learning stream and test sequences were the same as used
in Experiment 1, except that the inputs were altered to reflect the
two new stimulus sets. In the visual condition, A and V elements
of the original grammar were replaced with shapes and colors
(see Figure 3). In the auditory condition, A and V elements
of the grammar were replaced with tones and non-words (see
Figure 4). Mirroring the design of Experiment 1, the new
stimuli formed a set of grammatical sequences, within-categorical
ungrammatical sequences, and cross-categorical ungrammatical
sequences.

Procedure
The procedure was the same as in Experiment 1, except that
participants were assigned to one of two groups (auditory or
visual). Participants assigned to the auditory group received
input sequences composed of the two categories of auditory

FIGURE 3 | An example of a grammatical sequence used in the visual
condition of Experiment 2 (V1–A2–A3–V3–A1–V1). Note that in this case,
“A” no longer refers to an auditory stimulus but to the second category of
visual stimuli (colors).

FIGURE 4 | An example of a grammatical sequence used in the
auditory condition dof Experiment 2 (V1–A2–A3–V3–A1–V1). Note that in
this case, “V” no longer refers to a visual stimulus but to the second category
of auditory stimuli (non-words).
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stimuli (pure tones and non-words), while participants assigned
to the visual condition received sequences composed of the
two categories of visual stimuli (abstract shapes and colored
circles).

Results and Discussion
As in Experiment 1, the accuracy scores are displayed as
percentages (Table 1). To investigate the performance of
the two groups, a repeated measures, mixed factor ANOVA
was conducted with group (visual and auditory) as the
between subjects variable and sequence type (grammatical,
within-category violations, and cross-category violations) as
the within subjects variable. The results of the Mauchly’s
test of sphericity suggested that the sphericity assumption
of a repeated measures ANOVA was violated [Mauchly’s
W = 0.508. p ≤ 0.001]. Therefore, in all subsequent analyses,
the Greenhouse–Geisser test of the multivariate analysis is
reported. The analysis revealed significant main effects of
sequence type [F(1.34,40.20) = 13.56, p ≤ 0.001, η2

p = 0.311]
and group [F(1,30) = 4.794, p ≤ 0.05, η2

p = 0.138]. A test of
simple comparisons with a Bonferroni correction was run to
further explore the main effects. It revealed that participants
across the two groups performed significantly higher on the
within-category violation sequences than either the grammatical
sequences (p ≤ 0.001) or the cross-category violation sequences
(p ≤ 0.01). Across sequence type, participants in the auditory
condition performed better than participants in the visual
condition.

A series of independent samples t-tests were run on
each group of participants comparing performance to
chance for each sequence type. The analysis showed that
participants in the visual group only had better than chance
performance for the within-category items (t = 3.162, p ≤ 0.01,
d = 0.79). However, participants in the auditory group
showed better than chance performance for both the within-
category violation items (t = 7.806, p ≤ 0.001, d = 1.95)
and the grammatical items (t = 3.597, p ≤ 0.01, d = 0.90).
Performance for cross-category items was at chance levels for
both groups.3

The pattern of results mirrors that seen in Experiment 1 but
extends it to the learning of statistical patterns across perceptual
categories within the same sensory modality. Participants
were able to detect statistical–sequential violations within the
same perceptual category but were unable to detect violations

3As in Experiment 1, all analyses were re-run after removing two problematic
test items (#25 and #26) in the within-modal condition. The overall pattern of
results was similar as before: the results of the ANOVA resulted in the same
significant effects: Sequence type [F(2,29) = 13.96, p = 0.000, η2

p = 0.194]
and Group [F(1,30) = 5.322, p = 0.028, η2

p = 0.151]. In the auditory
condition, participants scored significantly better than chance when responding
to grammatical (M = 60.63%, t = 3.60, p = 0.003, d = 0.90) and within-modal
ungrammatical items (M = 79.69%, t = 5.69, p = 0.000, d = 0.89), but not cross-
modal ungrammatical items (M = 50.63%, t = 0.13, p = 0.90, d = 0.03). In the
visual condition, participants did not show scores significantly better than chance
for any of the three sequence types: grammatical (M = 52.81%), within-modal
ungrammatical (M = 59.38%), or cross-modal ungrammatical (M = 51.87%),
although numerically the same overall trend is observed with highest performance
on the within-modal ungrammatical items.

across perceptual categories. Furthermore, a modality effect
was observed, consistent with previous research showing that
audition displays higher levels of learning for sequentially
presented patterns (Conway and Christiansen, 2005; Emberson
et al., 2011).

GENERAL DISCUSSION

The findings from this study suggest that learning statistical–
sequential associations within a perceptual or sensory domain
is easier than learning across domains. In Experiment 1,
participants displayed significantly higher accuracy for
identifying sequential violations that occurred between
elements within the same sensory modality (e.g., tone–tone
or shape–shape) than they did identifying violations at cross-
modal boundaries (e.g., tone–shape). Likewise, participants
in Experiment 2 showed significantly better performance
identifying violations between elements in the same perceptual
category (e.g., tone–tone, word–word, shape–shape, or color–
color) than they did identifying violations at category boundaries
within the same sensory modality (e.g., tone–word or color–
shape). It appears that statistical learning is biased to operate first
within a particular perceptual category, before integrating items
across categories or across modalities.

The test sequences were constructed such that some items
contained within-domain violations of the grammar whereas
other items contained cross-domain violations. These violations
were all adjacent dependencies. However, the grammar also
contains subtle non-adjacent regularities that participants
possibly could have learned. The statistical strength of these non-
adjacent dependencies, however, is relatively weak compared
to the strength of the adjacent-item dependencies, with
transitional probabilities being 0.33 for the former and 0.5
for the latter (that is, the grammar stipulates two adjacent-
item links for each stimulus and three non-adjacent item
links for each stimulus). Because Gómez (2002) demonstrated
that the learning of non-adjacent dependencies occurs only
when the adjacent-item statistics are unreliable, which was
not the case in the present study, it is more likely that
participants’ performance was based primarily on the learning
of adjacent-item dependencies. Regardless, even if some amount
of non-adjacent item statistics were learned, it does not much
change the overall finding of this study, which is that cross-
domain sequential dependencies appear to be difficult to
learn.

These findings furthermore provide evidence that is not
entirely consistent with a purely domain-general view of
statistical learning (Altmann et al., 1995; Manza and Reber,
1997; Kirkham et al., 2002), in which all dependencies would
be expected to be treated the same and learned at comparable
levels. Instead, the present findings are consistent with previous
research suggesting the presence of modality constraints and
perceptual grouping principles affecting statistical learning (Creel
et al., 2004; Conway and Christiansen, 2005, 2006; Gebhart
et al., 2009; Emberson et al., 2011). Although learning across
domains may operate via similar computational principles, it
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has been argued that there may exists a distributed network
of modality-constrained learning mechanisms (Conway and
Christiansen, 2005; Frost et al., 2015). Under this view, learning
associations between stimuli taking on the same sensory and
perceptual characteristics takes precedence over the learning
of associations across perceptual categories and modalities.
Furthermore, previous evidence suggests that each sensory
modality computes statistical associations for its particular input
type only, with patterns learned through one sensory modality
or perceptual category staying representationally bound to that
particular domain (Conway and Christiansen, 2006). However,
likely due to differences in attentional or memory requirements,
cross-modal statistical learning appears to be possible when the
cross-modal contingencies occur together in time, rather than
across a temporal sequence as was the case in the present study
(Seitz et al., 2007; Sell and Kaschak, 2009; Cunillera et al.,
2010; Thiessen, 2010; Mitchel and Weiss, 2011; Mitchel et al.,
2014).

This type of hierarchical arrangement for statistical learning
perhaps is not surprising given what we know about basic
brain organization. In general, hierarchically lower level (i.e.,
upstream) brain areas mediate the processing of specific stimulus
properties (e.g., color, motion, pitch, etc.) whereas at increasingly
hierarchically higher (i.e., downstream) brain areas, more
abstract and multimodal properties are integrated (e.g., speech,
complex visual objects, etc.). Although certainly perception is
not entirely modular, with downstream “multimodal” regions
able to influence upstream areas through feedback connections
(e.g., Driver and Spence, 2000), it is clear that both segregation
(at upstream levels) and integration (at downstream levels)
are foundational aspects of brain organization and processing
(Friston et al., 1995). From a neurobiological standpoint,
it is likely that statistical–sequential learning recapitulates
these general principles of segregation and integration in the
brain.

Although the present study found no evidence for multimodal
integration of cross-modal sequential dependencies, this does
not mean that it cannot occur under different experimental
conditions, for example with a longer learning phase duration
or manipulations to promote attention to the cross-modal
dependencies. In fact, a prominent theory of sequence learning,
based upon neuroimaging and behavioral findings using the
serial reaction time task, posits the existence of two partially
dissociable neurocognitive learning mechanisms: an implicit
unidimensional system that operates over inputs within the
same perceptual modality, and a multidimensional system
that operates over inputs across perceptual modalities or
categories (Keele et al., 2003). Importantly, the latter system
appears to require attentional resources to learn the cross-
modal or cross-categorical associations (see Daltrozzo and
Conway, 2014, for a similar two-system view of statistical
learning). Applying such a dual-system perspective to the
present findings would seem to indicate that only the implicit
unidimensional system was active during this task, not the
multidimensional system, presumably due to a lack of attentional
focus on the cross-domain dependencies. Regardless of whether
one adopts the dual-system view, it appears that even if

multimodal sequential integration is possible, it is not the
initial gateway to learning under standard incidental learning
conditions as used in the present study. Instead, input
modalities during statistical learning appear to be initially percept
specific, and perhaps only become integrated at subsequent
levels of processing when additional cognitive resources are
deployed.

Finally, it could be argued that the manner in which
multisensory statistical learning was tested, with cross-modal
dependencies occurring across a temporal sequence, is not
ecologically realistic of what humans or other complex organisms
typically encounter in the world. To this point, we offer
two considerations. First, in the present study we aimed to
create a learning situation that would probe the limits of
multisensory statistical learning across a temporal sequence. Even
if the patterns presented to participants are not ecologically
realistic, the findings provide insight about possible limitations
constraining cross-domain statistical learning and provide hints
to the underlying architecture of the learning mechanisms
themselves. Second, the issue of ecological validity implies
a certain chain of reasoning: that humans have difficulty
learning cross-domain sequential patterns because they are
not exposed to such patterns in the world. On the other
hand, the direction of causality could in fact go in the
other direction: perhaps the reason why we observe minimal
cross-domain sequential dependencies in our environments is
precisely because of the limitations inherent in our learning
faculties. For instance, it is conceivable that natural language
could have evolved to capitalize on cross-domain sequential
dependencies (e.g., it is logically possible that sentences could
be composed not just of sequences of auditory–vocal units,
but sequences of spoken words interleaved with hand and
arm gestures). The lack of such cross-domain sequential
dependencies in human communication could be due to
the inability of humans to effectively learn such sequential
patterns, consistent with the view that natural language
has evolved to adapt to the processing constraints and
limitations of the human brain (Christiansen and Chater,
2008).

In sum, the results of these two experiments show that when
statistical–sequential input is composed of elements from two
different perceptual categories or sensory modalities, participants
can detect violations that occur between elements within a
single domain, but not violations that occur between domains.
These findings stand in contrast to previous demonstrations of
cross-modal statistical learning and provide new insights about
the difficulties facing learners exposed to complex multisensory
environments.
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