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Psychological research has found that human perception of randomness is biased. In

particular, people consistently show the overalternating bias: they rate binary sequences

of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as

more random than prescribed by the normative criteria of Shannon’s entropy. Within data

mining for medical applications, Marcellin proposed an asymmetric measure of entropy

that can be ideal to account for such bias and to quantify subjective randomness. We

fitted Marcellin’s entropy and Renyi’s entropy (a generalized form of uncertainty measure

comprising many different kinds of entropies) to experimental data found in the literature

with the Differential Evolution algorithm. We observed a better fit for Marcellin’s entropy

compared to Renyi’s entropy. The fitted asymmetric entropy measure also showed good

predictive properties when applied to different datasets of randomness-related tasks.

We concluded that Marcellin’s entropy can be a parsimonious and effective measure of

subjective randomness that can be useful in psychological research about randomness

perception.

Keywords: randomness perception, overalternating bias, asymmetric entropy, Renyi’s entropy, Marcellin’s

entropy, Shannon’s entropy, Differential Evolution algorithm

1. INTRODUCTION

1.1. Inductive Reasoning and Subjective Randomness
Explaining how people make inductive reasoning (e.g., inferring general laws or principles from
the observation of particular instances) is a central topic within the psychology of reasoning. In
particular, perception of randomness is a key aspect of these inferential processes. Perceiving a
situation as non-random requires some kind of subjective explanation which entails the onset
of inductive reasoning (Lopes, 1982). On the contrary, if the phenomenon is seen as a mere
coincidence, the observer does not hypothesize any explanation. For example, during World
War II the German air force dropped on London V1 bombs: many Londoners saw particular
patterns related to the impacts and consequently they developed specific theories about German
strategy (e.g., thinking that poor districts of London were privileged targets). However, a statistical
analysis of the bombing patterns made after the end of the war revealed that the distribution
of the impacts was not statistically different from an actual random pattern (Hastie and Dawes,
2010). The opposite mistake happens when an observer fails to detect a regularity, thus attributing
to chance a potential relation noticed (Griffiths, 2004): before Halley, no one had ever thought
that the comets observed in 1531, 1607, and 1682 were the very same comet (Halley, 1752).
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Since 1950, many psychological studies have been devoted
to investigate randomness perception and production: an
important result is that people’s intuitive understanding of
randomness in binary sequences is biased toward an over-
alternation between different possible outcomes (the so-called
overalternating bias).

Given the importance of having a viable and flexible
measure of subjective randomness, this study aims to
evaluate how different kinds of entropy measures can predict
judgments about sequence randomness. In particular, within
the context of data mining and growing decision trees,
an asymmetric measure of entropy has been developed
(Marcellin et al., 2006). Such measure has proven to be very
useful in dealing with unbalanced classes in medical and
economic decisions. Nonetheless, such asymmetric entropy
measure might also be beneficial in cognitive domains. In
this paper we investigate its usefulness in order to model the
overalternating bias.

1.2. The Overalternating Bias
From a formal point of view, randomness is still an elusive
concept and a shared definition has yet to be established. A
variety of efforts have been sustained in order to provide a
formal measure of randomness within mathematics, physics, and
computer science (Li and Vitányi, 1997; Volchan, 2002). Despite
the lack of a clear and shared normative criterion, psychologists
have been investigating extensively people’s subjective sense of
randomness. Usually participants’ responses are compared to
sampling distributions of statistics that characterize the stimuli.
This strand of research has employed classically two types of
tasks: production tasks and perception tasks. In the former,
participants are asked to generate the outcomes of a random
mechanism, for example simulating the results of tossing a
fair coin. On the contrary, in perception tasks participants
have to rate how much random on a Likert scale the stimulus
is (commonly a string of binary elements) or to categorize
the stimulus on the basis of the generating source (e.g., has
the sequence been produced by a random or a non-random
mechanism?).

Despite some methodological issues that characterize the
psychological investigation of randomness (Nickerson, 2002), the
basic finding of generation and perception of random binary
strings (and two-dimensional grids of binary elements) is the
overalternating bias: people identify randomness with an excess
of alternation between symbol types compared to the normative
criterion employed. In other terms, those sequences which
actually present the modal number of alternations expected by
chance are not perceived as maximally random because they
contain too long runs of the same element. Falk and Konold
(1997) made a series of randomness perception experiments
that clearly showed such an overalternating bias. They employed
21-elements strings composed by two symbols, Xs and Os, such
as XXXX. . .OOOO. The alternation rate of such sequences can
be defined through the probability of alternation [P(A)] statistics:
this value is defined as the ratio between the number of actual
transitions and the number of total transitions in the sequence.
More formally, for strings of length n and with a number of runs

(i.e., unbroken subsequences) r, the probability of alternation is

P(A) =
r − 1

n− 1
(1)

Falk and Konold (1997) employed as a normative criterion
to quantify the randomness of a sequence the second order
entropy of the sequence computed with the classical Shannon
entropy (Shannon, 1948). Such measure is based on the relative
frequencies of the ordered pairs of symbols, called digrams (in
the example, XO, OX, XX, and OO); in particular, it quantifies
the new information (in bits) contributed by the second member
of the pair. It is possible to define second order entropy as the
difference between the entropy of the digrams and the first order
entropy (Attneave, 1959):

H2 = H(digram) −H1 (2)

First order entropy can be computed through the classical
Shannon formula:

H1 =
∑

pilog
1

pi
(3)

Where pi is the probability of the symbol i. Similarly, the entropy
of the digrams can be obtained on the basis of the probability of
the ordered pairs of symbols:

H(digram) =
∑

p(digram)log
1

p(digram)
(4)

The relationship between the probability of alternation and the
second order entropy is a symmetrical, unimodal reversed-U
curve with a maximum in correspondence of a probability of
alternation value of 0.5 (Figure 1). However, while measuring the
subjective randomness rating of binary strings by manipulating

FIGURE 1 | The empirical subjective randomness measured by Falk

and Konold (solid line) and the second order entropy computed by

Shannon’s formula (dashed line).
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the probability of alternation, participants indicated that
the most random rated sequences were the ones with a
probability of alternation of about 0.7. The resulting function
is an asymmetrical U-reversed relationship negatively skewed
(Figure 1). This is a clear example of overalternating bias. The
empirical function of subjective randomness is different from the
function that is obtained by computing the second order entropy
as a normative criterion of randomness.

For example, strings such as XXXOXXOOXOO [P(A) = 0.5]
are rated less random than OXXOXXOXOOX [P(A) = 0.7]
although this is not true from a normative point of view. This
kind of result is very robust and it has been found in a variety
of studies. Reviewing the literature, Falk and Konold (1997)
found that the sequences rated as most random ranged from a
P(A) = 0.57 to 0.8. Nevertheless, these works employed a variety
of stimuli (strings or two-dimensional grids), different sizes of
the set of stimuli and a variety of task instructions (such as
select the most random sequence or rate their randomness on a
Likert scale).

1.3. Measuring Subjective Randomness
Within psychology literature, two main measures of subjective
randomness for strings of symbols have been proposed: Difficulty
Predictor (DP) (Falk and Konold, 1997) and the model of
Griffiths and Tenenbaum (2003, 2004). Both measures try to
quantify the complexity of a sequence in order to compute a score
of subjective randomness in accordance with empirical data on
human judgments.

The DP score is computed by counting the number of runs
(any uninterrupted subsequence of the same symbol), and adding
twice the number of subsequences in which the symbols alternate.
For example, the sequence XXXOOOXOXO is composed by
a run of Xs, a run of Os, and an alternating sub-sequence
(XOXO), for a total value of DP equal to 4. If there are multiple
ways to segment the string, DP is calculated on the partition
that results in the lowest score. DP correlates very highly with
randomness judgments and a variety of related tasks. However,
DP is a parameter-free score and it is not possible to use it
to quantify how subjective randomness changes in different
conditions (e.g., by fitting DP to data obtained with different
tasks to investigate the variation of the parameters). Moreover,
as Griffiths and Tenenbaum (2003) observed, DP is not able
to account for subjective randomness with strings of different
length: for example, XXXXXXXXXXXOOXO and XXXOOXO
have the same value of DP (4) but clearly the long uninterrupted
run of Xs of the former provides a stronger evidence for some
kind of regularity.

Griffiths and Tenenbaum instead employed the Bayesian
framework to develop a probabilistic model of the
overalternating bias (Griffiths and Tenenbaum, 2003, 2004).
The randomness perception task is addressed in terms of the
statistical problem of Bayesian model selection: given a string,
it has to be inferred whether the process that generated it was
random or regular. From a rational point of view, the probability
of obtaining a specific binary string given a random generating
process is constant and equal to ( 12 )

k where k is the number of
elements of the string. Conversely, the probability of obtaining

that particular sequence given a regular generating process
is computed by means of a Hidden Markov Model (HMM):
through the parameters of the model it is possible to determine
regularities that people perceive when judging the randomness
of a binary sequence. In sum, the authors showed how through
a Bayesian framework is possible to model the perceived
randomness of binary sequences and its sensitivity to motif
repetition and other kind of regularities (such as various types
of symmetry). By means of these models it is possible to predict
accurately human judgments, including the overalternating bias.
Depending on the kind of regularities that can be detected, it
is possible to specify models of increasing complexity (from
4 to 8 parameters). Overall, results show that the model with
the highest number of parameters account better for observed
data and that such parameters vary coherently with different
experimental conditions (Griffiths and Tenenbaum, 2003, 2004).
This model has a very high number of parameters and it is deeply
grounded in a specific psychological theoretical framework (the
Bayesian probabilistic perspective), greatly complicating its use
for those who do not adhere to such perspective.

DP and the Griffiths and Tenenbaum model are highly
correlated and they are both able to account very well for
randomness judgments. The aim of the present work is then to
explore the possibility of modeling randomness judgments with
a parsimonious, parameter-based model not grounded into any
specific psychological framework. To this purpose, we focused
on some of the various measures of entropy proposed within
mathematics, physics, and information sciences.

2. MEASURES OF UNCERTAINTY: RENYI’S
ENTROPY AND THE ASYMMETRIC
ENTROPY OF MARCELLIN

As we have seen in Section 1.2, information theory has provided
a normative criterion (the second order entropy) to quantify
the uncertainty of strings of characters which are employed in
experimental psychology.

Moving however from Shannon’s definition and relaxing some
of its assumptions, others generalized versions and families of
information entropies have been obtained by authors like Rényi
(1961), Beck and Cohen (2003), Tsekouras and Tsallis (2005), and
Marcellin et al. (2006). Given indeed a distribution over a set of
events P = (p1, . . . , pN), information entropy H was derived
as a measure of the choice involved in the selection of an event
(or in the uncertainty of the outcome), by requiring continuity in
the events pi, monotonicity inN when equiprobability holds, and
that if a choice can be broken down into two successive choices,
the original H should be the weighted sum of the individual
values of H (Shannon, 1948). By relaxing, for instance, the third
requirement to a less restrictive form of additivity, in which
not only weighted sums are allowed but more general additive
functions, Rényi (1961) obtained the following generalization

Hα(P) =
1

1− α
log (

N∑

i=1

pα

i ) (5)
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where α is a non-negative integer and the scaling factor 1
1 − α

is given so that for a uniform distribution U it always holds
Hα(U) = logN for all values of α. The previous expression is
defined as the Renyi entropy of order α of a distribution P and it
is widely used in statistics, biology, and in quantum information
theory as ameasure of entanglement. It is a bounded, continuous,
non-increasing and non-negative function of α, it is concave for
α ≤ 1 and it loses concavity over the critical value αc which is
a function of N. On passing, notice also that Renyi’s entropy can
be given an interpretation in terms of p-norm on a simplex in N
dimensions. Most of all, it obeys additivity meaning that given
two distributions P andQ, it holds:

Hα(P ∗Q) = Hα(P)+Hα(Q)

Interestingly, entropy (5) encompasses several measures of
uncertainty such as Hartley’s entropy, quadratic entropy, min
entropy, and the Shannon entropy. Indeed, changes in the
parameter α imply that probabilities are sort of weighted. More
in detail, for α = 0 it returns the Hartley (max) entropyH0(P) =
logN, so that lower values of α move toward equiprobability;
if instead α = 2 it returns the quadratic (collision) entropy
H2(P) = − log (

∑N
i=1 p

2
i ); while in the limit α → ∞ it

returns the min entropy H∞(P) = mini (− log pi) so that
higher values of α shift the attention toward the event with
maximum probability. Finally, in the limit α → 1, by means
of L’Hopital’s rule, one can show that Renyi’s entropy becomes
exactly Shannon’s entropy, which is the only limit in which the
chain rule (or glomming formula) for conditional probability is
satisfied.

Alternatively, one might characterize a generic measure of
entropy (including Renyi’s) as a non-negative, symmetric and
strictly concave function, which is also bounded between a
minimum (usually zero, attained when there is one pk = 1
while all others pi = 0 for i 6= k) and a maximum
(attained for the uniform distribution). Within several fields
like medicine, marketing, and fraud detection, however, two
assumptions from the previous set can become critical: namely,
the symmetrical behavior with respect to different permutations
of the probabilities, and the association of the maximum entropy
with the uniform distribution (which is essentially the Laplace’s
principle of indifference). Entropy measures are indeed often
employed in learning tasks and, in particular, in growing decision
trees, in order to assign a leaf of the tree to a specific class
by means of suitable splitting rules. Marcellin et al. (2006)
noticed that in these cases a symmetric measure of uncertainty
can be deceiving since not necessarily the different classes are
balanced, meaning that their distribution is not a priori uniform.
Moreover, the meaning of detecting a particular class can vary:
for example, predicting a wrong disease (a false positive) has
different consequences than missing a disease (a false negative),
which reflects in non-equal misclassifications costs. In order to
overcome these limits, an asymmetrical measure of entropy was
proposed:

HW (P) =

N∑

i=1

pi(1− pi)

(1− 2wi)pi + w2
i

(6)

where W = (w1, . . . ,wN) is the worst distribution for
which the maximum value is attained. Such a measure of
entropy is non-negative, asymmetric (symmetry is restored
if W is uniform) and it is bounded between zero and a
maximum.

3. FITTING RENYI’S AND MARCELLIN’S
ENTROPIES TO RANDOMNESS
JUDGEMENTS

3.1. Materials and Methods
3.1.1. Rationale of the Study
Given the properties of Marcellin’s asymmetric entropy,
such measure might represent a suitable tool to model the
overalternating bias. The most notable feature of Marcellin’s
entropy is that the most uncertain distribution must be estimated
from data if not a priori available. This feature should reflect
that an asymmetry in the distribution entropy for the probability
of alternation would imply that the maximum randomness
is actually perceived when the frequencies of alternating and
non-alternating digrams are not equal. In our specific case
it is expected that maximum randomness is perceived when
alternating digrams exceed non-alternating ones. On these basis,
we fitted the second order entropy with Marcellin’s employing
four parameters: wOO, wXX , wXO, wOX . The first couple is related
to uniform digrams, whereas the second couple of parameters is
related to alternating digrams. Given that XX and OO should be
equivalent from a psychological point of view (as well as XO and
OX), we constrained the corresponding parameters to be close to
each other (see Section 3.2.1, Equations (7) and (8) for further
details).

Fitting Marcellin’s entropy to data, we expect that wXO and
wOX will be comprised between 0.5 and 1, thus maximally
contributing to the overall entropy of the sequence when the
alternating digrams are more likely to appear. Their contribution
to the sequence’s entropy should be reduced approaching a
probability of 1.0 for alternating digrams, since it represents
a completely alternating sequence, such as XOXOXOXO, that
doesn’t result in a high subjective randomness. On the contrary,
we expect that wOO and wXX will be comprised between 0 and 0.5
suggesting a high subjective randomness when an observer sees
a low proportion of uniform digrams. Similarly to the previous
case, the parameters wOO and wXX must be higher than 0 because
a complete absence of uniform digrams does not suggest an high
subjective randomness (as in the XOXOXOXO string).

We compared the fit of Marcellin’s measure of entropy with
the second order entropy computed with Shannon formula (as
a reference) and with Renyi’s entropy (because it encompasses
several measures of uncertainty). We fitted these three measures
of entropy to the 10 mean points of subjective ratings observed in
Falk and Konold’s experiment (Falk and Konold, 1997). Finally,
by employing the parameters of Marcellin’s entropy estimated
with these means, we compared the correlations between such
measures and other datasets of random judgments (obtained by
Gronchi and Sloman, 2009), as well as DP and Griffiths and
Tenenbaum model predictions.
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3.1.2. Target Values
We used Falk and Konold’s (1997) results to fit the models. As
described before, in that work the authors asked to “rate each
sequence on a scale of 0 to 10 according to your intuition of how
likely it is that such a sequence was obtained by flipping a fair
coin.” They employed forty strings comprised in four alternative
sets of 21 binary symbols (O and X). Each set was composed
by 10 sequences with a probability of alternation ranging from
0.1 to 1 (in intervals of 0.1). Half of the sequences had 11 Xs
and 10 Os and other half 10 Xs and 11 Os. For each value
of probability of alternation, the mean randomness rating was
computed obtaining a set of 10 points. We employed those values
as a target function for the fitting problem.

3.1.3. Parameter Fitting
In this Section we present the approach followed to find the
optimal parameters of Renyi’s and Marcellin’s entropy models to
fit the target function. First, we adopted the Euclidean distance
between the target function and the H2 of model (2) as a fitness
measure to quantify the goodness of the solution. More precisely,
we wanted to find (i) an optimal alpha for Renyi’s entropy and
(ii) an optimal set of weights forMarcellin’s entropy. To adapt the
parameters for the minimization of a fitness measure is a classic
optimization problem.

In several domains of application researchers employ search
methods, i.e., algorithms that test solutions of the problem
until a satisfactory condition is met. These methods are usually
adopted because they are “black box” approaches, thus they
are not based on the formal properties of the quality function.
As a consequence, convergence to the optimal solution is not
guaranteed, thus we need statistical measures to identify the
goodness of the solution.

We used the Differential Evolution (DE) algorithm (Storn
and Price, 1997) to solve our problem. DE has been recently
used by researchers for several optimization problems because
of its performance in unimodal, multimodal, separable, and
non-separable problems (Das and Suganthan, 2011). DE is
a population based algorithm, in which a member of the
population is a vector that represents the parameters of the
model. The size N of the population is usually between 2 and
20 times the number of elements of the vector. A large N
increases the time to compute a new generation, but speeds up
the convergence of the algorithm. To balance the two aspects we
use N = 20. Each member of the population is evaluated via
the fitness measure previously described. DE iteratively improves
the population selecting a target member vta and making a
comparison with a trial member vtr . The trial is generated in
two steps: the mutation and the crossover. In the mutation, three
random vectors v1, v2, v3, from the population, excluded the
target, are combined in a mutant vector: vm = v1 + F · (v2 − v3),
where F ∈ [0, 2] is the differential weight. In the crossover, given
the crossover rate CR ∈ [0, 1], the trial member is computed
randomly selecting an element either from the target or the
mutant with probability 1− CR and CR respectively. Finally, DE
compares the fitness measure of the target and the trial vectors.
The one with the best value remains in the next generation and
the other is discarded. The interested reader can refer to Cimino

et al. (2015) for further information on the parameterization and
the behavior of DE.

To identify the proper values of F andCRwe ran the algorithm
10 times for 100 generations with the following combinations of
parameters: F from 0.1 to 2 in steps of 0.1, and CR from 0.1 to
0.9 in steps of 0.1. We considered two criteria: (i) the algorithm
converges to the best fitness and (ii) the least average number
of generations needed to find the solution. The convergence
condition is met when at least one of the member fitness is lesser
than the best fitness among all trials increased by 1%.

3.2. Results
3.2.1. Parameter Fitting’s Results
The best set of CR and F is 0.9 and 0.6, respectively. With
this setting we ran DE for 100 times and in Table 1 we
summarized the results. For Renyi’s model optimization, all the
runs converged toward the same solution. For Marcellin’s model
95% converged toward the best solution found among all trials.
Only 5% converged toward a local minimum. However, the worst
solution found by DE with Marcellin’s model is still better than
the best found with Renyi’s model.

As described in Section 3.1.1, Marcellin’s model is subjected
to two constraints: the first binds the weights wOO and wXX to
be close to one another, and the second binds wXO to wOX . We
implemented the constraint binding the relative distance between
the weights wOO and wXX to be lesser than or equal to 0.1 as in
Equation (7) [same for weights wOX and wXO in Equation (8)].
This implementation restricts the search space of DE, i.e., the
trial vectors violating at least one of the constraints are discarded
and a new one is instead generated. These constraints reflect
that the uniform digram XX should be equivalent to OO from
a psychological point of view (as well as XO should be equivalent
to OX).

2 ·
|wOO − wXX|

wOO + wXX
≤ 0.1 (7)

2 ·
|wOX − wXO|

wOX + wXO
≤ 0.1 (8)

In line with our expectations, we found that wOO, wXX were
comprised between 0 and 0.5 whereas wXO and wOX were
comprised between 0.5 and 1 (Table 1). Figure 2 shows the best
fit of the empirical data from Falk and Konold (target function,
solid line) by the three entropy models. While Shannon’s (dashed

TABLE 1 | Best parameter tuning for different entropy models and their

respective best and worst fitness measures (and percentage of

convergence) found by DE.

Entropy Best parameters tuning Fitness measure

value (% convergence)

Best Worst

Shannon – 0.949 x

Renyi α = 2.37 0.875 (100%) (0%)

Marcellin wOO = 0.33, wXO = 0.68,

wOX = 0.69, wXX = 0.30

0.728 (95%) 0.755 (5%)
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line) and Renyi’s (dotted line) models show a symmetrical
curve centered in P(A) = 0.5, Marcellin’s model (solid with
circles) shows an asymmetrically right-skewed shape more
closely approximating Falk and Konold’s data.

3.2.2. Validation of Marcellin’s Entropy As a Measure

of Subjective Randomness
Given the parameters obtained for Marcellin’s entropy in the
previous section, we computed its Pearson product-moment
correlations with both the results of other randomness task
experiments and other two subjective randomness scores (DP
and Griffiths and Tenenbaum model). Griffiths and Tenenbaum
parameters were estimated in a separate experiment (Gronchi
and Sloman, 2009). The two datasets that we employed for

FIGURE 2 | The target function (solid) is the empirical data from Falk

and Konold. The entropies are respectively computed by Shannon (dashed),

Renyi (dotted), and Marcellin (solid with circles) formulas after parameter fitting.

validation were based on a categorization task: participants
observed sequences of eight binary elements (Heads and Tails).
All the possible sequences of eight elements are 256, but since
there are two sequences for each different configuration of
elements (e.g., TTTTTTTT is equivalent toHHHHHHHH), only
half of them were employed (128). Participants were instructed
that they were going to see sequences which had either been
produced by a random process (flipping a fair coin) or by some
other process in which the sequences of outcomes were not
random, and they had to classify these sequences according
to what they believed to be their source (random or regular).
For each sequence, the authors computed the proportion of
participants that classified the strings as random (thus, obtaining
a value between 0 and 1). Experiment A (Gronchi and Sloman,
2009) was conducted without measuring reaction times of
participants whereas in experiment B (Gronchi and Sloman,
2009) participants were required to respond as fast as they could
and reaction times were recorded.

The relationship between the percentage of random responses
given to each of the 128 sequences of Experiment A
(Figure 3A) and B (Figure 3B) and their Marcellin’s entropy
(with fitted parameters) resulted in a Pearson’s r = 0.60
and r = 0.67 respectively (Figure 3). Correlations were also
computed between the percentage of random responses and the
other corresponding measures of subjective entropy (DP and
Griffiths and Tenenbaum, Table 2). Experiment A results were
highly correlated to all measures of subjective randomness: it was
observed a correlation value equal to 0.60 for Marcellin, 0.67 for
DP, and 0.76 for Griffiths and Tenenbaum model. With regard
to experiment B, correlation values were 0.67, 0.73, and 0.80 for
Marcellin, DP, and Griffiths and Tenenbaum, respectively.

4. DISCUSSION AND CONCLUSIONS

In this paper we investigated the potentiality of Marcellin’s
asymmetric entropy for predicting randomness judgments

FIGURE 3 | Relationship between the percentage of random responses for the set of 128 sequences of Experiment A (A) and B (B) and their

Marcellin’s entropy (with fitted parameters, Table 1). Pearson’s r = 0.60 and r = 0.67, respectively.
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TABLE 2 | Pearson product-moment correlations of Experiment A and B

results with different subjective randomness scores (Marcellin’s Entropy,

Difficulty Predictor, Griffiths and Tenenbaum’s model).

Marcellin DP G&T

Experiment A 0.60 0.67 0.76

Experiment B 0.67 0.73 0.80

and the overalternating bias. Fitting Marcellin’s entropy to
randomness rating, we observed a better fit compared to
subjective randomness measures based on classical Shannon’s
entropy and on Renyi’s entropy, which represents a generalized
form of such measures of uncertainty comprising many different
kinds of symmetric entropies. The estimated parameters for
Marcellin’s are coherent with the overalternating bias: the
overabundance of alternating substrings corresponds to a high
value of subjective randomness (compared to the Shannon
entropy criterion which provides an equal proportion of these
substrings). In the same way, the lack of uniform substrings
indicates a high value of subjective randomness. Frequencies
are about 68% for the alternating substrings and 30–32%
for the uniform ones. Differently from Marcellin’s, the other
entropy measures are symmetric around the equipartition
of the events, so they are unable to account for the
overalternating bias.

We validated the asymmetric-entropy-based measure of
subjective randomness correlating it with different datasets
and other subjective randomness scores (DP and Griffiths
and Tenenbaum model). As expected by previous literature
(Falk and Konold, 1997; Griffiths and Tenenbaum, 2003,
2004), DP and Griffiths and Tenenbaum’s model were
highly correlated with empirical judgments. Although such
correlations were higher compared to Marcellin’s entropy,
the Pearsons’s r-values of the latter are indeed high, with
a minimum value of 0.60. Given the very noisy nature of
these experiments, this result confirms the potentiality of
Marcellin’s asymmetric entropy for modeling randomness
judgments.

Marcellin’s entropy may thus represent a viable alternative to
DP and Griffiths and Tenenbaum’s measure. As a matter of fact,
there can be some cases in which such measures are of limited
use. Being a parameter-free measure, the simplicity and the lack
of any theoretical framework of DP are together its strengths and
weaknesses. On the one hand, DP can easily be computed for
quantifying subjective randomness without any fitting procedure.
On the other hand, DP cannot be used to investigate how
different factors can affect randomness judgments and the
overalternating bias. Moreover, DP is a coherent measure only
when computed over strings of the same length because it is
not affected by the length of uniform subsequences of outcomes
(such as XXX or XXXXX) in a sequence. Indeed, the subjective
randomness of a uniform subsequence decreases as the length of
the substring increases.

On the contrary, the measure of Griffiths and Tenenbaum
(2003, 2004) has several parameters and it is theoretically
grounded in the Bayesian probabilistic framework. Its complexity

is counterbalanced by the possibility to model what are the
kinds of regularities (motifs repetition and length, symmetries,
duplications) that influence randomness judgments. So, by
using the Griffiths and Tenenbaum (2003, 2004) model it is
possible to investigate how different factors can alter subjective
randomness and hypothesis about randomness perception. For
example, employing this model, Hsu et al. (2010) explored the
hypothesis that the regularities detected in two-dimensional
binary visual arrays (and the resulting randomness evaluation)
is affected by the statistical structure of our visual world.
Furthermore, the model of Griffiths and Tenenbaum was
conceived combining the rational statistical inference approach
with the algorithmic information theory1. Being grounded into
well-known mathematical and information science theories,
their measure can exploit the advantages of being expressed
in formal terms. Significantly, the authors demonstrated how
the Bayesian probabilistic modeling approach (that has been
proven to account for many psychological phenomena) is also
able to address the domain of randomness perception. However,
this aspect can also be a limiting factor because the use of
the Bayesian approach in psychology is still a controversial
issue (Bowers and Davis, 2012) and there is no unanimously
accepted opinion about its application in modeling cognitive
processes.

Marcellin’s entropy as a measure of subjective randomness
stands in a middle ground between DP and Griffiths and
Tenenbaum’s model. Differently from DP, Marcellin’s entropy
is a parameter-based measure but it is more simple and
parsimonious than Griffiths and Tenenbaum’s model. Marcellin’s
entropy can be employed to quantify how much randomness
judgments are distorted toward the overalternating bias and
thus it is possible to investigate how different factors may
affect participants’ responses. However, the greater parsimony
of Marcellin’s measure entails the impossibility to assess the
kinds of regularities that influence the judgments. In sum,
Marcellin’s entropy is a measure, defined in formal terms and
drawn from current data mining literature, whose parameters
appear to suitably characterize the bias in our perception and
does not require to accept the Bayesian approach as a theoretical
reference framework. Such measure can be considered a suitable
alternative to DP and Griffiths and Tenenbaum’s model to
quantify subjective randomness in future psychological studies.
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