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This study compared several parameter estimation methods for multi-unidimensional

graded response models using their corresponding statistical software programs

and packages. Specifically, we compared two marginal maximum likelihood (MML)

approaches (Bock-Aitkin expectation-maximum algorithm, adaptive quadrature

approach), four fully Bayesian algorithms (Gibbs sampling, Metropolis-Hastings,

Hastings-within-Gibbs, blocked Metropolis), and the Metropolis-Hastings

Robbins-Monro (MHRM) algorithm via the use of IRTPRO, BMIRT, and MATLAB.

Simulation results suggested that, when the intertrait correlation was low, these

estimation methods provided similar results. However, if the dimensions were moderately

or highly correlated, Hastings-within-Gibbs had an overall better parameter recovery

of item discrimination and intertrait correlation parameters. The performances of these

estimation methods with different sample sizes and test lengths are also discussed.

Keywords: item response theory, multi-unidimensional model, Markov chain Monte Carlo, MML, fully Bayesian,

graded response model, IRTPRO, BMIRT

1. INTRODUCTION

Polytomous item response theory (IRT; Lord, 1980) models are applicable for tests with items
involving more than two response categories. Polytomous responses include nominal and ordinal
responses. The former does not have any natural ordering between categories whereas the latter
corresponds to a number of ordering categories. Ordinal polytomous responses, such as Likert
scale items (Likert, 1932), are broadly used in many fields, including education, psychology, and
marketing. Given this, many IRTmodels have been developed to analyze ordinal polytomous items,
such as the graded response model (GRM; Samejima, 1969), the rating scale model (RSM; Andrich,
1978), and the partial credit model (PCM; Masters, 1982), to name a few. This study focuses on
the GRM, the most widely used IRT model for polytomous response data (e.g., Rubio et al., 2007;
Ferero and Maydeu-Olivares, 2009). The unidimensional GRM is defined as

P(Yij = c|θi, δj) = P(Yij ≥ c− 1|θi, δj)− P(Yij ≥ c|θi, δj)

= F(αjθi − δj,c−1)− F(αjθi − δj,c)

=

∫ δj,c

δj,c−1

f (z;αjθi)dz, (1)

i = 1, . . . ,N, j = 1, . . . ,K, c = 1, 2, . . . ,Cj, where F and f denote the logistic or normal CDF
and PDF for logistic or normal ogive GRM, θi denotes the person trait parameter, αj denotes the
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item discrimination parameter, and δj,c denotes the item
threshold parameter for the cth category response of item j
(Samejima, 1969), the latter of which satisfies

−∞ = δj,0 < δj,1 < . . . < δj,Cj−1 < δj,Cj = ∞. (2)

In many circumstances, it suffices to assume that all the test items
measure one trait in common and hence use unidimensional
IRT models. However, in some situations when multiple traits
are being measured or the test dimensionality structure is
not clear, multidimensional IRT (MIRT; Reckase, 1997, 2009)
models have to be considered. MIRT models are adopted
when distinct multiple traits are involved in producing the
manifest responses for an item. A special case of the MIRT
model applies to the situation where the instrument consists
of several subscales with each measuring one latent trait, such
as the Minnesota Multiphasic Personality Inventory (MMPI;
Buchanan, 1994). In the IRT literature, such a model is called
the multi-unidimensional (Sheng and Wikle, 2007) or the simple
structure MIRT (McDonald, 1999) model and is the major focus
of the study.

The multi-unidimensional GRM applies to situations where
a K-item instrument consists ofm subscales or dimensions, each
containing kv polytomous response items that measure one latent
dimension. The model is defined as:

P(Yvij = c|θvi, αvj, δj) = F(αvjθvi − δj,c−1)− F(αvjθvi − δj,c)

=

∫ δj,c

δj,c−1

f (z;αvjθvi)dz, (3)

i = 1, . . . ,N, j = 1, . . . ,K, c = 1, 2, . . . ,Cj, where F and f
denote the logistic or normal CDF and PDF for logistic or normal
ogive GRM, αvj and θvi denote the item discrimination and the
person’s latent trait in the vth dimension, and δj,c denotes the
item threshold parameter for the cth category response of item
j (Samejima, 1969), the latter of which satisfies

−∞ = δj,0 < δj,1 < . . . < δj,Cj−1 < δj,Cj = ∞. (4)

For decades, IRT models can be estimated using (1) the
marginal maximum likelihood (MML) estimation based on the
expectation maximization (EM) algorithm and (2) the fully
Bayesian estimation via the use of the Markov chainMonte Carlo
(MCMC) simulation techniques. More recently, Cai (2010a,b)
developed a Metropolis-Hastings Robbins-Monro (MHRM)
algorithm, which combines the blocked Metropolis algorithm
(Patz and Junker, 1999b) with Robins–Monro (Robbins and
Monro, 1951) to facilitate the maximum likelihood estimation.
In the literature, studies have been conducted to compare the
performances of these methods in estimating unidimensional
dichotomous (e.g., Baker, 1998), unidimensional polytomous
(e.g., Cowels, 1996) and multidimensional dichotomous (e.g.,
Han and Paek, 2014) models. However, little has been done
to investigate them in estimating multidimensional polytomous
models.

In view of the above, this study focuses on comparing
different estimation methods of the multi-unidimensional GRM.

Specifically, the following estimation methods are compared:
Bock and Aitkin’s two-step MML approach (BAEM; Bock
and Aitkin, 1981) and adaptive quadrature estimation (ADQ;
Schilling and Bock, 2005) in MML, Gibbs sampling (Geman
and Geman, 1984), Metropolis-Hastings (MH; Hastings, 1970;
Metropolis and Ulam, 1949), Hastings-with-Gibbs (HwG;
Cowels, 1996), and blocked Metropolis algorithm (BM; Patz and
Junker, 1999a,b) in fully Bayesian estimation, and the MHRM
algorithm. Each of these methods is briefly described in Section 2.

Several computer programs have been developed for
estimating parameters in the multi-unidimensional GRM. For
example, BAEM and MHRM are implemented in IRTPRO
(Cai et al., 2011), and MH is implemented in BMIRT (Yao,
2003). This study then uses these software packages for
the corresponding estimation method. The performance in
parameter recovery of each method is evaluated and compared
using Monte Carlo simulations. The results of this study can
provide researchers/practitioners with a set of guidelines on
the use of MML, fully Bayesian, and their hybrid, MHRM in
estimating multi-unidimensional GRMs under different sample
size, test length, and intertrait correlation conditions.

2. ESTIMATION METHODS

This study focuses on three general categories of estimation
methods of multi-unidimensional GRMs: (1) MML, (2) fully
Bayesian estimation, and (3) MHRM. A brief description of the
major techniques in each category is provided below.

2.1. Marginal Maximum Likelihood (MML)
The two-step MML was developed by Bock and Aitkin (1981).
After obtaining the joint probability (likelihood) of the item
response vector given the person parameters, MML treats
persons as random effects and derives a marginal probability of
observing the item response vector by integrating the person
effect out of the joint likelihood in order to separate item
parameters from person parameters. Hence, in MML, item
parameters are estimated using the expectation-maximum (EM)
algorithm, and person parameters can be subsequently obtained
using the estimated item parameters.

Bock and Aitkin’s original algorithm uses a fixed Gauss-
Hermite quadrature, which is limited for models with a lower
dimension (Baker and Kim, 2004). However, as the number of
dimension increases, the number of quadrature points increases
exponentially and must be accommodated for by decreasing the
number of quadrature in each dimension. To overcome this
problem, Schilling and Bock (2005) suggested the use of an
adaptive quadrature for better accuracy when a smaller number
of quadratures per dimension is used. This method can be
used for models with a moderate number of dimensions. These
two MML methods for multi-unidimensional GRMs are directly
implemented in IRTPRO (Cai et al., 2011).

2.2. Fully Bayesian Estimation
For the past two decades, fully Bayesian estimation via the use of
the Markov chainMonte Carlo (MCMC) has gained an increased
interest due to improved computational efficiency. In Bayesian
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analysis, prior information and all available data are integrated
into posterior distributions (using Bayes rule) on which one can
base on their inferences. Specifically,

P(ξ |y) ∝ P(y|ξ )P(ξ ), (5)

where ξ and y are the collections of all parameters and observed
data, respectively. Accurate approximations of the posterior
distribution, P(ξ |y), via the use of MCMC simulation techniques
have made fully Bayesian estimation available for complex
models, such as MIRT models.

There are two types of fundamental mechanisms among the
MCMC algorithm: Gibbs sampling (Geman and Geman, 1984)
and Metropolis-Hastings (MH; Hastings, 1970; Metropolis and
Ulam, 1949). Gibbs sampling is adopted in situations when the
full conditional distribution of each parameter can be derived
in closed form. If any of the full conditional distribution does
not have an obtainable form, MH can be used via choosing a
proposal or candidate distribution by the current value of the
parameters. Then a proposal value is generated from the proposal
distribution and accepted in the Markov chain with a certain
amount of probability.

The two methods can be combined to form the blocked
Metropolis (BM) procedure (Patz and Junker, 1999a,b), where
each parameter is sampled from its full conditional distribution
and anMH step is subsequently used to accept/reject it. Hastings-
within-Gibbs (HwG) is another form of the hybrid between
Gibbs sampling and MH. As far as GRMs are concerned,
Albert and Chib (1993) proposed a Gibbs sampler for the
unidimensional model. Their approach can be easily extended
to the multi-unidimensional model. Cowels (1996) proposed a
HwG procedure by using a MH step within the Gibbs sampler
developed by Albert and Chib (1993) for sampling the threshold
parameters to improve mixing and accelerate convergence. Kuo
and Sheng (2015) extended Cowels’ approach to the more general
multi-unidimensional model, where a constrained multivariate
normal prior was assumed for θ , θ ∼ Nm(0,P), with P

being a correlation matrix to resolve the model location and
scale indetermination. Moreover, the MH algorithm has been
developed and implemented in BMIRT, and the BM procedure
is implemented in IRTPRO for the multi-unidimensional model.

2.3. Metropolis-Hastings Robbins-Monro
(MHRM)
More recently, Cai (2010a,b) developed a MHRM algorithm
to combine fully Bayesian estimation with Robins–Monro
(Robbins and Monro, 1951) technique to facilitate the
maximum likelihood. Specifically, studies have shown that
MML would cause the estimation process for MIRT models to
be computationally intensive and often intractable when a large
number of dimensions are involved (Cai, 2010a,b; Chalmers,
2012). The MHRM algorithm was consequently developed to
overcome the problem of MML and provide useful estimates for
data with a large number of items, many dimensions, or missing
data. The MHRM estimation for the multi-unidimensional GRM
can also be implemented in IRTPRO.

3. SIMULATION STUDY

3.1. Simulated Data
To compare the aforementioned methods in estimating the
multi-unidimensional GRM, aMonte Carlo simulation study was
carried out where tests with two subscales were considered so
that the first half measured one latent trait (θ1) and the second
half measured the other (θ2). In the study, three factors were
manipulated: sample size (N), test length (K), and intertrait
correlation (ρ). The choice of N, K, and ρ was based on previous
studies with similar models. For example, when investigating
multidimensional GRMs, the simulation studies in Fu et al.
(2010) adopted N = 500, 1000; K = 10, 20, 30, ρ =

0.1, 0.3, . . . , 0.9 for dichotomous items and N = 1000; K =

20, ρ = 0.2, 0.4, . . . 0.8, for polytomous items involving three
categories. Working with dichotomous multi-unidimensional
models, Sheng and Wikle (2008) adopted N = 1000, K =

18, ρ = 0.2, 0.5, 0.8 in the simulation studies, while Sheng
and Headrick (2012) adopted N = 1000, K = 10, ρ =

0.2, 0.4, 0.6. Wollack et al. (2002) conducted simulation studies
with nominal response models and they observed that parameter
recovery was improved by increasing the test length from 10
to 30 items but that increasing the test length from 20 to 30
items did not produce a noticeable difference. Consequently,
with our study, N polytomous responses (N = 500, 1000)
to K items (K = 20, 40) were generated according to the
multi-unidimensional GRM, where the population correlation
between the two latent traits (ρ) was set to be 0.2, 0.5, or
0.8. Each item was set to be measured on three-scale Likert
scales so that two threshold parameters were estimated for each
item. The item discrimination parameters αv were generated
randomly from uniform distributions so that αvj ∼ U(0, 2). The
threshold parameters δj1 and δj2 were sorted values based on
those randomly generated from a standard normal distribution,
i.e., δj1 = min(X1,X2) and δj2 = max(X1,X2), where X1,

X2 ∼ N(0, 1).
Each set of simulated data was analyzed using: (1) BAEM,

(2) ADQ, (3) Gibbs, (4) MH, (5) HwG, (6) BM, and (7)
MHRM. It is noted that methods (1) and (2) are MML
estimations, (3)–(6) are fully Bayesian estimations, and (7) is a
hybrid of MML and fully Bayesian estimation. Moreover, non-
informative prior distributions were considered for αv with fully
Bayesian methods, and the variance of proposal distributions
was adjusted to have an adequate acceptance rate for (4)
and (5).

For the use of software, (3) and (5) were programmed
in MATLAB1, (1), (2), (6), and (7) were executed using
IRTPRO2, and (4) was implemented in BMIRT3. However, in
BMIRT, the population intertrait correlation, ρ, needs to be
specified to implement the model, which may not be applicable
in real situations. Yao and colleagues recommended Akaikes
information criterion (AIC; Akaike, 1987) as a criterion in
determining ρ when the latent structure is not clear (Yao
and Schwarz, 2006). They further suggested that ρ can be

1Interested readers can contact the author for sample codes.
2Please see Appendix A for a sample code of implementing (1) in IRTPRO.
3Please see Appendix B for an example input file.
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approximated by finding the observed correlations between sum
scores of subtests (Yao and Boughton, 2007). In this study,
we considered all these scenarios when implementing MH via
BMIRT, and they are: (1) directly using the true ρ (TRUE),
(2) via the use of AIC (AIC), and (3) approximating ρ using
the correlation between two subscores (COR). Hence, altogether
this study compared nine estimation methods/approaches under
two sample size, two test length, and three intertrait correlation
conditions.

Ten replications were carried out for each scenario, where
root-mean-squared differences (RMSDs) and bias were used to
evaluate the recovery of each item parameter. The 10% trimmed
means of these measures were calculated across items to provide
summary statistics.

4. RESULTS

Tables 1–4 display the RMSD’s and biases for estimating the
model under the 12 test situations using the nine estimation
methods. Inspection of these tables gives rise to the following
results:

The four methods implemented in IRTPRO (BAEM, ADQ,
BM, and MHRM) yielded similar parameter estimates. Gibbs
sampling had in general larger averaged RMSDs in recovering
model parameters. This may be due to the slower convergence
problem of Gibbs sampling as noted by Cowels (1996). It is
noted that MH with each of the three criteria implemented in
BMIRT (TRUE, AIC, COR) had a similar precision in estimating
item discrimination (α) and threshold (δ) parameters. However,
it only recovered ρ well under the TRUE criterion (where the
population correlation was assumed to be available), which in
practice is not realistic. On the other hand, MH with the COR
criterion in BMIRT resulted in a slightly larger RMSD than the
TRUE criterion. The AIC criterion had a worse performance on
estimating ρ when the true intertrait correlation became larger.

These nine procedures performed differently in estimating α

and δ under the 12 test situations. Specifically, when N = 500
and K = 20, the results shown in Table 1 indicated that MH with
TRUE , AIC, or COR, as implemented in BMIRT had an overall
better estimation of α and δ than the other procedures. HwG and
the four procedures implemented in IRTPRO had similar results.
Even though they did not estimate α and δ as accurately as MH,
their RMSDs were not much larger.

When the test length was longer but the sample size remained
the same (i.e., N = 500, K = 40). MH with each of the three
criteria implemented in BMIRT had a better estimation of α and
δ than the other methods with a low intertrait correlation (i.e.,
ρ = 0.2). However, when ρ = 0.5 and 0.8, MH with TRUE, AIC,
or COR had larger RMSDs of δ. This was due to the inaccurate
estimates of δ’s with some items. For example, MH with TRUE
had the estimate of a δ of 1.1176 when the true parameter was
−0.7087. The less accurate estimates of δ obtained by BMIRT led
to the larger averaged RMSDs. Compared to the three BMIRT
methods, HwG and the four IRTPRO procedures had an overall
fairly accurate estimation of α and δ regardless of the intertrait
correlations.

When N = 1000, K = 20, and ρ = 0.2, the three
procedures implemented in BMIRT had a better estimate of α

and δ. With an increase of the true intertrait correlation, HwG
had an improved estimation of α and δ that is comparable to
the three BMIRT methods. The four IRTPRO methods did not
have a comparatively well estimation of α, but they had a fairly
accurate estimation of δ if the true intertrait correlation was 0.2
or 0.8. Further, when N = 1000 and K = 40, BMIRT had larger
RMSDs in estimating δ, indicating that it involved more error
in estimating δ when the test length was longer, as described
previously. HwG had an overall better estimation of α under
the three intertrait correlation conditions. It performed well in
estimating δ when ρ = 0.5. However, when ρ = 0.2 and 0.8, the
four IRTPRO procedures outperformed HwG in estimating δ.

In terms of estimating ρ, the three procedures implemented in
BMIRT performed similarly when the true intertrait correlation
(ρ) was 0.2. However, when ρ increased, the AIC criterion had
a worse estimation of ρ. This is due to the reason that the
AIC criterion usually selected the model with a lower intertrait
correlation coefficient (i.e., ρ = 0 or 0.1) to be the bestmodel (i.e.,
the one with the smallest AIC value). Therefore, it had a worse
estimation of ρ when the true intertrait correlation was moderate
to strong. The TRUE criterion had an overall better estimation in
all test situations. However, it is noted that in practice the actual
intertrait correlation is usually unknown. Among the procedures
where ρ is estimated, HwG had a relatively better performance
in recovering ρ, especially when the true intertrait correlation
was 0.5 or 0.8. When the dimensions or latent traits were not
much correlated, HwG, COR, and the four IRTPRO procedures
performed equally well.

In addition to RMSDs, biases were obtained and shown in
the tables to determine the direction of estimation in each
procedure. Specifically, a positive (negative) bias indicates that
the estimate tends to be larger (smaller) than the true parameter.
The results suggested that Gibbs, HwG, and the four procedures
implemented in IRTPRO had in general an overestimate of
α, while HwG tended to underestimate δ. However, the four
procedures in IRTPRO had a positive bias in estimating δ1
(except for N = 1000, K = 20, ρ = 0.2) but a negative
bias in estimating δ2. The three procedures in BMIRT tended to
overestimate the model parameters when ρ was 0.2. When the
intertrait correlation was larger, they could have negative biases
for estimating δ. In terms of the bias of ρ, the four IRTPRO
procedures and TRUE had in general positive biases (except
for N = 500, K = 20, ρ = 0.5). AIC and COR tended
to underestimate the intertrait correlation. HwG had positive
biases when the true intertrait correlation was 0.2 or 0.8, but
it had negative biases with the correlation being 0.5, regardless
of sample sizes. Gibbs sampling had positive biases for all the
parameters.

5. DISCUSSION

In general, this study compared the performances in estimating
multi-unidimensional GRMs using nine estimation methods.
Simulation results indicate that the four methods implemented
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TABLE 1 | Average RMSD (white rows) and bias (gray rows) for estimating α, δ, and ρ when N = 500, K = 20.

MATLAB BMIRT IRTPRO

Gibbs HwG TRUE AIC COR BAEM ADQ MHRM BM

True ρ = 0.2

α1
0.154 0.147 0.137 0.140 0.140 0.150 0.150 0.151 0.153

0.065 0.057 0.040 0.041 0.038 0.048 0.048 0.054 0.060

α2
0.156 0.130 0.123 0.126 0.123 0.130 0.130 0.129 0.134

0.048 0.039 0.025 0.027 0.026 0.036 0.037 0.040 0.043

δ1
0.1404 0.1326 0.115 0.536 0.112 0.135 0.135 0.134 0.136

0.024 −0.052 −0.022 0.006 −0.022 −0.039 −0.038 −0.037 −0.046

δ2
0.134 0.110 0.101 0.602 0.097 0.108 0.108 0.108 0.107

0.050 −0.023 −0.007 0.064 −0.006 0.001 0.001 0.003 −0.004

ρ
0.098 0.076 0.060 0.066 0.069 0.078 0.078 0.077 0.077

0.058 0.012 0.010 −0.025 0.004 0.014 0.014 0.014 0.017

True ρ = 0.5

α1
0.020 0.019 0.014 0.016 0.013 0.015 0.015 0.015 0.018

0.060 0.046 0.008 0.003 −0.002 0.032 0.032 0.036 0.042

α2
0.019 0.020 0.016 0.021 0.018 0.024 0.024 0.025 0.026

0.047 0.033 0.013 0.019 0.009 0.032 0.033 0.039 0.041

δ1
0.045 0.021 0.011 0.012 0.012 0.016 0.016 0.016 0.017

0.139 −0.027 0.020 0.025 0.028 0.000 −0.000 0.009 0.009

δ2
0.052 0.020 0.009 0.011 0.012 0.017 0.017 0.019 0.018

0.163 −0.009 0.038 0.046 0.049 0.046 0.046 0.056 0.051

ρ
0.001 0.001 0.008 0.022 0.004 0.001 0.001 0.001 0.001

0.020 −0.023 −0.064 −0.145 −0.059 −0.019 −0.019 −0.015 −0.0139

True ρ = 0.8

α1
0.154 0.139 0.135 0.135 0.141 0.135 0.136 0.138 0.138

0.055 0.035 0.010 −0.009 −0.033 0.025 0.025 0.030 0.032

α2
0.158 0.135 0.131 0.126 0.123 0.133 0.133 0.139 0.137

0.070 0.052 0.032 0.011 −0.004 0.036 0.037 0.042 0.039

δ1
0.167 0.154 0.106 0.109 0.106 0.435 0.119 0.113 0.120

0.106 −0.080 −0.020 −0.020 −0.014 0.080 −0.042 −0.036 −0.043

δ2
0.187 0.137 0.095 0.101 0.098 0.113 0.113 0.110 0.113

0.137 −0.052 −0.003 −0.000 0.007 0.006 0.006 0.012 0.001

ρ
0.025 0.020 0.009 0.205 0.078 0.023 0.023 0.026 0.026

0.019 0.000 0.003 −0.20 −0.072 0.008 0.008 0.013 0.012

in IRTPRO (BAEM, ADQ, MHRM, BM) performed similarly
in recovering α, δ, and ρ well under the simulated conditions.
This result is consistent with those of Han and Paek (2014),
where IRTPRO was used to estimate multi-unidimensional
two-parameter models, of Wollack et al. (2002), where
unidimensional nominal response models were evaluated

via BAEM and BM procedures, and of Cai (2010a), where
BAEM and MHRM methods were implemented to estimate the
two-dimensional graded response model.

MH with the three criteria (TRUE, AIC, COR) executed using
BMIRT also resulted in fairly accurate estimations of α and δ.
However, these three criteria performed differently in estimating
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TABLE 2 | Average RMSD (white rows) and bias (gray rows) for estimating α, δ, and ρ when N = 500, K = 40.

MATLAB BMIRT IRTPRO

Gibbs HwG TRUE AIC COR BAEM ADQ MHRM BM

True ρ = 0.2

α1
0.216 0.148 0.120 0.121 0.115 0.132 0.131 0.132 0.125

0.147 0.049 0.018 0.018 0.012 0.028 0.028 0.029 0.020

α2
0.227 0.184 0.121 0.120 0.118 0.129 0.129 0.130 0.129

0.175 0.111 0.046 0.047 0.041 0.059 0.059 0.061 0.050

δ1
0.477 0.274 0.094 0.096 0.089 0.104 0.103 0.105 0.110

0.410 −0.189 0.000 −0.005 −0.003 −0.018 −0.016 −0.024 −0.020

δ2
0.499 0.262 0.092 0.095 0.088 0.094 0.095 0.095 0.099

0.429 −0.179 0.015 0.011 0.012 0.013 0.015 0.007 0.007

ρ
0.169 0.048 0.040 0.045 0.046 0.047 0.047 0.050 0.048

0.163 0.018 0.001 −0.024 −0.003 0.001 0.001 0.001 0.001

True ρ = 0.5

α1
0.180 0.102 0.140 0.143 0.140 0.108 0.107 0.112 0.108

0.125 0.042 −0.071 −0.081 −0.0806 0.031 0.030 0.038 0.030

α2
0.180 0.111 0.096 0.099 0.097 0.117 0.116 0.118 0.121

0.122 0.045 0.015 0.008 0.003 0.030 0.030 0.032 0.034

δ1
0.393 0.088 0.466 0.445 0.449 0.107 0.107 0.111 0.115

0.324 −0.026 0.318 0.338 0.323 −0.018 −0.020 −0.044 −0.040

δ2
0.422 0.096 0.474 0.459 0.463 0.117 0.113 0.113 0.118

0.344 −0.010 0.321 0.342 0.324 0.030 0.019 0.006 0.001

ρ
0.097 0.039 0.031 0.084 0.037 0.039 0.040 0.040 0.028

0.092 −0.005 0.006 −0.073 −0.012 0.000 0.000 0.003 −0.009

True ρ = 0.8

α1
0.243 0.097 0.126 0.139 0.150 0.096 0.096 0.099 0.096

0.184 0.042 −0.072 −0.083 −0.104 0.025 0.025 0.028 0.017

α2
0.265 0.118 0.111 0.118 0.125 0.115 0.116 0.121 0.113

0.187 0.036 −0.027 −0.011 −0.062 0.017 0.017 0.018 0.014

δ1
0.579 0.106 0.507 0.470 0.489 0.106 0.103 0.010 0.102

0.495 −0.042 0.344 0.364 0.329 −0.027 −0.024 −0.004 −0.023

δ2
0.605 0.116 0.502 0.473 0.486 0.118 0.116 0.126 0.116

0.511 −0.033 0.326 0.348 0.312 0.006 0.009 0.028 0.005

ρ
0.061 0.016 0.017 0.116 0.021 0.019 0.020 0.020 0.018

0.058 0.004 0.013 −0.114 −0.015 0.011 0.011 0.012 0.012

ρ based on the actual intertrait correlation. Specifically, these
three criteria performed equally well when the latent traits
had a weak correlation. However, in test situations where the
intertrait correlation was moderate or high, only the TRUE
criterion was able to obtain an accurate estimation of ρ. It
is noted that the TRUE criterion is not applicable in many

test situations due to the unknown true intertrait correlation,
and hence is not practical with fitting such models. The COR
criterion had a worse estimate than TRUE, but overall it had
smaller RMSD’s than the AIC criterion. Therefore, among the
three criteria available from BMIRT, the COR criterion (i.e.,
using the correlation of subscales as the estimated intertrait
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TABLE 3 | Average RMSD (white rows) and bias (gray rows) for estimating α, δ, and ρ when N = 1000, K = 20.

MATLAB BMIRT IRTPRO

Gibbs HwG TRUE AIC COR BAEM ADQ MHRM BM

True ρ = 0.8

α1
0.091 0.094 0.091 0.090 0.090 0.097 0.097 0.096 0.096

0.016 0.016 0.018 0.018 0.019 0.026 0.027 0.030 0.023

α2
0.077 0.082 0.079 0.079 0.078 0.087 0.087 0.087 0.088

0.023 0.020 0.024 0.021 0.025 0.030 0.030 0.029 0.028

δ1
0.097 0.099 0.094 0.099 0.098 0.108 0.109 0.104 0.111

0.012 −0.051 −0.042 −0.045 −0.044 −0.061 −0.061 −0.052 −0.065

δ2
0.081 0.080 0.071 0.070 0.070 0.067 0.067 0.066 0.069

0.013 −0.054 −0.029 −0.032 −0.031 −0.029 −0.029 −0.020 −0.036

ρ
0.036 0.028 0.020 0.041 0.022 0.029 0.029 0.029 0.029

0.026 0.014 0.009 −0.031 0.003 0.013 0.013 0.013 0.012

True ρ = 0.5

α1
0.194 0.080 0.087 0.086 0.080 0.097 0.097 0.098 0.097

0.134 0.035 0.039 0.034 0.019 0.046 0.046 0.045 0.044

α2
0.146 0.073 0.069 0.073 0.136 0.076 0.076 0.076 0.078

0.110 0.024 0.027 0.025 −0.050 0.031 0.031 0.034 0.029

δ1
0.435 0.082 0.098 0.098 0.095 0.108 0.107 0.102 0.105

0.334 −0.024 −0.012 −0.019 −0.017 −0.030 −0.030 −0.018 −0.033

δ2
0.444 0.070 0.071 0.069 0.067 0.081 0.080 .078 0.078

0.349 −0.018 0.009 0.004 0.005 0.008 0.008 0.019 0.003

ρ
0.102 0.036 0.022 0.142 0.058 0.035 0.036 0.038 0.035

0.083 −0.000 0.002 −0.138 −0.037 0.003 0.003 0.003 0.003

True ρ = 0.8

α1
0.138 0.078 0.082 0.079 0.074 0.089 0.089 0.090 0.087

0.081 0.023 0.024 −0.014 −0.016 0.027 0.028 0.026 0.022

α2
0.156 0.094 0.089 0.086 0.082 0.097 0.097 0.192 0.096

0.091 0.038 0.033 −0.010 −0.011 0.043 0.043 −0.041 0.039

δ1
0.334 0.078 0.082 0.161 0.079 0.074 0.074 0.074 0.078

0.252 −0.039 −0.030 0.024 −0.023 −0.027 −0.027 −0.015 −0.023

δ2
0.355 0.075 0.066 0.203 0.065 0.071 0.071 0.074 0.074

0.274 −0.025 −0.011 −0.059 0.000 0.002 0.003 0.015 0.004

ρ
0.030 0.008 0.004 0.201 0.065 0.011 0.011 0.011 0.011

0.027 0.002 0.003 −0.193 −0.065 0.007 0.007 0.009 0.006

correlation) is more applicable in real test situations and hence is
preferred.

If the intertrait correlation is not of interest, HwG, MH with
the three BMIRT criteria, and the four IRTPRO procedures
can provide a fairly accurate estimation of α and δ with tests
that are not very long (e.g., K < 40). This result agrees with

the findings in Li et al. (2014) when they compared the TRUE
criterion in BMIRT and the four procedures implemented in
IRTPRO in estimating the multi-undimensional two-parameter
model. However, if more items are adopted, MH with the three
BMIRT criteria tends to result in a less accurate estimate of δ

with some, if not all, items, and hence not suggested in situations
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TABLE 4 | Average RMSD (white rows) and bias (gray rows) for estimating α, δ, and ρ when N = 1000, K = 40.

MATLAB BMIRT IRTPRO

Gibbs HwG TRUE AIC COR BAEM ADQ MHRM BM

True ρ = 0.2

α1
0.405 0.084 0.122 0.126 0.124 0.094 0.095 0.091 0.094

0.337 0.050 −0.052 −0.060 −0.058 0.054 0.054 0.049 0.053

α2
0.371 0.093 0.118 0.115 0.115 0.099 0.099 0.099 0.101

0.308 0.046 0.026 0.028 0.023 0.050 0.050 0.049 0.050

δ1
0.867 0.106 0.504 0.501 0.501 0.081 0.081 0.083 0.080

0.753 −0.024 0.385 0.395 0.382 −0.004 −0.004 0.009 0.001

δ2
0.899 0.122 0.512 0.511 0.506 0.107 0.107 0.114 0.108

0.782 −0.007 0.365 0.376 0.363 0.040 0.040 0.052 0.043

ρ
0.300 0.049 0.046 0.052 0.052 0.048 0.048 0.046 0.047

0.295 0.011 0.013 −0.016 0.012 0.010 0.011 0.011 0.010

True ρ = 0.5

α1
0.375 0.073 0.104 0.106 0.109 0.083 0.083 0.088 0.086

0.310 0.017 −0.052 −0.060 −0.065 0.023 0.023 0.023 0.028

α2
0.379 0.084 0.083 0.086 0.083 0.093 0.093 0.093 0.095

0.330 0.026 0.013 0.009 0.006 0.031 0.031 0.030 0.036

δ1
0.892 0.084 0.537 0.524 0.533 0.091 0.090 0.093 0.078

0.790 −0.020 0.379 0.410 0.382 −0.015 −0.014 −0.004 −0.005

δ2
0.928 0.083 0.533 0.531 0.530 0.092 0.092 0.101 0.092

0.818 −0.003 0.402 0.433 0.405 0.031 0.032 0.042 0.032

ρ
0.196 0.026 0.022 0.071 0.026 0.027 0.027 0.028 0.028

0.195 −0.001 0.004 −0.065 −0.009 0.002 0.002 0.003 0.004

True ρ = 0.8

α1
0.413 0.082 0.079 0.092 0.095 0.089 0.089 0.089 0.094

0.342 0.024 −0.019 −0.031 −0.046 0.027 0.027 0.025 0.032

α2
0.495 0.078 0.070 0.080 0.0690 0.086 0.087 0.088 0.095

0.407 0.039 0.019 0.028 −0.011 0.039 0.039 0.040 0.046

δ1
0.955 0.105 0.475 0.454 0.459 0.080 0.079 0.081 0.081

0.822 −0.036 0.338 0.357 0.332 −0.014 −0.012 0.007 −0.014

δ2
0.981 0.093 0.473 0.461 0.460 0.074 0.074 0.087 0.075

0.841 −0.026 0.344 0.365 0.340 0.024 0.025 0.045 0.022

ρ
0.096 0.015 0.011 0.136 0.032 0.016 0.016 0.016 0.018

0.095 0.001 0.007 −0.135 −0.023 0.005 0.005 0.004 0.007

with tests that have 40 or more items. Alternatively, one may
consider HwG or any of the four IRTPRO procedures under
this condition. If the dimensions are moderately correlated, the
HwG algorithm has a relatively better estimate of α and δ

than any of the four IRTPRO procedures. However, the four
IRTPRO procedures may perform relatively better in estimating

δ when the intertrait correlation is low or high. In general, if
item discrimination parameters α or the intertrait correlation ρ

are more of interest, one may consider implementing the HwG
procedure.

In summary, the magnitude of the intertrait correlations may
affect the performances of parameter recovery of these nine
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estimation methods. However, in practice, the actual values of
these correlations are rarely known in advance. Hence, one
may consider adopting the HwG procedure to estimate the
intertrait correlations since it has an overall better estimation
of ρ according to the simulation studies. If the correlations are
moderate, HwG can perform better in estimating α and δ than
the other procedures. If the estimated ρ is either high or low,
the four procedures implemented in IRTPRO may be adopted
if one is more interested in estimating δ. It is noted that, if the
dimensions are lowly correlated, BMIRT can also be considered
when the test length is not very long. However, if ρ is moderate
or high, or if more items are adopted in a test, BMIRT is not
recommended due to its inaccurate estimations of δ with some
(if not all) items.

The simulation results in this study are based on test situations
where two dimensions are involved. Further research can
consider comparing these nine procedures in test situations with
more than two dimensions. In addition, this study focuses on
items with three-scale Likert scales and therefore two threshold
parameters need to be estimated for each item. It is noted that
the results may be limited to this specification and thus may

not generalize to situations where five or seven categories are
adopted. Further study can evaluate the estimation of these
procedures using items with more than three scales or with
different numbers of scales. Furthermore, Kuo and Sheng (2015)
suggested that parameter estimate of the HwG procedure is not
sensitive to different prior distributions for α. However, the
selection of prior distributions for α may affect the estimation
of the other estimation procedures. Therefore, further study can
consider comparing these estimation methods using informative
priors. Lastly, the simulation study only adopted 10 replications
due to the computational expense of the MCMC procedures (i.e.,
Gibbs andHwG). Harwell et al. (1996) suggested that a minimum
of 25 replications forMarkov Chain studies in IRT-based research
is recommended. Further studies can add more replications to
achieve a better accuracy.
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APPENDIX A

Sample code for fitting the multi-unidimensional GRM using
IRTPRO using the BAEN estimation, where N = 1000, K = 20
and ρ = 0.2:

Project:

Name = Y_IRTPRO11;

Data:

File = .\Y_IRTPRO11.ssig;

Analysis:

Name = Test1;

Mode = Calibration;

Title:

Simulation study;

Comments:

GRM with two subtests, with 10 items

in each;

Estimation:

Method = BAEM;

E-Step = 500, 1e-005;

SE = S-EM;

M-Step = 50, 1e-006;

Quadrature = 49, 6;

SEM = 0.001;

SS = 1e-005;

Scoring:

Mean = 0;

SD = 1;

Miscellaneous:

Decimal = 2;

Processors = 4;

Print CTLD, P-Nums, Diagnostic;

Min Exp = 1;

Groups:

Group :

Dimension = 2;

Items = VAR1, VAR2, VAR3, VAR4, VAR5,

VAR6, VAR7, VAR8, VAR9, VAR10,

VAR11, VAR12, VAR13, VAR14, VAR15,

VAR16, VAR17, VAR18, VAR19, VAR20;

Codes(VAR1) = 0(0), 1(1), 2(2);

Codes(VAR2) = 0(0), 1(1), 2(2);

Codes(VAR3) = 0(0), 1(1), 2(2);

Codes(VAR4) = 0(0), 1(1), 2(2);

Codes(VAR5) = 0(0), 1(1), 2(2);

Codes(VAR6) = 0(0), 1(1), 2(2);

Codes(VAR7) = 0(0), 1(1), 2(2);

Codes(VAR8) = 0(0), 1(1), 2(2);

Codes(VAR9) = 0(0), 1(1), 2(2);

Codes(VAR10) = 0(0), 1(1), 2(2);

Codes(VAR11) = 0(0), 1(1), 2(2);

Codes(VAR12) = 0(0), 1(1), 2(2);

Codes(VAR13) = 0(0), 1(1), 2(2);

Codes(VAR14) = 0(0), 1(1), 2(2);

Codes(VAR15) = 0(0), 1(1), 2(2);

Codes(VAR16) = 0(0), 1(1), 2(2);

Codes(VAR17) = 0(0), 1(1), 2(2);

Codes(VAR18) = 0(0), 1(1), 2(2);

Codes(VAR19) = 0(0), 1(1), 2(2);

Codes(VAR20) = 0(0), 1(1), 2(2);

Model(VAR1) = Graded;

Model(VAR2) = Graded;

Model(VAR3) = Graded;

Model(VAR4) = Graded;

Model(VAR5) = Graded;

Model(VAR6) = Graded;

Model(VAR7) = Graded;

Model(VAR8) = Graded;

Model(VAR9) = Graded;

Model(VAR10) = Graded;

Model(VAR11) = Graded;

Model(VAR12) = Graded;

Model(VAR13) = Graded;

Model(VAR14) = Graded;

Model(VAR15) = Graded;

Model(VAR16) = Graded;

Model(VAR17) = Graded;

Model(VAR18) = Graded;

Model(VAR19) = Graded;

Model(VAR20) = Graded;

Means = 0.0, 0.0;

Covariances = 1.0,

Free, 1.0;

Constraints:

(VAR1, Slope[1]) = 0.0;

(VAR2, Slope[1]) = 0.0;

(VAR3, Slope[1]) = 0.0;

(VAR4, Slope[1]) = 0.0;

(VAR5, Slope[1]) = 0.0;

(VAR6, Slope[1]) = 0.0;

(VAR7, Slope[1]) = 0.0;

(VAR8, Slope[1]) = 0.0;

(VAR9, Slope[1]) = 0.0;

(VAR10, Slope[1]) = 0.0;

(VAR11, Slope[0]) = 0.0;

(VAR12, Slope[0]) = 0.0;

(VAR13, Slope[0]) = 0.0;

(VAR14, Slope[0]) = 0.0;

(VAR15, Slope[0]) = 0.0;

(VAR16, Slope[0]) = 0.0;

(VAR17, Slope[0]) = 0.0;

(VAR18, Slope[0]) = 0.0;

(VAR19, Slope[0]) = 0.0;

(VAR20, Slope[0]) = 0.0;
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APPENDIX B

Example batch file for implementing the MH estimation via
BMIRT using the TRUE method, where N = 1000, K = 20,
ρ = 0.2:

1000 20 1 1.0 1.0 10000 5000 2 5 9238796

31 0.0 1.0 0.3 0.5 0.15

1.5 1.5 0.01 0.0 1.5 0.01 100 400 0.01

0.3 0.05 1.0 0.2 0.05 0.05

1.0 0.3

33333333333333333333

1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20

11111111110000000000

00000000001111111111

1 0.2 1 0 0

Please refer to Yao (2003) for detailed information regarding the
input arguments.
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