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The generation of musical material in a given style has been the subject of many studies

with the increased sophistication of artificial intelligence models of musical style. In

this paper we address a question of primary importance for artificial intelligence and

music psychology: can such systems generate music that users indeed consider as

corresponding to their own style? We address this question through an experiment

involving both performance and recognition tasks with musically naïve school-age

children. We asked 56 children to perform a free-form improvisation fromwhich two kinds

of music excerpt were created. One was a mere recording of original performances.

The other was created by a software program designed to simulate the participants’

style, based on their original performances. Two hours after the performance task,

the children completed the recognition task in two conditions, one with the original

excerpts and one with machine-generated music. Results indicate that the success rate

is practically equivalent in two conditions: children tended to make correct attribution of

the excerpts to themselves or to others, whether the music was human-produced or

machine-generated (mean accuracy = 0.75 and = 0.71, respectively). We discuss this

equivalence in accuracy for machine-generated and human produced music in the light

of the literature on memory effects and action identity which addresses the recognition

of one’s own production.

Keywords: self-recognition, action identity, style, machine-learning, artificial intelligence, Markov models

INTRODUCTION

Recent progress in artificial intelligence and statistical inference make it possible to generate
artificially musical material in a given musical style. From the viewpoint of artificial intelligence,
a style is essentially a statistical object, characterized by the statistics of occurrence of the various
elements making up a musical production (e.g., notes), as well as the statistics of their inter-
relationships. The increasing sophistication of style-based music generation systems raises novel
questions at the frontier of artificial intelligence and the psychology of music perception. Among
those, an important question is to what extent the human player considers the musical result of this
generation as reproducing his or her own style.

Musical style simulation has been the subject of many studies in artificial intelligence resulting
in a steady stream of software attempting to imitate musical style (see e.g., Thomas et al., 2013).
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Most of these systems are based on Markov models of music:
they exploit statistics concerning the temporal succession of
musical events (e.g., the frequency of event Do followed by the
event Re in a given corpus), and reapply these statistics for
generating new music material (see Section Style Simulation
Software, below). For the experiment described in this paper
we used the MIROR-IMPRO system, itself based on a system
known as Continuator (Pachet, 2003; Addessi and Pachet, 2005).
MIROR-IMPRO recombines the user’s musical input according
to aMarkovian generation scheme, to create newmusical phrases
which are played back to the user.

Do subjects consider as their own style music that has been
machine-generated by recombining their original material so
as to maintain stylistic consistency? Do the machine-generated
excerpts sound like “my music?” We address this research
question by comparing the accuracy of style attribution of
machine-generated musical excerpts with the accuracy of self-
recognition task in human-produced excerpts.

Style attribution accuracy can be measured as the success rate
in identification of musical excerpts as “sounding like my music”
(see Section Experiment on Style Attribution for details).

We focus on free-form improvisations performed by
musically naïve school-age children, because this form of musical
expression does not assume any prior musical knowledge (see
Section Human Performance in Recognition of Action Identity,
below). Here, possible self-attribution takes precedence over
musical genre and sole mastery of the instrument.

The rest of the paper is organized as follows. The first
section covers the state of the art on the recognition of one’s
own actions in musical domain. The second section describes
the main principles underlying the computer software used
in our experiment. The third section presents the experiment
which compares attribution accuracy for human-produced and
machine-generated excerpts. The fourth section discusses which
cognitive mechanisms may underpin self-attribution, provides
some insights for further analysis of this question, and discusses
the role of musical structure in style attribution.

HUMAN PERFORMANCE IN
RECOGNITION OF ACTION IDENTITY

The question of recognizing the products of one’s own action has
been addressed in a systematic manner by Knoblich and Flach
(2003) who introduced the term “action identity” to describe the
recognition of “one’s own way of doing things, one’s action style.”
In accordance with this approach, we define the style through
style-attribution: if I consider actions as my own, I recognize my
“action style.”

How good are humans at differentiating between the products
of their own actions and those of others, in creative domains
such as drawings, handwriting or the musical phrases they
have performed or improvised? What factors may influence the
recognition of one’s action identity (Knoblich and Flach, 2003)?

Action-perception mechanisms of recognition are grounded
in the establishment of the appropriate links between the
actions and their perceptual consequences, as emphasized by

the ecological theory of perception (Gibson, 1979). Recent
approaches such as the common coding theory (Prinz, 2002),
action simulation theories (Jeannerod, 2001; Dokic and Proust,
2002), and the “simulation” theory of cognitive function
(Hesslow, 2002), put forward the argument that the observer’s
action system is most strongly activated during the perception
of self-produced actions. In other words, a closer match between
anticipated actions and perceived effect leads to this self-
recognition capacity. Note that “(internal) action simulation”
refers to an explanatory mechanism postulated to exist in
humans, whereas “style simulation software” refers to particular
software imitating the style of the player (see below).

Most experimental research in this framework has dealt
with adults. For instance, in the study of Flach et al. (2004)
non-trained participants were asked to recognize recordings
of their own clapping patterns among recordings of other
participants’ clapping. This experiment provided a measure of
the individuals’ discrimination capability and their response
bias (see Discussion section for details on these measures). The
participants were able to identify their own production under
two test conditions: original recordings of clapping and altered
recordings (tone sequences reproducing the temporal succession
of the maximum amplitudes of the claps). On the basis of these
findings, the authors argue that the general temporal pattern
plays an important role in self-recognition.

Repp and Knoblich (2004) reported a study in which trained
pianists were asked to record unfamiliar classical pieces and then
to identify their own performances from amongst those of other
players. The experiment measured self and other recognition on
a scale from one to five, and confirmed that the participants
were able to identify their own production both at the main
test 2 months after the recording and during a follow-up test
two more months later. The follow–up test was performed with
altered musical material in two conditions: retaining information
about articulation, timing, and dynamics (intensity or velocity)
of the originally performed melody; and retaining articulation
and timing only. No significant difference was found between the
two follow-up conditions. To summarize, expressive timing and
articulation were sufficient to maintain self-recognition capacity,
while tempo and overall dynamic level did not play an important
role.

These results provide important insights. First, adult players
clearly exhibit the ability to distinguish between their own way
of playing and someone else’s. This is true both for a short
time after the production phase and up to several months later.
Secondly, the literature suggests that the ability to recognize one’s
own production can withstand alterations of musical dimensions
such as intensity, pitch or tempo. By enforcing changes in these
dimensions, the question was to what extent recognition may be
robust to degradations. In the present study we are interested
in exploring stylistic variations which are machine-generated
material explicitly built to enforce stylistic properties. That is, we
relate the simulation of a person’s style to the accuracy of the style
attribution.

To the best of our knowledge, the question of recognition
of the action style has not yet been addressed in children.
Several studies showed that children as young as 6 years old
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are able to successfully classify musical excerpts according
to the genre criteria (Gardner, 1973; Marshall and Shibazaki,
2011). Moreover, it has been shown that children are able to
associate emotional judgments with musical elements such as
change from major to minor (Dalla Bella et al., 2001), and that
they are able to exhibit sophisticated musical discrimination
in areas such as “melodic perception, phrase learning, melodic
reproduction with varying harmonies and timbres, and rhythmic
ability” (Zimmerman, 1971). Based on these findings, school-
age children can be assumed to possess the necessary cognitive
abilities for recognition of action identity.

STYLE SIMULATION SOFTWARE

The notion of musical style has been vigorously addressed
in the community of Artificial Intelligence and Computer
Music. Studies by Cope (1991), Ebcioğlu (1990), or Steedman
(1984) have demonstrated that computers could produce original
musical works that sounded like the works of existing composers,
at least concerning specific dimensions of the music. Though
many methods have been explored to model style, the most
practical and successful ones are based on themodeling of style as
a statistical object (Nierhaus, 2009). Thosemethods lead naturally
to systems that can capture style in real-time from examples
performed by a user, as opposed tomethods involving themanual
coding of a set of rules, such as the three studiesmentioned above.
Thesemethods have gained popularity in the recent years, and are
used in a variety of contexts (see e.g., Thomas et al., 2013).

Statistical methods are mostly based on Markov chains or
variants thereof. Markov chains are statistical models whose
relative simplicity is due to the underlying Markov hypothesis,
which states that the future state of a sequence depends only
on the current state. Markov chains are defined as the set of
probabilities for any event (e.g., note) to succeed to any other.
For instance, a Markov chain captures the probability that a note,
say Do is followed by note Re in the user’s corpus. Many attempts
to use Markov chains to model musical style have been made,
including refinements to the Markov hypothesis, such as variable
contexts lengths for defining transition probabilities. However,
non-local properties of musical style are difficult to model with
Markov-based approaches, because they essentially violate the
Markov hypothesis. New methods for capturing and generating
Markov chains have been introduced to address this problem
(Pachet and Roy, 2011). These methods, based on combinatorial
optimization as opposed to random walks, propose cost efficient
solutions to generate Markov sequences that satisfy various
constraints such as melodies that start or end by specific notes
(Pachet et al., 2011). The MIROR-IMPRO software used in the
experiment reported here is based on these techniques.

From the user’s point of view, the MIROR-IMPRO software
can generate different types of output melodies based on the
user’s musical input. Initially, the user plays / improvises on
a MIDI keyboard connected to the software. The melodies
played constitute a training set, associated to the user and saved.
This training set is later restored to build a corpus of pieces
using the constrained Markov techniques described above. Thus,

the machine-generated output is composed of what the user
might have played, i.e., a constrained recombination of musical
elements previously played by the user. If the user still self-
attributes that machine-generated music, the "style" was then
successfully simulated.

EXPERIMENT ON STYLE ATTRIBUTION

In the experiment described below, we compare the accuracy
of style attribution of machine-generated musical excerpts with
the accuracy of self-recognition in human-produced music. We
expect the attribution accuracy for machine-generated music to
be practically equivalent to the baseline set by the self-recognition
accuracy for human-produced music.

Materials and Methods
Participants
Fifty-six school-age children (25 males and 31 females)
participated in the study. They were all between 7 and 10
years old and came from 3 schools in the UK. None of the
participants had received any intensive musical training before
the experiment. The 56 participants were divided into 14 groups
of four participants. Note that the division in groups was only
for the purpose of constituting the training set (as explained
below) and the participants were not aware of it. This study was
carried out in accordance with the recommendations of Exeter
University ethical guidelines and the Declaration of Helsinki,
with written informed consent from all subjects’ parents.

Materials
In the Human-produced condition, the musical excerpts (also
called melodies) to be recognized by the participant are exact
recordings of what has been played in the training set phase
(which is explained below), including ones the participant has
previously improvised and those improvised by others (and that
the participant has not heard before). The excerpts longer than
10 s are cut, so that the length cannot be used as a recognition
criterion. This condition gives a baseline for the participants’
capacity to recognize their own style.

In theMachine-generated condition, the excerpts are machine
generated pieces, including pieces composed from the material
the participant has played before, as well as pieces composed
from the musical material of other participants in the group.
A specific procedure is used to generate machine composed
excerpts, which are generated as the sequence of 4 chunks of 4
events (i.e., notes or chords) each. The sequence of chunks defines
a high-level musical structure of the piece and is generated as
follows: statement, continuation, continuation, and conclusion.
A “statement” begins with one of the starting notes from the
training set, and produces a phrase ending on a random pitch.
A “continuation” continues from the last note of the previous
chunk, and its terminal note will be the terminal note of one
of the sequences in the training set. A “conclusion” continues
from the previous chunk and will end on the note which was
the first note of the piece (i.e., the first note of the first chunk).
All the intermediary notes in the four chunks will obey the
principles of Markovian generation as described above, with an
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additional constraint of not being starting or ending notes (i.e.,
notes that began or ended any of the input improvisations in the
training set).

Design and Procedure
Training Set Phase
Prior to the test phase, each participant was asked to sit at a table
where a Korg X50 music synthesizer was connected to a laptop
with the MIROR-IMPRO software. Then, each child was asked to
“play as he/she wished,” i.e., to perform free-form improvisation,
with no restriction or guidance concerning the nature of the
phrases to play. There was only one child at a time in the room.
The experimenter would only indicate to the participant to stop
playing when enough melodies were played for the system to
generate the pieces. This number was defined in a prior pilot
experiment and was about 100 musical events (notes or chords)
per participant. This musical material was recorded in groups of
4 children (who were unaware of the division in groups), and
filtered to meet a minimum length of 4 events (notes or chords)
for each melody played. In the test phase described below, the
participants in a given group were exposed only to their own
material or to the material from their group mates, either in the
form of exact recordings, or in the form of machine-generated
pieces based on the training set of this particular group. This
recording procedure was repeated for 14 groups.

Test phase
The test phase took place 2 h later on the same day and the
same material set-up was used. During the intervening time, the
children pursued normal school activities with no relation to
musical subjects. The experiment used a within-subjects design,
with all the participants being exposed to the two conditions. The
within-subjects variable was the nature of the musical excerpt to
be recognized, i.e., Human-produced (an extract from original
performance) orMachine-generated. The dependent variable was
the accuracy of the recognition.

The participants were presented with 16 excerpts: eight
excerpts in Human-produced condition, randomized between
self-related and other-related excerpts, and then eight excerpts
inMachine-generated condition randomized between self-related
and other-related excerpts, both conditions being within the
same block with no delay between them.

They had to answer yes or no to the question “Does this sound
like your music?.” No indications were given prior to listening
and no feedback was provided to the participants as to the nature
of the musical excerpt they had listened to; the experimenter
was unaware of the correct answers at the time of the test. The
answer was recorded as one if correct and zero if incorrect.
The correct answer in Human-produced condition is when the
excerpt that the participant had played prior to the test was
correctly identified as “mine,” or if another player’s excerpt was
correctly rejected as “not mine.” The correct answer inMachine-
produced condition is when the excerpt that was generated from
the participant’s training set was correctly identified as “mine,” or
when the excerpt based on other’s material was correctly rejected
as “not mine.” In both conditions, the chance level accuracy is

0.5, that is the half of excerpts are self-related and the other half
of the excerpts are other-related.

The procedure was then repeated for each of the four
participants in the group, and then for 13 more groups. The
experimental data obtained was paired and stratified by group.
The total number of observations was N = (8 + 8) × 4 ×

14= 896.

Statistical Treatment and Data
Statistical Methods
We use a combined statistical approach, performing both
the classical “Null Hypothesis Significance Test” (NHST) and
“Equivalence Hypothesis Testing” (EHT). The latter approach
comes from bioequivalence studies and aims to evaluate whether
the test condition is acceptably equivalent to the reference
condition. From the practical point of view, the EHT can be
conducted either as the two one-sided tests procedure (TOST)
or as the confidence interval (CI) analysis.

In TOST procedures, the null hypothesis is that the mean
responses of the two conditions are different, and the alternative
hypothesis is that the mean responses are equivalent within some
small range delta defined by the experimenter. The p-value is then
associated with the probability of Type I error, that is, to conclude
that the treatments are equivalent when in fact they are not. The
two treatments are declared equivalent within the range delta
when the null hypothesis is rejected. In CI procedures, the basic
approach is to compute a statistical confidence interval around
the sample mean differences and to determine if it lies within
the equivalence region previously defined. As both methods have
been shown to be equivalent (Chow and Liu, 1992; Tango, 1998),
we report the equivalence confidence intervals only.

The main practical issue with the EHT approach is to choose
an adequate delta value, which is usually done on the basis of
common standards and previous knowledge of the domain of
interest. In domains other than bioequivalence (including but
not limited to the software engineering), different delta levels
have been explored (Dolado et al., 2013), including different
percentages (ranging from 10 to 50%) of the standard deviation
of the differences. In our case, we use the standard delta equal to
20% of the lowest value of the mean of the reference variable (that
is 20% of the success rate in the Human-produced condition, for
the original dataset obtained in the experiment and called a1).
Transposed onto the scale of accuracy (or success rate) in the
recognition task the delta is then equal to 0.15.

As the data obtained does not fully satisfy the criteria of
normality, we have chosen to use non-parametric methods for
the analysis, and in particular Hodges-Lehmann estimate based
on rank procedures for CI.

Data Homogeneity
Before proceeding to the statistical treatment, it is of interest to
determine whether there is a relationship between the condition
and the accuracy, adjusted for groups. No heterogeneity of
stratum specific odds ratio (OR) was found (Woolf test X-
squared = 11.89, df = 13, p = 0.54). A Mantel–Haenszel exact
procedure was then performed to provide a pooled OR of 0.77
[0.57–1.05], p = 0.09. That is, there is no significant evidence
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rejecting the null hypothesis of homogeneity. Overall, the data do
not suggest an association between condition and accuracy when
adjusted for group. It is then acceptable to test the overall pattern
of difference between Human-produced and Machine-generated
conditions on the pooled data.

RESULTS

General Results
The original data set a1 (see Figure 1) suggests that there is no
significant difference between the accuracy of self-recognition
for the melodies played by participants and the accuracy of
style attribution for the machine-generated pieces (M = 0.75,
M = 0.71, respectively, against the chance level of 0.5). The
EHT results on the a1 dataset show that the equivalence within
the specified equivalence bound of 0.15 can be claimed. These
findings are reflected in Figure 2.

Participants were able to distinguish pieces based on their own
material as successfully as they did for recorded melodies, even
when this recognition was not obvious. Figure 3 gives an example
of such a successful attribution of one’s own style (illustrated by
two melodies played by the participant), while correctly rejecting
pieces based on other user’s material.

FIGURE 1 | Mean Accuracy for a1 dataset. M = 0.75 and M = 0.71.

FIGURE 2 | Ninety percent CI for Mean(Machine-generated) –

Mean(Human-produced): (−1,25e–1; 2,96e–5). CI is within the equivalence

interval of (−0.15; 0.15).

Results Refined to Measure the “True”
Accuracy
In the experiment described above, the very purpose of the
discrimination task leads to a juxtaposition of the user’s material
and the material from other participants. The effects of this
juxtaposition are discussed below.

In our experimental situation, unintended stylistic similarity
between participants in the group can create a specific explicable
type of attribution errors present in both Human-produced
andMachine-generated experimental conditions. A false positive
response can occur if another participant in the group has played
with a style similar to the tested participant. The former case
(Human-produced), illustrated in Figure 4, makes it impossible
to distinguish “my” melody from the “other’s” melody. The
latter case (Machine-generated), illustrated in Figure 5, makes it
impossible to distinguish “my” machine-generated piece from
the “other’s” piece.

Revealing these false positive responses and adjusting for them
can give a measure of the “true” accuracy: it might happen that
revealing these errors causes the “true” accuracy for machine-
generated pieces to be lower than the “true” accuracy for human-
produced melodies. If this were the case, our previous conclusion
that individual musical style had been successfully preserved
might be erroneous. It is therefore important to answer the
following question: Is there an influence of these specific errors
on the difference between accuracy for melodies and for pieces?

To address this issue, we performed a qualitative analysis of
the data by listening to all the cases where a discrimination
error was present. As for these “explainable” attribution errors,
there were 11 occurrences spread among nine participants for
the Human-produced condition, and eight occurrences spread
among eight participants for the Machine-generated condition.
The data set a2 was obtained from the data set a1 by dropping
the corresponding observations.

The adjusted data set a2 (see Figure 6) suggests that
dropping the “explainable” attribution errors does not change
the conclusion about the style attribution accuracy. Indeed,
the mean accuracy for Human-produced and Machine-generated
conditions was of 0.77 and 0.72, respectively. The EHT results
show that the equivalence within the specified equivalence bound
of 0.15 can be claimed. These findings are reflected in Figure 7.

Overall, the experiment allows us to conclude that the
participants were able to recognize their own style among
human-produced and machine-generated excerpts, and that the
accuracy of style attribution for machine-generated excerpts
is practically equivalent to the accuracy of self-recognition in
human-produced excerpts.

DISCUSSION ON HUMAN PERFORMANCE
IN RECOGNITION OF ACTION IDENTITY

In this experiment, we observed that musically naïve school-
age children identify machine-generated music as sounding
like “their own” music if it was generated from their own
previous production. This result indicates that the MIROR-
IMPRO software used in this experiment was able to simulate the
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FIGURE 3 | Participant’s input (left) and a successful attribution of one’s own style in the machine-generated piece (top right), as well as a correct

rejection of a machine-generated piece based on other user’s musical material (bottom right). See in Supplementary Material, Audio 1 for Subject’s melody

1, Audio 3 for Subject’s melody 2, Audio 2 for Subject’s piece, Audio 4 for Other’s piece.

FIGURE 4 | False positive response in Human-produced condition, due to the stylistic similarity between two participants. Participant’s input during

training phase (left) and other user’s melody erroneously rated by the participant as “my style” (right). See in Supplementary Material, Audio 5 for Subject’s melody,

Audio 6 for Other’s melody.

participant’s style. What are the factors that influence the style
attribution of machine-generated excerpts? More specifically, we
discuss the role ofmemory and the impact of high-level structural
musical aspects on style attribution, and we propose avenues of
further research.

Episodic Memory
It could be argued that episodic memory might have played
a dominant role in the style attribution capacity. However,
there are at least two arguments which suggest that factors
other than pure memory are in action here. The first argument
concerns action representations in general. As the studies already
cited (Flach et al., 2004; Repp and Knoblich, 2004) show, it is
difficult to make a clear-cut distinction between memory effects
and the recognition of the self-generated musical productions.
This is due to the fact that both episodic memory and action
representations are acquired by experience. It is likely however
that knowledge of one’s own production is not episodic but
generative in nature: this knowledge does not presuppose a

conscious recollection of the episode but an internal simulation
of the action and its perceptual consequences. Moreover, in
domains other than musical perception, there is some evidence
of a close link between ownership and memory advantage. For
example, Cunningham et al. (2008) show that in the visual
field even transient self-ownership of items improves their
memorability. Therefore, in this framework the question is not
whether self-attribution rests on the memory processing, but if
the memory processing at stake during self-attribution is of a
different nature.

The second argument concerns our particular experiment.
A child’s recognition of machine composed pieces as “being
in my style” cannot be explained by memory effects only: the
participants neither heard the pieces before the test phase, nor
were they aware of their machine-composed nature. In other
words, a conscious recollection of the episode of the action is,
strictly speaking, not at stake in our case.

Therefore, style attribution cannot be accounted for by
episodic memory effects only, and the recognition of self-related
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FIGURE 5 | False positive response in Machine-generated condition, due to the stylistic similarity between two participants. Participant’s input during

training phase (top left), input of another user from the same group during training phase (bottom left), and a machine-generated piece erroneously rated by the

participant as “my style” (right). See in Supplementary Material, Audio 7 for Subject’s melody, Audio 8 for Other’s melody, Audio 9 for Other’s piece.

FIGURE 6 | Mean Accuracy for a2 dataset (explainable errors dropped).

M = 0.77 and M = 0.72.

FIGURE 7 | Ninety percent CI for Mean(Machine-generated) –

Mean(Human-produced): (−1,25e–1; 3,45e–5). CI is within the equivalence

interval of (−0.15; 0.15).

items is different from episodic memory of “neutral” events.
It can be concluded that participants “remembered” not the
excerpts themselves but the way they played, i.e., their own
style, and correctly attributed them when the machine-generated
pieces kept indeed elements of this individual style.

Influence of High-Level Musical Structure
on Style Attribution
As has been highlighted in the sub-section Materials, the
machine-generated pieces obey a high-level musical structure

FIGURE 8 | Mean Discriminability for a2 dataset.

which is not present in the melodies performed by participants.
The questionmay be raised, what is the influence of this structure
on style attribution? It is possible to set the scene for answering
this question with the data obtained in the experiment.

To this aim, the data has been analyzed in terms of Signal
Detection Theory by first calculating mean hit (or true positive)
rates and mean false alarm (or false positive) rates, and then
by calculating mean discriminability and mean response bias.
This approach allows to separate two distinct factors: (a) a
perceptual discrimination component and (b) a response bias,
i.e., a tendency to answer no to all trials. We use the non-
parametric measures A’ for discriminability and B”d for response
bias (Donaldson, 1992).

The findings on the a2 dataset show that there is no significant
difference in discriminability between Human-produced and
Machine-generated conditions, as illustrated in Figure 8. The
response bias is significantly more conservative for pieces: the
participants have a tendency to respond no to the question “Does
it sound like your music?” in theMachine-generated condition, as
illustrated in Figure 9.

It must be noted that this holds true for the two cases
of datasets, a1 (original dataset) and a2 (explainable errors
dropped). The discriminability is revealed to be not significantly
different for Human-produced and Machine-generated
conditions, while the response bias is significantly higher
in the Machine-generated condition. Table 1 gives details for
different datasets.
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FIGURE 9 | Mean Response Bias for a2 dataset.

TABLE 1 | Comparing Discriminability and Response Bias.

p-values for

Discriminability,

Human-produced vs.

Machine-generated

p-values for

Response Bias,

Human-produced vs.

Machine-generated

a1 0.22 0.002

a2 0.30 0.001

p-values for Wilcoxon exact signed ranks test with Pratt zeros handling; a1 corresponds

to the initial dataset, a2 corresponds to the dataset with explainable errors dropped.

This difference in response bias cannot be attributed to
the specific sequence in which the experiment was conducted.
Indeed, it could be hypothesized that the response bias
might be higher at the end of the test phase (that is, in
Machine-generated condition), due to the children’s diminishing
concentration for example. However, an additional analysis
conducted separately on the first half and on the second half of
Machine-generated condition, shows that there is no significant
difference in the response bias. The mean response bias is of
0.5 and 0.3 for the first and second half respectively, but the
difference is not statistically significant with a Wilcoxon test
(p= 0.12).

While standard deviation of response bias is high, inter-
individual differences do not seem to give a plausible explanation
of this difference in response bias. There is a weak positive
correlation (Spearman’s rho = 0.31, p = 0.02) between the
discriminability in Human-produced and Machine-generated
conditions (a2 dataset), which could suggest that participants
who are good at recognizing their own melodies are good at
recognizing pieces as well. However, no significant correlation
was found for the response bias (Spearman’s rho = 0.23, p =

0.09), suggesting that the response bias is not due to inter-
individual differences.

Our finding on significant response bias is different from
Flach et al. (2004) discussed in the section Human Performance
in Recognition of Action Identity: in this study, no significant
response bias was found, either for the original recordings of
clapping or for altered recordings.

The difference between response bias in Human-produced
and Machine-generated conditions could be interpreted in the
following way. When these pieces were presented to the
participants, to some extent they sounded new to them: while
being composed on the basis of participant’s action style,
these pieces both (a) conformed to a software determined
musical structure not present in the original training sets
(as described in the sub-section Materials) and (b) had not
been heard before by the participant. This could lead to
a conservative response bias in answering to the question
“Does it sound like your music?” in the Machine-generated
condition.

This interpretation is partially supported by studies on
music recognition as a function of mere exposure, which
compare familiar and unfamiliar musical excerpts. At least to
some extent, a parallel could be drawn between the melodies
played and heard by the participant and the familiar excerpts
on the one hand; and between machine-composed pieces
and unfamiliar excerpts on the other hand. For example,
Peretz et al. (1998) have reported that, in a recognition task,
the response bias is significantly higher for new/unfamiliar
melodies as compared to old/familiar ones (i.e., tendency
to answer new). However, the authors also found evidence
that the discriminability was better for old/familiar melodies
than for new/unfamiliar ones, which is not the case in
our study. This may mark a limit to a straight-forward
comparison between classical studies on recognition memory
and the recognition of one’s own production and one’s own
style.

Dissociation studies are needed to elucidate the interactions
between different types of memory effects, style recognition,
and high-level musical structure, for instance, by controlling the
structure of machine generated pieces as independent variable.

CONCLUSION

In this study, we evaluated to what extent musically naïve school-
age children were able to correctly attribute human-generated
and machine-generated musical excerpts. The results show that
the style attribution is well-above the chance level, and that the
accuracy for machine-generated excerpts is practically equivalent
to the accuracy for human-generated excerpts.

Moreover, these findings lead us to claim that the musical
style of participants was well-simulated by the software and
that the tested system, seen as an exemplar of many style
simulation systems based on similar technologies, can be used
in many situations where style recognition is crucial. This
is the case for performance situations involving machine-
learning software, which are increasingly prevalent in computer
music.

Further studies that involve manipulating the Markovian
constraints are needed to determine exactly which cues are used
for self-recognition. However, the findings of this research may
already have interesting applications, as an aid to composition
or educational tools. Indeed, these tools confront the user with
his or her own style replicated by computational processes, in
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such a way as to introduce new, stylistically consistent elements
and to potentially enhance the perimeter of the user’s future
actions.
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