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Cognitive determinants of probabilistic inference were examined using hierarchical

Bayesian modeling techniques. A classic urn-ball paradigm served as experimental

strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five

computational models of cognitive processes were compared with the observed

behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate

neglect provided inadequate models of probabilistic inference. The introduction of

distorted subjective probabilities yielded more robust and generalizable results. A general

class of (inverted) S-shaped probability weighting functions had been proposed; however,

the possibility of large differences in probability distortions not only across experimental

conditions, but also across individuals, seems critical for the model’s success. It also

seems advantageous to consider individual differences in parameters of probability

weighting as being sampled from weakly informative prior distributions of individual

parameter values. Thus, the results from hierarchical Bayesian modeling converge with

previous results in revealing that probability weighting parameters show considerable

task dependency and individual differences. Methodologically, this work exemplifies

the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology.

Theoretically, human probabilistic inference might be best described as the application

of individualized strategic policies for Bayesian belief revision.

Keywords: hierarchical Bayesian modeling, probabilistic inference, Bayesian inference, probability weighting,

prospect theory

INTRODUCTION

Knight (1921) distinguished between risky worlds, referring to situations where perfect knowledge
about probabilities is present and uncertain worlds, referring to situations where probabilities
remain unknown. Savage (1954) made a similar distinction when he introduced the term small
worlds for situations where all alternatives and their probabilities are known. In contrast, relevant
information is unknown and/ormust be estimated in large worlds (see also Johnson and Busemeyer,
2010; Volz and Gigerenzer, 2012).
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Small worlds provide opportunities for analysing Bayesian
inference. In Bayesian decision theory (Jaynes, 2003; MacKay,
2003; Robert, 2007), degrees of belief in states of the world
are specified. Bayesian inference updates prior beliefs using
new evidence to derive posterior beliefs. Figure 1A shows small
worlds, vested as an urn-ball task (Phillips and Edwards, 1966),
consisting of two binary random variables, one representing
unobservable states of the world (i.e., urns, H ∈ {H1,H2}),
the other representing observable events (i.e., balls, e ∈ {0, 1}).
Participants were asked for inferences about the current hidden
state of that world, given small samples of events which could
have been generated from either state (Figure 1B). To introduce
experimental variance, we manipulated the task’s probabilistic
contingencies at two levels. First, we introduced uncertainty
about the sort of urn containing balls (by sampling urns from
two probability distributions). Second, we manipulated the
proportion of ball colors within each urn. We will refer to these
probabilistic contingencies as prior probabilities and likelihoods,
respectively.

Thus, participants are informed about the world’s stochastic
structure, and they have access to evidence generated from
one of these states. Participants represent knowledge-based and
evidence-based degrees of belief in world states as probabilities.
Specifically, participants hold informed prior beliefs [i.e., P(H1),
P(H2) = 1 − P(H1)] and likelihoods [i.e., P(E|H1), P(E|H2)],
i.e., conditional probabilities for some evidence, given each of
the states. According to Bayes’ theorem, prior probabilities are
combined with likelihoods to provide posterior probabilities
(Gold and Shadlen, 2007).

A long history of studies demonstrates that human judgment
deviates from Bayesian decision theory (Kahneman et al.,
1982). Initially, Edwards coined the term “conservatism”
to describe probabilistic inference in which persons over-
weigh prior beliefs (base rates) and under-weigh new sample
evidence when compared to Bayesian decision theory (Edwards,
1982). Shanteau’s work (1972, 1975) was centered around
delineating conditions for the cognitive (sub-)additivity of new
sample evidence. Later research identified the base rate neglect
(Kahneman and Tversky, 1973; Bar-Hillel, 1980), i.e., a cognitive
bias which indicates that the posterior probability of hypothesis
H, given evidence e, is assessed without taking into account the
prior probability (base rate) of H. Base rate neglect represents
a particularly pertinent class of deviations in probabilistic
judgment from Bayesian decision theory (Koehler, 1996).

Prospect Theory (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992) successfully describes economic decision
behavior. Its probabilistic part proposed subjective probabilities
used in decision-making to be non-linear functions of objective
probabilities, with their relationships being best described by S-
shaped probability weighting functions, leading to a tendency
to overestimate low probabilities and to underestimate high
probabilities (see Figure 2). One of our reviewers brought our
attention to the fact that the notion of weighting probabilities
was around 15 years prior to the introduction of Prospect
Theory (Edwards, 1954), and that Edwards’ early discussion of
probability weighting is in the context of probabilistic inference
rather than risky choice, which is the focus of Prospect Theory.

FIGURE 1 | (A) Participants were graphically informed about the four

probability conditions of the urn-ball task [certain priors (P = 0.9, P = 0.1),

uncertain priors (P = 0.7, P = 0.3), certain likelihoods (P = 0.9, P = 0.1),

uncertain likelihoods (P = 0.7, P = 0.3)]. (B) Each of the four probability

conditions (here, the uncertain priors and uncertain likelihoods condition

serves as an example) comprised 50 consecutive episodes of sampling that

consisted of the invisible drawing of one urn, the visible drawing of a sample of

four balls from that urn (sequential drawing with replacement). Participants

indicated which urn they considered more likely, given the number of blue balls

drawn (zero to four), and based on the condition (prior probability and

likelihood function).

Such S-shaped probability distortions are ubiquitous in research
on probabilistic inference (Gonzalez and Wu, 1999; Luce, 2000;
Zhang and Maloney, 2012; Cavagnaro et al., 2013). Stott (2006)
provides a review of various probability weighting functions
and a summary of parameter values reported in the literature
for each of the weighting functions. We refer the interested
reader to this publication for descriptions of multiple weighting
functions. Earlier research on probability weighting functions
revealed considerable inter- and intra-individual variance of
probability weighting parameters (Tversky and Kahneman, 1992;
Gonzalez and Wu, 1999; Stott, 2006; Wu et al., 2009), but no
former study addressed the question whether Bayesian inference
in a risky/small world involves probability weighting through
Bayesian modeling approaches.

The present study aimed at contributing to the literature
by applying Bayesian statistics (Jaynes, 2003; MacKay,
2003; Robert, 2007) to model Bayesian inference. Bayesian
methods have become increasingly accepted for data analysis
in cognitive science (Edwards et al., 1963; Wagenmakers, 2007;
Gallistel, 2009; Kruschke, 2010; Lee, 2011; Hoijtink, 2012).
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FIGURE 2 | Examples of probability weighting functions as proposed by Zhang and Maloney (2012). (A) γ = 1.8 and p0 = 0.67 (solid) against the

unweighted probabilities (dotted). (B) γ = 0.4 and p0 = 0.31 (solid) against the unweighted probabilities (dotted).

Specifically, hierarchical Bayesian modeling provides flexible
and interpretable ways of analysing formal models of cognitive
processes (Lee, 2011). Hierarchical Bayesian models are models
in which parameters are sampled from distributions determined
by other parameters (so-called hyper-parameters; Shiffrin et al.,
2008). By making the individual parameters dependent on their
group mean, a trade-off between fitting the group as a whole and
fitting each individual separately is introduced (Shiffrin et al.,
2008), allowing for improved predictive robustness of the model
(Gelman et al., 2014a). Here, we applied hierarchical Bayesian
modeling to Bayesian inference in order to examine whether
human subjects (a) follow normative Bayesian specifications, and
(b) are influenced by non-normative tendencies, such as base
rate neglect or (inverse) S-shaped probability weighting. Notice
that this is the first study that applied hierarchical Bayesian
modeling to Bayesian inference in a risky/small world.

MATERIALS AND METHODS

Participants
Sixteen psychology students (I = 16) participated for course
credit (15 female, 1 male). Age ranged from 19 to 50 years (M =

24.7; SD= 9.3). All participants indicated having normal or
corrected-to-normal sight. The study was reviewed and approved
by the Ethics Committee of TU Braunschweig (Department of
Life Sciences). Informed consent was obtained from all subjects.

Inference Task
The inference task is a modification of tasks used in Phillips and
Edwards (1966) and Grether (1980, 1992; see also Stern et al.,
2010; Achtziger et al., 2014). Factorial combination of two levels
of prior probabilities and two levels of the likelihoods yielded
four experimental conditions which were administered to each
participant. Their order was counterbalanced across participants
under the following restriction: Prior probability was the slowly
varying factor (one level of prior probabilities was repeated across

two successive blocks of trials), whereas the likelihoods changed
from block to block, yielding four different orders.

At the beginning of each condition, two types of urns (labeled
H1 and H2 here, respectively) were presented on a computer
screen. In uncertain likelihood conditions (Lu), urn type H1

contained seven blue (e = 1) and three red (e = 0) balls [i.e.,
P(e = 1|H1) = 0.7, P(e = 0|H1) = 0.3], while urn type H2

contained three blue and seven red balls [i.e., P(e = 1|H2) = 0.3,
P(e = 0|H2) = 0.7]. In certain likelihood conditions (Lc),
urn type H1 contained nine blue balls and one red ball [i.e.,
P (e = 1 | H1) = 0.9, P (e = 0 | H1) = 0.1], while urn type H2

contained one blue ball and nine red balls [i.e., P(e = 1|H2) =

0.1, P(e = 0|H1) = 0.9]. Prior probabilities were manipulated
by presenting 10 urns, composed of different numbers of type
H1 and type H2 urns. In uncertain prior probability conditions
(Pu), three type H1 and seven type H2 urns [i.e., P(H1) = 0.3,
P(H2) = 0.7] were present. In the certain prior probability
condition (Pc), one type H1 urn and nine type H2 urns [i.e.,
P(H1) = 0.1, P(H2) = 0.9] were present. In the absence of
a previous study that examined human probabilistic inference
via hierarchical Bayesian modeling (see below), these quite un-
balanced prior probabilities and likelihoods were chosen to
minimize a potential role of pure “guessing.” It should be noted
that the results may have been biased by the selection of these
parameters. Colors were counterbalanced across participants, but
we will ignore this in our description to avoid confusion.

Each experimental trial (Figure 1B) consisted of the following
sequence of events: First, one urn was selected randomly, with the
outcome of this selection remaining unknown to the participant.
Subsequently, a random sample of four balls (K = 4) was drawn
sequentially with replacement from that urn, shown one by one.
Ignoring the order of drawn balls, this procedure generated
five distinct possible situations (i.e., zero to four blue balls) in
each condition. Ball stimuli were presented in the center of a
computer screen (Eizo FlexScan T766 19′′; Hakusan, Ishikawa,
Japan) against gray background (size = one degree, duration =

100ms, stimulus onset asynchrony = 2500ms). Trial duration
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amounted to around 10 s. Participants were asked to indicate the
color of each stimulus by pressing the left or right Ctrl key on
a standard computer keyboard. Participants indicated which urn
they consideredmore likely, given the number of blue balls drawn
(zero to four), and based on the condition (prior probability and
likelihood function; Data Sheet 1 in Supplementary Material).
They indicated their inference by pressing the left or right
Ctrl key for urn type H1 and urn type H2, respectively.
Feedback was not provided in order to avoid confounding of
probabilistic inference proper and evaluative processes, pending
two-factor models of decision-making such as, for example,
Prospect Theory (Kahneman and Tversky, 1979), although
Grether and Plott (1979) have demonstrated that incentives may
have little influence over performance in probabilistic inference
tasks. Stimulus-response mapping was counterbalanced across
participants. Neither feedback nor reward was provided during
the experiment.

Each participant completed four practice trials under
supervision of the experimenter, each with one urn type H1

and one urn type H2 exemplar, to become accustomed to the
task. Successful completion of the practice trials demonstrated
that participants understood the procedure and their task. There
were N = 50 trials per condition, with short breaks between
the conditions. We chose 50 trials per condition because the
study was also designed to measure event-related potentials
(Seer et al., 2016; Kopp et al., under review), and event-related
potentials require large numbers of trials for averaging. Given
five possible outcomes per condition, participants responded to
each possible outcome an average of 10 times per condition.
Thus, it should be mentioned that the responding had a quite
repetitive character, and that participants may have at times
simply recalled their responses from earlier trials in later trials.
The experiment was run using Presentation R© (Neurobehavioral
Systems, Albany, CA).

Bayesian Inference
Binary inferences were requested (Figure 1). Given prior
probabilities P (H1) = 1 − P(H2) for two hypothetical states H1

andH2, and a set of binary data E = {e1, . . . , eK} with K ∈ N, we
can compute the posterior probabilities as

P (H1 | E) =
P (H1) · P (E | H1)

P (E)
, (1)

and

P (H2 | E) =
P (H2) · P (E | H2)

P (E)
, (2)

where P (H1|E) = 1 − P(H2|E). Formulating these posterior
probabilities in log-odds form (Jaynes, 2003), using the notation
Lo(P(H1|E)) for the posterior log-odds favoring H1 we obtain,

Lo(P(H1|E)) = ln
P (H1) · P (E | H1)

P (H2) · P (E | H2)
. (3)

For each single binary datum ek, with k ∈ [1, . . . ,K], we obtain,

Lo(P(H1|E)) = ln
P(H1)

P(H2)
+

K
∑

k = 1

ln
P (ek | H1)

P (ek | H2)
. (4)

Hence, the Bayesian updating in log-odds form for a binary
hypothesis equals adding the logarithm of the likelihood
ratio ln P(ek|H1)/P(ek|H2) to the logarithm of the prior odds
ln P(H1)/P(H2) . We can therefore represent the accumulation of
evidence by adding a new likelihood ratio for each new datum ek.

Probability Weighting
Zhang and Maloney (2012) proposed a linear probability
weighting function in the log-odds space, capable of modeling
probability weighting as in Prospect Theory (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992). We chose this
probability weighting function for its compatibility with the
idea of Bayesian updating (see Section Bayesian Inference with
Weighted Probabilities). Zhang and Maloney (2012) used the
formula

π = logistic
(

γ · Lo
(

p
)

+ (1− γ ) · Lo
(

p0
))

, (5)

with p being a probability and the two weighting-parameters γ ∈

[0,∞) and p0 ∈ [0, 1] , logistic (x) = 1
1 + e−x being the logistic

function, π being the corresponding weighted probability, and
Lo

(

p
)

given by

Lo
(

p
)

= ln
p

1− p
. (6)

Note that, logistic
(

Lo
(

p
))

= p.
The unknown parameters are the slope of the weighting

function γ and the point p0, where the weighted probability
equals the unweighted probability,

Lo
(

π

(

p0
))

= Lo
(

p0
)

. (7)

The slope parameter γ determines the shape of the weighting
function. If γ = 1, the probabilities remain untransformed.
If γ < 1, the weighting function has an inverse-S shape or a
concave shape if p0 approaches one. If γ > 1, the weighting
function shows an S-shape or a convex shape if p0 approaches
one (Figure 2). Using a comparable log-odds approach, Zhang
and Maloney (2012) successfully modeled choice and confidence
data from a range of studies.

Bayesian Inference with Weighted
Probabilities
Since Zhang and Maloney (2012) provide a linear weighting
function in log-odds space, we can easily represent Bayesian
inference with transformed log-odds. Applying Equation (5) to
the log-odds evidence Lo(P(H1|E)) as defined in Equation (3) we
obtain

Lo(π(H1|E)) = γ · ln
P (H1)

P (H2)
+γ · ln

P (E | H1)

P (E | H2)

+ (1−γ ) · Lo
(

p0
)

. (8)

Therefore, we can also represent the weighted accumulation of
evidence as the addition of

γ · ln
P (E | H1)

P (E | H2)
=

K
∑

k = 1

γ · ln
P (ek | H1)

P (ek | H2)
, (9)

Frontiers in Psychology | www.frontiersin.org 4 May 2016 | Volume 7 | Article 755

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Boos et al. Modeling Bayesian Inference

for each single datum ek.

Models
Unweighted Bayesian Posterior Probabilities
The simplest model incorporating Bayesian inference relies on
unweighted posterior probabilities. This model is Bayes optimal,
no other classifier of the urn state can do better on average. We
use the posterior to predict the inference ofH1, on any trial, using
the sampling statement

yn ∼ bern
(

P(H1| E)
)

. (10)

Here, yn represents the n-th inference (yn ∈ {0, 1} with n ∈

{1, ..,N}). A value of zero denotes the inference of the urn
with higher prior probability and a value of one the inference
of the urn with lower prior probability. P(H1|E) is the n-th
posterior probability for H1, given a sample of evidence E, as
defined in Equation (1). bern

(

P(H1|E)
)

denotes the Bernoulli
distribution: yn takes on value one with probability P (H1 | E),
and yn equals zero with probability 1 − P(H1|E). There are five
different possibilities to draw combinations of blue and red balls
(disregarding sequential order); therefore there are five different
values of P(H1|E) and Lo(P(H1|E)) (Equation 3) per experimental
condition which are shown in Table 1.

Base Rate Neglect
Base rate neglect leads to the assumption that π (P (H1)) =

π (P (H2)) = 0.5, irrespective of the veridical prior probabilities
P (H1) and P(H2). The model of Bayesian inference thus reduces
to the likelihood of the data, i.e., to

yn ∼ bern (P (E | H1)) . (11)

Weighted Bayesian Posterior Probabilities
In the following, we describe three models of weighted Bayesian
posterior probabilities (Equation 8).

TABLE 1 | Posterior probability for the rare urn P(H1|E) and Lo(P(H1|E)) for

different conditions and different ball samples drawn.

Number of blue balls drawn Condition

PcLc PuLc PcLu PuLu

P(H1|E)

Zero out of four 0.00002 0.00007 0.00373 0.01425

One out of four 0.00137 0.01526 0.02 0.07297

Two out of four 0.1 0.3 0.1 0.3

Three out of four 0.9 0.972 0.37692 0.7

Four out of four 0.99863 0.99964 0.76709 0.92703

Lo(P(H1|E))

Zero out of four −10.99 −9.64 −5.59 −4.24

One out of four −6.59 −5.24 −3.89 −2.54

Two out of four −2.2 −0.85 −2.2 −0.85

Three out of four 2.2 3.55 −0.5 0.85

Four out of four 6.59 7.94 1.19 2.54

Model without individual differences
This probability weighting model assumes the absence of inter-
individual differences with regard to the weighting parameters
γ and p0. The parameters γ und p0 were provided with
weakly informative prior distributions—i.e., prior distributions
restricting the posterior distribution very little—to ensure
computational tractability (Gelman et al., 2014a).

The sampling statement for γ ∼ N (1, 1) [0,∞), with N
being the normal distribution truncated at zero. Figure 3A

depicts the corresponding probability density. The prior
distribution of γ is a normal distribution centered on 1, to
represent the weak prior assumption of no probability weighting
taking place. We chose a flat prior p0 ∼ beta(1, 1), where beta is
the beta function. Figure 3B shows the corresponding probability
density.

Thus, all urn inferences are generated by the underlying
Bernoulli distribution

yn ∼ bern
(

logistic
(

γ · Lo
(

p
)

+ (1− γ ) · Lo
(

p0
)))

, (12)

with p = P(H1|E), given a particular set of evidence E, yn ∈ {0, 1}
with n ∈ [1, . . . ,N], γ ∈ [0,∞) and p0 ∈ [0, 1]. bern

(

pb
)

denotes the Bernoulli distribution: yn takes on value one—
denoting an inference of the urn with lower prior probability—
with probability pb, and yn equals zero—an inference of the urn
with higher prior probability—with probability 1− pb.

Figure 4 depicts the graphical model without individual
differences. Nodes represent variables and arrows represent
conditional probabilities. Discrete variables are given square
nodes, continuous variables circular nodes and observed
variables are shaded, while unobserved are not. Variables fully
determined by their parents are given double borders, while
stochastic variables are given single borders. Plate notation is
used to ensure sparse representation, by grouping repeating
variables in a subgraph enclosed by a rectangle, and indicating
the number of repetitions. The plate corresponds to the N trials.
An arrow between a variable outside of a plate to a variable
inside indicates the dependence of each repeated variable on their
parent outside the plate. The variables in the graphical model are
defined using the subscript n to indicate definitions specific to the
variables in each trial.

Model with unrestricted individual differences
This model considers inter-individual variability in parameters
γi and p0i. The sampling statements of the prior distributions
of each individual’s parameters γi and p0i are given by γi ∼

N (1, 1) [0,∞) and p0i ∼ beta(1, 1).
The assumed data-generating process equals

yni ∼ bern
(

logistic
(

γi · Lo
(

p
)

+ (1− γi) · Lo
(

p0i
)))

, (13)

with p = P(H1|E), given the corresponding set of evidence E,
yni ∈ {0, 1}, γi ∈ [0,∞) , and p0i ∈ [0, 1] for each individual i
and datum n. bern

(

pb
)

denotes the Bernoulli distribution.
Figure 5 shows the graphical model for the unrestricted inter-

individual differences. The outer plate corresponds to the I = 16
individuals and the inner plate to the N = 50 trials. The variables
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A B

FIGURE 3 | (A) Gaussian prior distribution for parameter γ ∼ N (1, 1) for the interval [0,∞) . (B) Logit-normal prior distribution for parameter p0 ∼ beta(1,1).

FIGURE 4 | The graph of the Bayesian network without inter-individual differences, with the urn inference yn, the posterior probability p, and the

parameters p0 and γ .

in the graphical model are defined using the subscript i or n to
indicate definitions for variables specific to each individual and
trial, respectively.

Model with hierarchical individual differences
In this modeling attempt, we assume that the latent γ and p0
parameters for individual participants are generated by more
abstract latent parameters (hyper-parameters) describing group
distributions across individuals. This model considers individual
differences by specifying distributions of parameters γ and
p0, out of which individual γi and p0i have to be sampled.
For the parameter γ , these distributions were assumed to be
normal distributions, characterized by mean µγ and standard
deviation σγ , with weakly informative prior distributions. The
beta distribution of parameter p0 was specified by two hyper-
parameters, one being a mean parameter ϕ = α/(α + β) and
one being a total count parameter λ = α+β , instead of the usual
α and β , following Gelman et al. (2014b).

The sampling statement for the parameter γi for each
individual i was γi ∼ N

(

µγ , σγ

)

[0,∞) with hyper-priors
µγ ∼ N(1, 1) and σγ ∼ Uniform (0,∞) . The sampling

statement for the parameter p0i for each individual i was p0i ∼

beta(ϕλ, (1− ϕ) λ) with ϕ ∼ beta(1, 1) and λ having a pareto
prior, p(λ) ∝ λ−2.5. The hierarchical model and the model with
unrestricted individual differences share the same sampling state
for the data (Equation 14), they differ only in the dependence
(for the hierarchical model) or independence (for the model with
unrestricted differences) of the γi and p0i parameters. Figure 6
displays the graphical model for the hierarchical individual
differences.

Model Evaluation and Selection
The quality of the out-of-sample prediction of the models was
evaluated by comparing their (a) widely applicable information
criterion (WAIC; Watanabe, 2010) and (b) log-likelihood in a
leave-one out cross-validation. For both measures, the log point-
wise predictive density (lppd) was computed as,

lppd =

N
∑

n = 1

ln(
1

S
·

S
∑

s = 1

P
(

yn
∣

∣ θ s
)

) (14)

Gelman et al. (2014b). This quantity measures the likelihood
P

(

yn
∣

∣ θ s
)

of the datum yn, using s = 1, . . . , S sampling
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FIGURE 5 | The graph of the Bayesian network with unrestricted inter-individual differences, with the urn inference yn, the posterior probability p, and

the individual parameters p0i and γi .

FIGURE 6 | The graph of the hierarchical Bayesian network, with the urn inference yn, the posterior probability p, the individual parameters p0i and γi ,

and the hyper-parameters µγ , σγ and ϕ, λ.

results from the posterior distribution of all model parameters,
labeled θ s.

The Widely Applicable Information Criterion (WAIC)
The WAIC uses the log point-wise predictive density
and subtracts a correction term, corresponding to the
effective number of parameters (Gelman et al., 2014b), here
given by

N
∑

n = 1

VS
s = 1(ln P(yn| θ

s)), (15)

with the likelihood P
(

yn
∣

∣ θ s
)

of the datum yn, using s = 1, . . . , S
sampling results from the posterior distribution of all model
parameters, labeled θ s, and the variance of the posterior,

VS
s = 1(as) =

1

S− 1
·

S
∑

s = 1

(as − a)2. (16)

Note that as is represented by lnP(yn|θ
s) in (17).

Subtracting (15) from (14) gives

N
∑

n = 1

ln(
1

S
·

S
∑

s = 1

p
(

yn
∣

∣ θ s
)

) −

N
∑

n = 1

VS
s = 1(ln p

(

yn
∣

∣ θ s)), (17)
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which is the formula for calculating the WAIC (Gelman et al.,
2014b). Multiplying the result from Equation (17) with −2 gives
us a measure on the scale of other deviance and information
measures like deviation information criterion (DIC; Spiegelhalter
et al., 2002) and an information criterion (AIC; Akaike, 1973).

Bayesian Leave-One-Out Cross-Validation
In Bayesian leave-one-out cross-validation (Vehtari and
Lampinen, 2002), each data point is predicted using the
estimates of the posterior distributions obtained by fitting the
model to all remaining data points. We fit the model with 15
individuals to predict the urn inferences of the 16-th person,
since we are interested in predicting the urn inferences of
additional individuals, rather than additional urn inferences
of each individual. By doing this for every individual, we can
calculate the sum of the individual log point-wise predictive
densities. To make the interpretation of this score similar
to other deviance measures, where smaller values denote a
better fit, we use −2 · lppd. The model assuming unrestricted
individual differences makes no prediction about the individual
parameters γ and p0 for additional individuals. It is therefore
impossible to cross-validate this model, and this model fails a
basic test of generalizability because it does not make sensible
predictions for the behavior of additional individuals. For
the model without individual differences, using the posterior
distributions of parameters γ and p0 is straightforward to
compute the log posterior predictive density given in Equation
(14). For the model with hierarchical individual differences, the
unknown individual parameters γ and p0 were assumed to be
sampled out of the hierarchical distributions characterized by
the hyper-parameters µγ , σγ , ϕ, and λ.

The data were analyzed in Python 2.7.9 (Oliphant, 2007), and
the models were fitted using the Stan Hamiltonian-Monte-Carlo
sampler that provides approximate inference of the posterior
distributions of the unknown parameters (Stan Development
Team, 2013; Hoffman and Gelman, 2014). Each model in each
condition was sampled with 10 chains and 20,000 iterations, with
random initialization of the parameters and a warmup phase of
10,000 iterations (Data Sheet 2 in Supplementary Material).

RESULTS

Data Description
In Figure 7, the proportions of H1-urn inferences are plotted
separately for each condition (PcLc, PuLc, PcLu, PuLu) as a
function of the log-odds posterior probabilities, Lo(P (H1 | E)).
Points represent the proportion from one participant; small
random noise (±0.25) was added to the points to spread them
out on the x-axis. Diamond symbols indicate mean proportions
of inferences of H1 across participants, red dots indicate
the proportion corresponding to the unweighted posterior
probabilities. There is a considerable difference between the
ideal proportion, indicated by the cross symbol, and the actual
proportions of urn inferences of the participants, especially in the
PcLu condition, and there is also considerable variation between
the individual proportions. Not represented are the different

numbers of urn inferences which constituted the individual
proportions.

Parameter Estimation
Unweighted Bayesian Probabilities and Base Rate

Neglect
Predictions of the unweighted Bayesian model depend solely
on posterior probabilities, P(H1|E), whereas predictions of the
base rate neglect model depend solely on the likelihood of the
data, P(E|H1). The predictions of these two models therefore
do not depend on additional parameters. Further information
about the quality of these predictions is given below underModel
Evaluation and Selection.

Weighted Bayesian Posterior Probabilities
For the model without individual differences, sampling from
the model described in Equation (12), yields the posterior
distributions for parameters γ and p0 for each condition. The
means of these posterior distributions were used as the estimates
for the parameters in the weighting function described in
Equation (5). The resulting functions vary across conditions,
because the means of the posterior distributions for parameters γ

and p0 differ between conditions. Figure 8 displays the resulting
probability weighting functions.

The estimated weighted probability functions differ between
conditions, indicating different regions of over- or under-
representation of probabilities, with the exception of condition
PcLu, where, according to the mean of the posterior distribution
of the model, very little probability weighting takes place.
Descriptive statistics of the fitted model without inter-individual
differences are attached (see Appendix A in Supplementary
Material).

For the model with unrestricted individual differences,
sampling from the model described in Equation (13), yields
the posterior distributions of the parameters specific for each
individual in each condition. In each condition, the means of
the posterior distributions of the individual parameters γ and
p0 were used as the estimates of the parameters of the individual
weighting functions described in Equation (5). Figure 9 shows
the probability weighting functions for each individual and
condition.

There is considerable variation in the shape of the probability
weighting functions between individuals in one condition, and
between conditions in general. Descriptive statistics of the fitted
model with unrestricted inter-individual differences are attached
(see Appendix B in Supplementary Material).

For the model with hierarchical individual differences, the
posterior distributions of each individual parameter γ and p0,
and their hyper-parameters ϕ, λ, µγ , and σγ for each condition
were approximated by sampling. The means of the posterior
distributions of µγ and σγ , for each condition, were used to plot
the expected hierarchical normal distribution of the individual
parameters γ ∼ N(µγ , σγ ) in Figure 10. The posterior
distribution of the γ parameter varies considerably between
conditions. For conditions with a certain likelihood the posterior
is centered around one, and is quite narrow. This is in contrast to
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FIGURE 7 | Explorative data analysis for the individual proportions of H1-inferences per participant and sequence of drawn balls. Each point represents

the proportion of an individual per sequence, diamond shapes indicate the mean proportion of H1-inferences per sequence, and red dots indicate the appropriate

proportion of H1-inferences, given the posterior probability P(H1|E). Overlapping proportions are “jittered” by adding small random noise on the x-axis.

the conditions with an uncertain likelihood, where the posterior
is centered around higher values of γ and more spread out.

The means of the posterior distributions of ϕ and λ, for
each condition, were used to plot the expected hierarchical
beta distribution of the individual parameters p0 ∼ beta
(ϕλ, (1− ϕ) λ) (Figure 11). We can distinguish two patterns in
Figure 11: The posterior mode is (slightly) more extreme for
certain than for uncertain prior conditions, and the posterior
mode is closer to zero in conditions with an uncertain likelihood
and closer to one in conditions with a certain likelihood.

For the individual parameters γ and p0 for each individual and
condition, the means of the posterior distributions were used as
the parameters of the weighting function described in Equation
(5), and the resulting functions were plotted in Figure 12.

There is still variation in the shape of the probability
weighting functions between conditions, but the variation
between individuals in one condition is reduced in contrast
to Figure 9 for conditions with a more certain likelihood.
Interestingly, in conditions with a more uncertain likelihood the
variation between participants is either similar (PcLu) or larger

(PuLu). Descriptive statistics of the fitted model with hierarchical
inter-individual differences are attached (see Appendix C in
Supplementary Material).

Model Evaluation and Selection
Model Comparison Using the WAIC
Table 2 displays the WAICs for different models for each
condition (PcLc, PuLc, PcLu, PuLu). Smaller values indicate a
better out-of-sample prediction than larger values. A comparison
between models reveals superior performance of weighted
Bayesian models compared to unweighted models. In the
latter category, both models have similar WAIC values on
uncertain prior conditions Pu, while the base rate neglect model
performs better on the PcLc condition, and the unweighted
Bayesian model outperforms the base rate neglect model on
the PcLu condition. Among the weighted Bayesian models,
those models with unrestricted individual differences and
hierarchical individual differences perform better than the model
without individual differences on all conditions. However, the
hierarchical model outperforms the model with unrestricted

Frontiers in Psychology | www.frontiersin.org 9 May 2016 | Volume 7 | Article 755

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Boos et al. Modeling Bayesian Inference

FIGURE 8 | Probability weighting functions using the posterior means

for γ and p0.

FIGURE 9 | Individual probability weighting functions using the

posterior mean for γ and p0 with unrestricted inter-individual

differences for the different conditions (PcLc, PuLc, PcLu, and PuLu).

Each plot represents one condition, and each line represents the best estimate

obtained for the weighted probability function for one individual in that

condition.

inter-individual differences on PcLu and PuLu conditions, while
both models perform similarly on the remaining conditions. In
sum, the unweighted models yield larger WAIC values than the
weighted models, with the hierarchical model providing the best
overall performance.

Model Comparison Using Cross-Validation
The results of the cross-validation, averaged over the 16
participants, are given in Table 3 for each condition (PcLc,
PuLc, PcLu, PuLu). Further, cross-validation was not applicable

FIGURE 10 | Hierarchical distributions for parameter γ in different

conditions (PcLc, PuLc, PcLu and PuLu). The hierarchical distributions for

γ ∼ N(µγ , σγ ) use the posterior means of the hyper-parameters µγ and σγ .

to the model with unrestricted individual differences. The
weighted Bayesian models predict new data better than the
unweighted models. However, in the PuLu condition, the model
without inter-individual differences yields the worst average
prediction of all models, while the model with hierarchical inter-
individual differences still yields the best prediction. Among
the weighted Bayesian models, the model with hierarchical
individual differences outperforms the model without differences
on conditions PuLc, PcLu, and PuLu, with especially large
differences in the quality of prediction in uncertain likelihood
conditions (Lu), and similar performance of both models in the
PcLc condition.

Effects of Prior and Likelihood
Manipulations
Since we observe differences in the probability weighting
functions between conditions, we can test for the effect of the
experimental prior and likelihood manipulations on the model
parameters parameter γ and p0. We use the parameters of the
model with full inter-individual differences, and estimate a linear
mixed-effects model, with a random intercept per participant,
categorical variables representing the manipulation of prior and
likelihood and the interaction between these manipulations (see
Appendix D in Supplementary Material for a more detailed
description and the full model statistics). We estimate such a
model separately for γ and p0 and find a significant effect for the
uncertain likelihood conditions in γ (β = 0.35, SE = 0.17, z =
2.01, p = 0.036). Uncertain likelihood conditions increase the
γ coefficient and change the probability weighting function to
an S-shape (or a convex shape if p0 is close to one). For the
p0 parameter, we find a significant effect also only for uncertain
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FIGURE 11 | Hierarchical distributions for parameter p0 in different

conditions (PcLc, PuLc, PcLu and PuLu). The hierarchical distributions

p0 ∼ beta(ϕλ, (1− ϕ) λ) use the posterior means of the hyper-parameters ϕ

and λ for the different conditions.

likelihood conditions (β = −0.15, SE = 0.05, z = −3.00, p =

0.003). In uncertain likelihood conditions the cutting point of the
probability weighting function is lower than in certain likelihood
conditions. Of course, this effect can also be seen in the posterior
of the hierarchical model.

DISCUSSION

In this article, we explored various possibilities for modeling
cognitive processes for probabilistic inference. To that end,
probabilistic inference was observed in a small world (Savage,
1954), vested as a classic urn-ball paradigm (Phillips and
Edwards, 1966; Grether, 1980, 1992; Stern et al., 2010; Achtziger
et al., 2014) involving a factorial two (prior probabilities) by
two (likelihoods) design. Probabilistic inference was modeled as
originating from different variants of Bayesian inference. Five
computational models of cognitive processes for probabilistic
inference were compared by Bayesian model evaluation (Vehtari
and Lampinen, 2002; Shiffrin et al., 2008).We found considerable
task dependency such that more certain likelihoods were
associated with mean group probability weighting parameters
that satisfy γ < 0.6 (cf. Tables A.1, A.2), whereas less
certain likelihoods were associated with mean group probability
weighting parameters that satisfy γ < 0.9 (cf. Table A.3) or γ

> 1 (cf. Table A.4). We are not aware of a psychological theory
that could predict this strong task dependency of probability
weighting.

The least complex models (i.e., parameter-free Bayesian
posterior probabilities, parameter-free base rate neglect) provide
inadequate models of probabilistic inference in terms of the

FIGURE 12 | Individual probability weighting functions using the

posterior mean for γ and p0 in the hierarchical model for the different

conditions (PcLc, PuLc, PcLu and PuLu). Each plot represents one

condition, and each line represents the best estimate obtained for the

weighted probability function for one individual in that condition.

robustness of the fit between models and data as well as in
terms of their generalizability. The introduction of probability
weighting functions (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992; Prelec, 1998; Gonzalez and Wu, 1999;
Luce, 2000; Zhang and Maloney, 2012; Cavagnaro et al., 2013)
yielded more robust and generalizable fits between models and
data than the two parameter-free models. Probability weighting
models share the assumption that subjective probabilities deviate
from true probabilities due to (inverted) S-shaped distortions of
probabilities.

The least complex of these models conceptualized different
slope, γ , and crossover point, p0, parameters for probability
distortion across conditions, but not across individuals (model
without individual differences). This model includes eight free
parameters (four conditions by two free parameters, i.e., four γ

and four p0 parameters).
There were two variants of individual difference models which

envisaged different slope and crossover point parameters for
probability distortion across conditions and individuals. The
unrestricted individual differences model considered individual
differences, by specifying individual γi and p0i parameters, which
are fully determined by the data. This model includes four
(conditions) by 32 free parameters (16 individual γi parameters
and 16 individual p0i parameters, for a total of 128 free
parameters).

In contrast, the hierarchical individual differences model
assumed individual parameters themselves to be generated by
more abstract latent parameters (hyper-parameters) describing
group distributions across individuals. This model thus
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TABLE 2 | WAIC deviance measures and standard errors for experimental

conditions and models.

Model Condition

PcLc PuLc PcLu PuLu

Unweighted Bayesian

WAIC 157.90 207.70 257.38 293.58

SE 60.30 64.34 37.09 37.77

Base rate neglect

WAIC 123.28 203.73 356.66 294.37

SE 32.33 54.62 36.00 28.67

WEIGHTED BAYESIAN MODELS

No differences

WAIC 93.90 139.93 228.48 263.24

SE 15.50 23.37 24.52 46.66

Unrestricted differences

WAIC 71.59 118.03 162.20 187.89

SE 13.60 18.01 17.04 22.34

Hierarchical differences

WAIC 73.08 121.60 152.77 163.08

SE 13.19 18.17 16.37 22.86

considered individual differences by specifying distributions of
parameters γ and p0, out of which individual γi and p0i had to
be sampled. This model includes four (conditions) by 32 free
parameters (16 individual γi parameters and 16 individual p0i
parameters), plus sixteen hyper-parameters (four conditions
by four hyper-parameters, µγ , σγ , µp0 , σp0 , for a total of 144
parameters). Since the effective number of parameters in a
hierarchical model depends on the variance of the group level
parameters (Gelman et al., 2014b), the actual number of free
parameters is <144. We show that the hierarchical individual
differences model outperformed the unrestricted individual
differences model, which in turn outperformed the model
without individual differences. This is the result of a process of
model building, in which each increase in model complexity is
justified by an increase in the model’s fit and predictive power.
To conclude, the assumption of large differences in probability
distortions across tasks and individuals (i.e., in the values
of the slope and crossover point parameters) seem critical for
understanding Bayesian inference (see also Glöckner and Pachur,
2012; Zhang and Maloney, 2012). Further, it seems advantageous
to consider individual differences as being sampled from weakly
informative prior distributions of individual parameter values.

The hierarchical model of weighted Bayesian posterior
probabilities is thus the preferable model of probabilistic
inference, despite the non-negligible association between model
performance and model complexity. However, parameter counts
and estimations of model complexity should not be considered
as equivalents. While the hierarchical model is more complex in
terms of the number of parameters, it also restricts the individual
parameters more than the model with unrestricted differences.
Further, parameters, which are fully determined by the data

TABLE 3 | Log posterior predictive density of leave-one-out

cross-validation and standard errors for experimental conditions and

models.

Model Condition

PcLc PuLc PcLu PuLu

Unweighted Bayesian

LOO-CV 157.92 207.68 257.44 293.60

SE 60.30 64.34 37.09 37.77

Base rate neglect

LOO-CV 123.2 203.68 356.64 294.4

SE 32.33 54.61 36.00 28.66

WEIGHTED BAYESIAN MODELS

No differences

LOO-CV 89.28 133.12 215.36 248.64

SE 16.89 23.58 15.66 30.57

Unrestricted differences n.a. n.a. n.a. n.a.

Hierarchical differences

LOO-CV 95.36 126.08 200.32 182.4

SE 22.74 20.66 27.02 15.18

(or by parts of the data, as in the unrestricted model), have a
higher chance to overfit in comparison to those parameters that
are imposed by some theoretical structure (e.g., the similarity
of inter-individual differences, as in the hierarchical model).
Similarly, to further prevent overfitting, the hierarchical model
could be extended to explicitly model the different experimental
conditions through an additional set of hyper-parameters. More
concretely, an implementation in the framework of hierarchical
Bayesian models would model the influence of subject, as well
as experimental manipulation on the parameters of a probability
weighting function. Further potential confounds, like task-order,
and sequential effects in probability weighting might also be
included. A final expansion of the hierarchical model could be its
formulation as a Bayesian hierarchical mixture model (Bartlema
et al., 2014), allowing groups of participants to have discrete, in
addition to continuous, inter-individual differences.

Hierarchical Bayesian modeling offers specific advantages.
Since knowledge about parameters propagates in hierarchical
Bayesian models, the flow of probabilistic influence (Koller and
Friedman, 2009) allows individual parameters to influence each
other with regard to the certainty of their estimation. This renders
the sharing of statistical strength (Gelman et al., 2014a) possible,
with consequential improvements in predictive accuracy under
high levels of uncertainty. This ubiquitous characteristic of
hierarchical Bayesian modeling can also be recognized in our
study, where the hierarchical model of weighted Bayesian
posterior probabilities proved especially superior on those
conditions that involved particularly high uncertainty about
individual parameter values (i.e., the Lu conditions).

Our results are highly dependent on task conditions and
individuals. However, the results from hierarchical Bayesian
modeling converge with previous results in revealing that
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probability weighting parameters show considerable task
dependency and individual differences (Tversky and Kahneman,
1992; Gonzalez and Wu, 1999; Stott, 2006; Wu et al., 2009).
We have to admit that our work does not offer an a-priori
explanation nor a post-hoc speculation as to why this should
be the case. The hierarchical model is hence not a theory of
cognitive processes for probabilistic inference, despite its hereby
documented success in providing a reasonably good estimate of
the observed data. Such a theory would encompass an answer
to the question why subjective probabilities may deviate from
the true probabilities in the ways that they apparently do, and
specify the factors that affect this probability distortion. A full
explanation of the phenomena just described would require not
only that we account for the S-shaped form of the probability
distortion, but also for the large differences in the values of
the slope and crossover point parameters across tasks and
individuals. Although such a theory still needs to be developed,
we introduced hierarchical Bayesian modeling as a valuable
method for developing a model, for testing it against data, for
checking if there is systematic error in the predictions of the
model, for increasing the complexity of the model as long as
there are intolerable amounts of error, and for checking whether
the more complex model provides a superior explanation for
the observed data. Furthermore, hierarchical Bayesian modeling
of cognitive processes for probabilistic inference may serve an
instrumental role in neuroscientific studies of Bayesian inference
(Kolossa et al., 2013, 2015).

CONCLUSION

Our findings also bear on the question whether inductive
inference (Anderson, 2015) can be described as being Bayesian
or not (Gigerenzer and Murray, 1987; Koehler and Harvey,
2004). According to Clark (2013), the answer to this question
is empirically underdetermined; thus, new methods for tackling
the problem need to be developed and evaluated. Historically,
two almost certainly irreconcilable intellectual camps evolved,
although serious attempts exist to bridge the conflictive positions

in the form of dual process models (Evans, 2008; Evans and
Stanovich, 2013). The Bayesian camp claimed that there is
sufficient evidence for postulating that Bayes’ theorem can serve
as a descriptive theory of human inductive inference (Chater
et al., 2010; Tenenbaum et al., 2011; Griffiths et al., 2012).
However, the non-Bayesian camp insisted that the evidence
showed that humans critically deviate from prescriptive Bayesian
solutions (e.g., base rate neglect; Kahneman and Tversky, 1973;
Bar-Hillel, 1980). In fact, some researchers believe that humans
should be better described as homo heuristicus rather than as
rational probabilists (Kahneman et al., 1982; Gigerenzer and
Brighton, 2009). Our data offer another possibility: Humans
might be able to integrate information for inductive inference
according to Bayesian prescriptions (cf. Equations 1–4), yet
in terms of distorted probabilities (cf. Equations 5–9), as
originally conjectured by Edwards (1954) and by Prospect
Theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992).
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