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Hoekstra et al. (Psychonomic Bulletin & Review, 2014, 21:1157–1164) surveyed the

interpretation of confidence intervals (CIs) by first-year students, master students, and

researchers with six items expressing misinterpretations of CIs. They asked respondents

to answer all items, computed the number of items endorsed, and concluded that

misinterpretation of CIs is robust across groups. Their design may have produced

this outcome artifactually for reasons that we describe. This paper discusses first the

two interpretations of CIs and, hence, why misinterpretation cannot be inferred from

endorsement of some of the items. Next, a re-analysis of Hoekstra et al.’s data reveals

some puzzling differences between first-year and master students that demand further

investigation. For that purpose, we designed a replication study with an extended

questionnaire including two additional items that express correct interpretations of CIs (to

compare endorsement of correct vs. nominally incorrect interpretations) and we asked

master students to indicate which items they would have omitted had they had the option

(to distinguish deliberate from uninformed endorsement caused by the forced-response

format). Results showed that incognizant first-year students endorsed correct and

nominally incorrect items identically, revealing that the two item types are not differentially

attractive superficially; in contrast, master students were distinctively more prone to

endorsing correct items when their uninformed responses were removed, although they

admitted to nescience more often that might have been expected. Implications for

teaching practices are discussed.

Keywords: method bias, confidence intervals, hypothesis testing, parameter estimation, statistical education

INTRODUCTION

In a recent study, Hoekstra et al. (2014) administered a questionnaire to first-year students, master
students, and researchers, asking them to indicate whether or not each of six interpretations (all
of them incorrect) follows logically from Prof. Bumbledorf ’s claim that “the 95% CI for the mean
ranges from 0.1 to 0.4.” Respondents were asked to answer all items and Hoekstra et al. reported
similarly high endorsement rates in all groups, from which they concluded that misinterpretation
of CIs is robust. Yet, method bias may have produced this outcome artifactually, as discussed next.

First, by including only items that express incorrect statements about a CI, endorsement
always points in the direction of presumed misinterpretation, with correct interpretation inferred
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indirectly only if none of the items is endorsed. A balanced
number of correct and incorrect items is needed to distinguish
true misinterpretation (when incorrect items are endorsed and
correct items are not) from confusion or incognizance (when
incorrect and correct items are endorsed equally often).

Second, when all items are incorrect, the request to answer
all items aggravates the problem: Respondents who ignore what
CIs are (e.g., first-year students who have not taken an inferential
statistics course) or who are uncertain as to how it is interpreted
(arguably, some master students and researchers) are forced to
provide responses that will be construed as misinterpretation,
except in the unlikely event that such respondents opt to endorse
none of the items (an eventuality that, for the same reason,
cannot be construed as reflecting correct interpretation of a CI).
Providing a third response option (i.e., “I don’t know”) and
allowing omissions is needed to separate true misinterpretations
from mere guesses forced by the request to answer all items.

Third, how scholars interpret CIs refers to their natural
verbalizations, which are not adequately represented by the
true/false items in a questionnaire. For instance, first-year
students will surely make no spontaneous attempt at interpreting
something that they have never heard of (e.g., a CI reported in
a paper on their reading list for some course); similarly, active
researchers’ interpretation of a CI can only be truly assessed via
analysis of their spontaneous descriptions of the meaning of the
CI they are reporting, or maybe also by analysis of their open-
ended responses when asked to describe the interpretation of a
CI. Admittedly, data for such assessments are much harder to
obtain and even harder to interpret, but inferences are certainly
suspect when data come from scholars’ responses to items whose
wording does not match the wording that they would have used
in the statement they might have produced.

Finally, it is contentious that all items were incorrect, as
demonstrated by the exchange between Miller and Ulrich (2016)
and Morey et al. (2016). For another example, item 3 stated
that “the null hypothesis that the true mean equals 0 is likely
to be incorrect” (see the Appendix in Supplementary Material).
This statement cannot be tagged as incorrect without clarification
of what “likely” means in it, something that is left to each
respondent’s discretion. Also, that the truemean has some precise
value is surely (let alone likely to be) incorrect, which makes
the statement on the item correct and, thus, endorsable by a
knowledgeable respondent. It is also arguable that all items assess
interpretation of CIs. For instance, item 6 stated that “if we were
to repeat the experiment over and over, then 95% of the time
the true mean falls between 0.1 and 0.4.” By referring to a true
mean that varies across repetitions of the experiment, the item is
immediately classifiable as incorrect by anyone who understands
that the populationmean is a fixed and invariant value; endorsing
this item is thus indicative of a more basic misconception that
does not involve CIs.

To address these issues, we replicated Hoekstra et al.’s
(2014) study using a questionnaire that included the same
items and two more expressing correct interpretations of CIs
(see the Appendix in Supplementary Material). We limited
our study to first-year and master students, in search for
traces of knowledgeability in statistically educated individuals

in comparison to still uneducated first-year students. As in the
original study, respondents were asked to answer all items. Yet,
on an immediate second pass that had not previously been
mentioned, master students were asked to mark the items that
they would rather have omitted or to which they would have
responded “I don’t know” if they had had the option. This
second pass was omitted with first-year students because they
did not know what a CI is or how it is computed. Our results
reflect first-year students’ incognizance in that they endorsed
correct and incorrect items identically, revealing also that the
two item types do not differ in attractiveness and, thus, ruling
out a potential source of method bias. Master students showed
instead distinct endorsement patterns for incorrect and correct
statements, with higher proneness to endorse the latter. Self-
declared incognizance or preference for omitting on the second
pass was not uncommon among master students. Restricting the
analysis to informed responses only, the patterns of endorsement
of correct and incorrect statements by master students separated
even further.

The paper is organized as follows. The next section discusses
the two correct interpretations of CIs, leading to an analysis
of the (un)certainty with which misinterpretation of CIs can
be inferred from endorsement of the items in Hoekstra
et al.’s (2014) questionnaire. Next, we analyze and discuss a
conspicuous difference between first-year and master students
in the data of Hoekstra et al., which is consistent with the
notion that master students may have used knowledge of CIs
to disambiguate nominally incorrect items and identify them as
correct statements. Finally, we describe our extension and discuss
the results.

TWO CORRECT INTERPRETATIONS OF
A CI

The theory from which CIs are derived and the ensuing
properties of CIs permit two interpretations that we will
separately describe and discuss next. One is in the context of
significance testing; the other is in the context of parameter
estimation. With such correct interpretations in mind, we will
close this section with a discussion of the resultant difficulty to
infer misinterpretation of CIs from endorsement of the items in
the questionnaire of Hoekstra et al. (2014).

The CI as the Range of Point Hypotheses
that the Current Data Will Not Reject in a
Size-α Test
The expressions with which the upper and lower limits of the CI
for a distributional parameter are computed emanate from the
setup of a significance test for that parameter. The link holds for
any parameter but, for simplicity, take the case of a single mean in
the usual conditions of unknown population variance. In a two-
sided size-α test of the null hypothesis H0: µ = µ0 against the
alternative H1: µ 6= µ0, the null is not rejected if it so happens

that tn−1,α/2 < T < tn−1,1−α/2, where T = X̄−µ0

sx/
√
n
, X̄ is the sample

mean, sx is the sample standard deviation, n is the sample size,
and tν,q is the q-th quantile of a t distribution on ν degrees of
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freedom. The reason is that the sampling distribution of the test
statistic T ensures that

Prob(tn−1,α/2 < T < tn−1,1−α/2) = 1− α (1)

if the null hypothesis is correct (i.e., if the true value of the
population mean is µ0), rendering the desired size-α test. It
is important to notice that T in Equation (1) is a random
variable and, then, Equation (1) represents a statement about
the probability that such a random variable lies within the stated
limits.

One can thus wonder about the set of hypotheses (i.e., values
of µ0) that the current data would not reject. Rather than
repeatedly computing T for different values of µ0 and checking
against the limits for rejection, one can manipulate Equation (1)
algebraically to arrive at

Prob(X̄ −
sx√
n
tn−1,1−α/2 < µ0 < X̄ −

sx√
n
tn−1,α/2) = 1− α,

(2)

which thus gives the well-known limits of the 100(1 − α) % CI
for the mean.

It is important to steer away from two common
misconstructions of Equation (2). First, µ0 (the hypothesized
value) cannot be replaced with µ (the true mean) in Equation
(2). The true value of the population mean was never involved
in this derivation and it cannot appear in it by magic. Because
the algebraic manipulation that rendered Equation (2) cannot
alter the original meaning of Equation (1), this manipulation has
only made explicit the range of values for µ0 that the current
data will not reject. Second, Equation (2) is not a statement
about the probability that µ0 (let alone µ) lies within the stated
limits, because µ0 (let alone µ) is not a random variable in the
first place. Then, the literal interpretation of Equation (2) (or
the corresponding CI) as expressing the probability that the true
mean lies between those limits is unjustifiable and incorrect:
The true mean is a fixed value, not a random variable with some
probability distribution. This holds also for analogous statements
that can be made from other theoretical frameworks. From the
perspective discussed thus far, a CI is only the range of values
that one could have placed in a null hypothesis that the current
data would not reject in the corresponding size-α test.

The foregoing discussion used a two-sided test and its dual CI
but analogous considerations hold for one-sided tests, although
CIs associated with one-sided tests illustrate more clearly the
inadequacy of some commonmisinterpretations of CIs. Consider
a right-tailed size-α test of H0: µ = µ0 against H1: µ > µ0. Now
the null is not rejected if it so happens that T < tn−1,1−α, also
because

Prob(T < tn−1,1−α) = 1− α (3)

if the null is correct. Algebraic manipulation of Equation (3)
renders

Prob(µ0 > X̄ −
sx√
n
tn−1,1−α) = 1− α. (4)

Derivation of the CI associated with a left-tailed test is analogous
and the resultant CI has infinite width in both cases. Again,
although Equation (3) is unquestionably a statement about the
probability that the random variable T falls below tn−1,1−α,
Equation (4) only describes the range of values for µ0 that one
could place in a null hypothesis that the current data would
not reject. A numerical example shows also that the common
misinterpretation that a CI indicates the plausible range where
the true parameter lies is unacceptable. Consider a size-0.05 test
of H0: µ = 100 against H1: µ > 100 using a random sample of
n = 50 observations for which X̄ = 101.71 and sx = 9.07. The
data do not reject the null (T = 1.331; p = 0.095); on the other
hand, from Equation (4), the 95% CI for the mean ranges from
99.56 to infinity. These two results are in apparent contradiction
if one mistakes the CI as indicating a range of “plausible” values
for the true mean: Given that the CI includes also the value 150,
why was the null not rejected in the right-tailed test? The obvious
answer is that the CI only indicates the range of hypotheses that
the current data do not reject. Clearly, these data do not rejectH0:
µ = 150 against H1: µ > 150 because, for one thing, the sample
mean is away from the null in a direction opposite to what the
alternative states. This example also shows once again that not
rejecting the null hypothesis does not mean that the null is true
(or even reasonable).

CIs can be derived that are dual with significance tests for
other parameters (variances, Bernoulli probabilities, correlations,
etc.) or functions thereof (e.g., differences between means). All
of them can always be interpreted as the range of parameter
values that the current data would not have rejected. Whenever
hypothesis testing is the primary research goal, this interpretation
of CIs softens the apparent magical status of a point null
hypothesis (e.g., that the difference between population means is
exactly 0) and broadens the researcher’s view by making explicit
that there is a range of hypotheses that the data are compatible
with (in the sense of not being rejected by the data).

The CI as a Claim (About the Parameter)
that is True with Probability 1 − α

CIs constructed as discussed above have the property that
100(1− α) % of them include the true value of the parameter (or
the difference between parameters). This property stems from the
sampling distributions also used to define non-rejection regions
in significance tests. But we will never know whether the CI
computed from the data on hand is one of those that include
the value of the population parameter. Any particular CI, with its
limits computed from the current data, is the observed outcome
of a random experiment and it either includes the parameter
or it does not: There is no such thing as a probability that this
particular CI includes the parameter.

To see that probabilities are not attached to observed
outcomes, consider the textbook example of a random
experiment in which a ball is drawn from an urn in which
95% of the balls are red and the rest are white. The Bernoulli
random variable is “color of the drawn ball,” with a probability
distribution in which “red” has probability 0.95 and “white” has
probability 0.05. Drawing a ball renders a particular realization
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that is invariably red or white, not red with some probability
and white with the rest. Understanding the distinction between
a random variable (with values to which probabilities of
occurrence can be assigned) and its realizations (which are
the specific values that happened to be observed and whose
status is that of invariable facts) allows one to accept without
hesitation that the probability of drawing a red ball is 0.95 and,
simultaneously, that each individual ball in the urn is invariably
red or white; no-one would claim that this ball just pulled out of
the urn, which is unmistakably white, still has 0.95 probability of
being red. In other words, the color of the ball that happened to
be drawn on an individual occasion is not a random variable but
a fact.

Conducting a study to estimate distributional parameters
represents an analogous random experiment: One draws a
sample from the population of samples that could have been
drawn, and this sample “comes with” a realization of the, say, 95%
CI for the parameter. The relevant Bernoulli random variable in
the context of this discussion is “true parameter value enclosed
by the CI,” which also has a discrete probability distribution in
which “yes” has probability 0.95 and “no” has probability 0.05.
But, unlike in the urn example, looking at the computed CI does
not allow identifying whether the outcome was “yes” or “no” and,
yet, it is definitely one or the other. In other words, the realization
of the random experiment is not classifiable. Regarding the
interpretation of CIs in these conditions, the crucial question
is, then, what is 1 − α the probability of? Certainly, it is not
the probability that the observed CI encloses the true parameter
value because, like the ball drawn from the urn, this CI either
encloses or does not enclose the parameter. And, at the same
time, the random experiment was realized under conditions in
which CIs that enclose the true parameter value occur with
probability 1− α.

The tricky part is embedding these notions in an exquisitely
precise but succinct and non-convoluted statement that, ideally,
does not lend itself to misinterpretations. It is nevertheless
puzzling that the misinterpretation of statements on the
probability with which random events may occur hits so hard the
community of researchers in psychology when it comes to CIs.
Consider a thoroughly analogous situation in a different context,
namely, someone buys a single ticket for a 1000-number, single-
prize raffle. Until the day of the draw, one can only state that
the probability is 0.001 that this will be the winning number.
On the day of the draw, the ticket either holds or does not hold
the winning number, an invariable fact to which probability no
longer applies. This transition requires that the draw takes place
and, importantly, that its outcome is identifiable. Yet, before the
draw, one lives in comfortable harmony with the idea that “the
probability that I have the winning number is 0.001.” Computing
a, say, 95% CI is essentially identical to buying a raffle ticket
that has 0.95 probability of being a winner (i.e., enclosing the
true parameter value), but with a crucial difference: The final
draw is never made, as this will require that at some point we
come to know the true parameter value. In the raffle, hardly
anybody will mistake the statement “the probability that I have
the winning number is 0.001” as meaning that the winning
number pulled out in the final draw has a probability 0.001

of being the number that it actually is. Why psychologists find
trouble dealing with the analogous statement “the probability
is 0.95 that the 95% CI that I just computed encloses the true
parameter” is anybody’s guess, but the reason may be a failure to
realize that a computed CI is like a ticket for a raffle in which the
final draw is endlessly postponed. Or, perhaps more fittingly, like
a scratch-off ticket that cannot be scratched to disclose whether
the prize was won. The key issue is that computing a CI is not
observing the outcome of the random variable of concern (i.e.,
enclosure of the true parameter), which is indeed unobservable.
Then, the only specificity around the computation of CIs is that
none of the individual realizations of the random experiment can
ever be classified as to enclosure. But this does not change the
characteristics of the Bernoulli random variable of concern, nor
does it affect the probability distribution of its outcomes. These
considerations lead to the statement that we were after.

Consider the population of, say, 95% CIs for the mean
computed across all samples that could be drawn in the context
of some study. For each sample, the CI ranges from A to B, with
A and B varying across samples. The properties of CIs ensure
that 95% of the members of the population of CIs enclose the
true parameter value and, hence, the claim “the true mean lies
between A and B” is true for 95% of the members, just as the
claim “the ball is red” is true for 95% of the balls in the urn or
the claim “this is the winning number” is true for 0.1% of the
raffle tickets. Conducting a study amounts to drawing a single
sample that provides the data for all computations, including the
95% CI for the mean. Then, the claim “the population mean lies
between A and B” has been randomly drawn from a population
of claims in which 95% of them are true and, hence, such claim
has probability 1 − α of belonging in the subset of claims that
are true. Thus, the statement “the 95% CI for the mean ranges
between 0.1 and 0.4” means “the claim that the population mean
lies between 0.1 and 0.4 has 0.95 probability of being true.”

In sum, the procedure used to compute CIs ensures that the
categorical claim “Parameter θ lies between A and B” is true with
probability 1 − α. The limits A and B will vary across samples
from the same population and also with the size of each sample.
When one such claim is made with A and B computed from the
current data, that particular realization of the claim is certainly
either true or false but its truth value will never be unraveled, as
in the endlessly postponed raffle. The probability 1 − α applies
to the truth of the claim that the parameter lies within the stated
range.

The use of CIs for interval estimation raises another issue that
needs to be discussed due to its bearings on Hoekstra et al.’s
(2014) items. In principle, CIs could be derived to be dual with
two-sided, right-tailed, or left-tailed tests. The procedure ensures
that the resultant claims are true with probability 1 − α, but
the stated ranges differ meaningfully. Consider the numerical
example given in the preceding section, where a right-tailed 95%
CI yields the claim “The true mean is greater than 99.56.” For
the same data, a left-tailed 95% CI yields “The true mean is
lower than 103.86” whereas a two-sided 95% CI yields “The true
mean lies between 99.13 and 104.28.” Without sacrificing the
probability that the claim is true (i.e., keeping 1 − α fixed), one
might strive for the CI involving the narrowest range. When the
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FIGURE 1 | Width of the 95% CI for several parameters (panels) as a function of how α (0.05 in this illustration) is split into ε1 and ε2, with ε1 + ε2 = α.

In each panel, the horizontal axis indicates the value of ε1 and the dashed vertical line marks the even split that renders the central CI. The curve(s) in each panel

plot(s) the width of the CI defined as the difference between the upper and lower limits in Equations (5)–(8), with values for required sample statistics indicated in the

insets in each panel and assuming n = 100 in all cases. The precise split at which the CI is shortest is indicated by a dashed vertical line from the curve (at its

minimum) to the horizontal axis. CIs represented with black curves are shortest at the even split.

parameter of concern is the mean (or the difference between
means), the narrowest range occurs indeed for the central or
equal-tails CI associated with a two-sided test, where the upper
and lower limits are computed by splitting α evenly between the
left and right tails (as in Equation 1 above). An infinite number
of noncentral CIs can be defined by instead splitting α unevenly,
of which the left-tailed CI and the right-tailed CI are the most
extreme cases. Interestingly, central CIs are not the narrowest
members of this infinite family when they are based on skewed
sampling distributions, and this is the case when the parameters
of concern are variances, Bernoulli probabilities, or correlations.
In general, for any split of α into ε1 and ε2 such that ε1 ≥ 0, ε2 ≥
0, and ε1 + ε2 = α, the 100(1− α) % CI is

[

X̄ −
sx√
n
tn−1,1−ε2 , X̄ −

sx√
n
tn−1,ε1

]

(5)

for the mean,
[

ns2x
χ2
n−1,1−ε2

,
ns2x

χ2
n−1,ε1

]

(6)

for the variance, where χ2
v,q is the q-th quantile of a χ2

distribution on v degrees of freedom,





2np+ z21−ε2
− z1−ε2

√

4np(1− p)+ z21−ε2

2(n+ z21−ε2
)

,

2np+ z2ε1 − zε1

√

4np(1− p)+ z2ε1

2(n+ z2ε1 )



 (7)

for the Bernoulli probability, where p is the sample proportion
and zq is the q-th quantile of the unit-normal distribution,1 and





1− 1−rxy
1+rxy

exp
[

2z1−ε2√
n−3

]

1+ 1−rxy
1+rxy

exp
[

2z1−ε2√
n−3

] ,
1− 1−rxy

1+rxy
exp

[

2zε1√
n−3

]

1+ 1−rxy
1+rxy

exp
[

2zε1√
n−3

]



 (8)

1This CI can be defined in other ways, but this is appropriate under binomial

sampling (see García-Pérez, 2005).

for the correlation, where rxy is the sample correlation.
In the above expressions, ε1 = ε2 = α/2 renders the central

CI whereas ε1 = 0 (hence, ε2 = α) renders the right-tailed CI
and ε1 = α (hence, ε2 = 0) renders the left-tailed CI. As seen
in Figure 1, the central CI is shortest for the mean, for the
Bernoulli probability when the sample proportion is 0.5, and for
the correlation when the sample correlation is 0; in other cases,
there is always some noncentral CI that is shorter than the central
CI, although which one it is varies with sample size and with
the values of the sample statistics involved in the computation.
Although short CIs are comforting, it should be noted that they
are not more accurate: The probability that the resultant claim
about the parameter is true is always 1− α, regardless of the width
(or location) of the CI.

Inferring Misinterpretation from
Endorsement of Items in the Questionnaire
Consideration of the two correct interpretations of a CI allows
an assessment of the certainty with which misinterpretation
of CIs can be inferred from endorsement of the items in
the questionnaire of Hoekstra et al. (2014). Inferring states
of knowledge from item responses requires items worded
unambiguously and whose content relates exclusively to the piece
of knowledge being assessed and not to something else. We
argued in the Introduction that items 3 and 6 in the questionnaire
do not satisfy at least one of these requirements and we will not
discuss them further here, but recall that the statement in item
3 is correct (on grounds unrelated to CIs) whereas the statement
in item 6 is incorrect on grounds also unrelated to CIs. In these
conditions, inferring correct or incorrect interpretation of a CI
from responses to these two items takes a leap of faith.

Besides the two conditions just stated, items must be
administered with allowance for omissions, because uninformed
responses are unrelated to the knowledge being assessed. In our
discussion of the four remaining items, we will assume that
responses are informed (or misinformed, for that matter) when
we refer to the states that can be inferred from endorsement or
non-endorsement.
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Wewill leave the first two items for last. Items 4 and 5 (namely,
“there is a 95% probability that the true mean lies between 0.1
and 0.4” and “we can be 95% confident that the true mean lies
between 0.1 and 0.4”) only differ in a reference to probability or
confidence. Hoekstra et al. (2014) assumed that these items would
be endorsed by those who think that probability or confidence
relates to the stated range of values for the parameter, whereas
those who understand that this is not the case would not endorse
the items. However, there is nothing in the wording of these items
that prevents knowledgeable respondents from interpreting that
probability (or confidence) refers instead to the truth of the claim
being made (as in, e.g., “there is a 0.1 probability that the winning
number is among the 100 raffle tickets in my hands”). They
would thus demonstrate their correct interpretation of CIs by
endorsing both items. In other words, the imprecise wording
of items 4 and 5 carries two alternative meanings, only one
of which is incorrect as an interpretation of CIs. But which
meaning respondents reacted to is undecipherable from their
response.

Item 1 (namely, “the probability that the true mean is greater
than 0 is at least 95%”) is equally ambiguous, raising the same
issues as items 4 and 5. A knowledgeable respondent (i.e., one
who interprets this item as “the claim ‘the true mean is greater
than 0’ is true with probability 0.95 or higher”) will realize
that the information provided is insufficient to respond. From
Equation (4) above, item 1 is true at the limiting probability
if X̄ − sx√

n
tn−1,0.95 = 0. In search for the answer, one may

surmise that, as usual, Prof. Bumbledorf was reporting the central
95% CI in which ε1 = ε2 = α/2 so that X̄ = 0.25. But the
remaining ingredients are nowhere to be found, although it is
virtually impossible that the numbers will match up. Then, to a
knowledgeable respondent, item 1 is likely (subjectively) to be
false, but not for the reason that Hoekstra et al. (2014) intended
to embed in it.

Item 2 (i.e., “the probability that the true mean equals 0 is
smaller than 5%”) is equally ambiguous and poses a similar
challenge to knowledgeable respondents who take it as meaning
“the claim ‘the true mean equals 0’ is true with probability less
than 0.05.” The solution is simpler in this case. By mentioning
a single value instead of a range, the claim relates to the
(central or noncentral) zero-width CI associated with α = 1
(i.e., ε1 + ε2 = α = 1 makes tn−1,1−ε2 = tn−1,ε1 in Equation
(5) and, thus, the CI has zero width). Hence, the claim “the
population mean equals 0” is true with probability 1− α= 0 and,
since 0 < 0.05, the knowledgeable respondent will endorse this
item.

In sum, inferring misinterpretation from endorsement of
the nominally incorrect statements in the questionnaire of
Hoekstra et al. (2014) is difficult to justify. Some items can be
identified as incorrect (and, hence, not endorsed) irrespective of
their reference to CIs, whereas others are correct (and, hence,
endorsable) when the ambiguity of their wording is resolved
in the appropriate manner, something that rests entirely in the
hands of the respondent without leaving any observable traces.
Hoekstra et al.’s conclusion that CIs are robustly misinterpreted
is, then, unwarranted.

A CLOSER LOOK AT THE DATA OF
HOEKSTRA ET AL. (2014)

Hoekstra et al. (2014) administered the 6-item questionnaire we
just discussed to 442 first-year psychology students, 34 master
students, and 120 researchers, although responses from two of
the latter were discarded and results reported for the remaining
118 researchers. (Interestingly, these individuals were excluded
because one of them had left an item unanswered and the other
had indicated that one of the items was both true and false.) All
items were regarded as incorrect and the main outcome variable
was the number of items endorsed (NE). The average NE was
similar in all groups (3.51, 3.24, and 3.45, respectively for first-
year students, master students, and researchers) despite their
presumed differences in knowledgeability.

Even if all items were incorrect, a mere comparison of average
NE overlooks some differences that can be appreciated in the raw
distributions of NE (solid bars in the top row of Figure 2). While
the distribution for first-year students is peaked and narrow,
distributions for master students and researchers are broader and
less peaked, particularly for master students. This shows once
more that routine comparison of means is not always the best
way to compare groups. To assess these differences, we conducted
a size-0.05 omnibus test of homogeneity of distributions, which
came out significant (X2

12 = 24.81; p = 0.016). A size-0.05
familywise test with correction for multiple testing in the analysis
of residuals (García-Pérez et al., 2015) also rejected homogeneity
due to larger-than-expected counts at extreme NE for master
students. Although significance tests do not reveal truth, these
results indicate that the noticeable difference in the distribution
of NE in Figure 2 for master students relative to the two other
groups is larger than one would generally expect from sampling
error if the population distributions were identical.

Because the empirical distributions are overdispersed for a
binomial variable, we fitted a beta-binomial model in which the
probability p of endorsing has a beta distribution with parameters
v and w (Wilcox, 1981; see also Forbes et al., 2011, p. 61). We
obtained maximum-likelihood estimates of these parameters in
each group and the estimated beta distributions for p are plotted
in the bottom row of Figure 2. Open bars in the top row of
Figure 2 depict the expected distribution under the fitted beta-
binomial model. The fit is good by eye and, in size-0.05 tests, the
G2 goodness-of-fit statistic with four degrees of freedom did not
reject the model in any group (first-year students: G2 = 7.40,
p = 0.116; master students: G2 = 8.99, p = 0.061; researchers:
G2 = 2.55, p = 0.635).

Whether via empirical distributions of NE (solid bars in
the top row of Figure 2) or via the estimated distributions of
p (bottom row of Figure 2), one cannot help wondering why
master students would be so different. In principle, statistical
education should have made them knowledgeable in comparison
to first-year students who have not yet received such education.
Then, if statistical education is effective, one would expect the
distribution of NE to be shifted downward for master students
compared to first-year students: The latter will only display the
willingness to endorse statements by incognizant respondents,
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FIGURE 2 | (Top row) Empirical distribution (solid bars) of number of items endorsed (NE) in each of three groups and expected distribution (open bars) in each group

according to a beta-binomial model. Numerals along the top of each frame indicate the empirical count of respondents at each NE. (Bottom row) Estimated beta

distribution for the probability p of endorsing in each group, with estimated parameters printed in the insets.

whereas master students (and researchers) should have been
able to identify the statements in the questionnaire as incorrect.
Compared to the beta distribution for first-year students (left
panel in the bottom row of Figure 2), the probability mass
is indeed larger at low endorsement rates for master students
and researchers, but it is at the same time also larger at high
endorsement rates. Ironically, knowledgeability may indeed be
responsible for this puzzling outcome, given that some of the
(only nominally) incorrect statements could have been identified
as correct by knowledgeable respondents and, hence, endorsed.

Unfortunately, Hoekstra et al.’s (2014) questionnaire does
not permit assessing knowledgeability, that is, whether the
endorsement patterns of master students and researchers reflect
incognizance, correct interpretation, or misinterpretation. What
is nevertheless clear is that first-year students’ responses do not
reflect misinterpretation but only their willingness to endorse
when forced to classify items as true or false under complete
ignorance.

OUR REPLICATION

We replicated Hoekstra et al.’s (2014) study with extensions
that permit telling misinterpretation from incognizance and
identifying correct interpretations of CIs. This was achieved
by altering the response format and by including items that
unequivocally express correct statements. Our study included
samples of first-year and master students only. Data from
first-year students were not expected to reveal anything but
their incognizance. Yet, and precisely for this reason, their
data served the more important purpose of checking out
whether correct and nominally incorrect statements differ in
attractiveness, something that would result in method bias. To

parallel the analyses of Hoekstra et al., the six items in the original
questionnaire were grouped together as nominally incorrect
items, but recall that some of them are actually correct whereas
others are correct or incorrect according to how their ambiguity
is resolved.

Participants
The sample of first-year students consisted of 313 individuals
enrolled in a bachelor program in psychology at Universidad
Complutense de Madrid (UCM). At the time of our study, they
were taking an introductory statistics course that did not include
any inferential statistics. The sample of master students consisted
of 158 individuals enrolled in a master program in psychology
at UCM. All master students had taken a course on inferential
statistics during their bachelor studies and they had also had
numerous opportunities to come across CIs as presented in the
literature within their specialty choice.

Materials and Procedure
This research followed the APA ethics code and the protocol
was institutionally approved. We used a Spanish translation
of the questionnaire of Hoekstra et al. (2014), which was
supplemented with two additional items expressing correct
interpretations of CIs (see the Appendix in Supplementary
Material). Our questionnaire was otherwise administered with
identical instructions. To facilitate cross-references, the first six
items were ordered as in the original questionnaire and the two
additional items stated (in Spanish) the following:

7. The claim “The true mean lies between 0.1 and 0.4” is true
with probability 0.95.

8. The data are compatible with the notion that the true mean
lies between 0.1 and 0.4.
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These items express the two correct interpretations discussed
earlier. The last item is admittedly vague insofar as the referents
for “compatible” and “notion” are unclear, and also because it
does not link up with the confidence level. Nevertheless, there
is nothing strictly incorrect in this vague wording. With only two
correct statements, our 8-item questionnaire is still imbalanced
but we decided against including other correct statements that
do not truly assess interpretation of CIs.

The questionnaire was administered during lecture sessions
in several sections of first-year and master students. Participation
was voluntary and anonymous. Instructions encouraged
answering all items by stating that sheets with omissions would
be useless to us. Once master students in a section had completed
the questionnaire, they were immediately asked to place a
mark next to the items that they would rather have omitted
or where they would have ticked an “I don’t know” response
box had it been provided. The response sheet did not include
anything suggestive of a second pass and students had not been
forewarned of it. This is why second-pass data are unavailable for
14 of the 158 master students, as they had left the room before
the second pass started. We did not ask students to indicate
the reasons why they marked items on the second pass, as we
only wanted to identify uninformed responses that only reflect
guesses motivated by the instructions to answer all items. This
second pass was meant to collect more useful information than
Hoekstra et al.’s (2014) measure of self-reported expertise, which
surely reflects the Dunning-Kruger effect (Kruger and Dunning,
1999; Williams et al., 2013). The second pass was omitted with
first-year students because it was clear that hardly any of them
could have given informed responses.

RESULTS

Data for the subsets of (nominally) incorrect and correct items
will be reported separately under the same method of analysis
used above for the data of Hoekstra et al. (2014). The results of
a joint analysis of the two subsets of items as well as the results
for informed responses identified in the second pass with master

students will be described subsequently. Data are available as
Supplementary Material.

Figure 3 shows the distributions of NE among the first six
items. The distribution for first-year students (solid bars in the
left panel) is similar to that reported by Hoekstra et al.’s (2014;
compare with the left panel in the top row of Figure 2) surely
because, anywhere, first-year students who have never heard of
CIs can only respond on the basis of intuition and common
sense. In other words, these responses only reflect endorsement
in conditions in which admitting to nescience and omitting
is not allowed. As it turns out, the probability that first-year
students endorse items meanders around 0.65, as indicated by
the estimated beta distribution in the right panel of Figure 3
(black curve). For Hoekstra et al.’s data, the estimated beta
distribution had a similar location but was slightly broader (see
the bottom panel in the left column of Figure 2). Why first-year
students aremore prone to endorsing than to not endorsing items
in either study is unclear but, obviously, these results do not
reflect misinterpretation of CIs but plain (and understandable)
incognizance.

The distribution of NE for master students (gray bars in the
center panel of Figure 3) is broader and more negatively skewed.
Accordingly, the estimated beta distribution of probability of
endorsing (gray curve in the right panel of Figure 3) is broader
relative to that of first-year students (black curve in the same
panel). This difference between first-year and master students
as to NE is analogous to that in the samples of Hoekstra
et al. (2014), although their data rendered a more uniform
distribution for master students (compare with Figure 2). The
fact that presumably knowledgeable master students display
in both studies similar probability of endorsing compared to
first-year students might be taken as a sign that something in
the teaching of statistics (or of CIs in particular) produces a
diversification whereby, in comparison to the endorsing behavior
of nescient first-year students, some master students indeed
endorse fewer incorrect statements but others endorsemore. This
is, of course, on the (wrong) assumption that these items express
incorrect interpretations. A look at endorsing patterns on items
that express correct interpretations should be more informative.

FIGURE 3 | Empirical (solid or gray bars) and expected (open bars) distributions of number of items endorsed (NE) by 313 first-year students (left

panel) and 158 master students (center panel) on the six items that our questionnaire shared with that of Hoekstra et al. (2014). Numerals along the top

of each frame indicate the empirical count of respondents at each NE. The right panel shows the estimated beta distributions for the probability of endorsing by

first-year students (black curve) and by master students (gray curve), with parameters printed in the inset. Size-0.05 goodness-of-fit tests with four degrees of freedom

did not reject the beta-binomial model for any of the groups (first-year students: G2 = 4.95, p = 0.292; master students: G2 = 6.05, p = 0.196).

Frontiers in Psychology | www.frontiersin.org 8 July 2016 | Volume 7 | Article 1042

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Pérez and Alcalá-Quintana The Interpretation of Interpretations of Confidence Intervals

Figure 4 shows an analogous analysis of the two correct items.
In contrast to the preceding set of items, understanding CIs
would result here in large endorsement rates. The distribution of
NE for first-year students (top-left panel) renders an estimated
distribution for the probability of endorsing (black curve in
the bottom panel) that is nearly identical to that for the six
other items (compare with the black curve in the right panel
of Figure 3). This similarity is expected and unsurprising, since
statements that reflect correct vs. incorrect interpretations of a
CI should be indistinguishable to respondents who do not know
what a CI is. The similarity of the beta distributions of the
probability of endorsing incorrect vs. correct items by first-year
students strengthens the conviction that their data reflect only the
“willingness to endorse” of unknowing respondents. But, more
importantly, this confirms that there are no spurious differences
between our correct items and the (nominally) incorrect original
items that might make one set more attractive than the other to
unknowing respondents. Hence, endorsing correct items more
often than (nominally) incorrect items is an indication of correct
interpretation of CIs.

The distribution of NE for master students on correct items
is shown in the top-right panel of Figure 4 and renders an
estimated beta distribution for the probability of endorsing (gray
curve in the bottom panel of Figure 4) that shows the signs

FIGURE 4 | (Top) Empirical (solid or gray bars) and expected (open bars)

distributions of number of items endorsed (NE) by 313 first-year students (left

panel) and 158 master students (right panel) on the two items that

expressed correct interpretations of a CI. Numerals along the top of each

frame indicate the empirical count of respondents at each NE. (Bottom)

Estimated beta distribution for the probability of endorsing by first-year

students (black curve) and by master students (gray curve), with parameters

printed in the inset. With three categories and two parameters to estimate,

there are no degrees of freedom available to test the fit of the beta-binomial

model.

of correct interpretation of CIs: It differs markedly from the
beta distribution for incorrect items (compare with the gray
curve in the right panel of Figure 3), peaking at a higher
probability of endorsing and with most of its mass in the
upper range. These differences indicate that master students are
not responding according to an undifferentiated willingness to
endorse, as first-year students do. In fact, master students seem
more prone to endorsing correct statements than to endorsing
(nominally) incorrect statements, and suspicions mount that
their endorsement of the latter may reveal that they simply
identified some of the nominally incorrect items as actually
correct. This result deserves further scrutiny by consideration of
the information gathered in the second pass of the questionnaire,
but we will first describe a joint analysis of the endorsement of
correct and incorrect statements in each group of students.

The left column of Figure 5 shows endorsement proportions
for each item individually. The correct items 7 and 8 are
not conspicuously endorsed more often than the (nominally)
incorrect items 1–6 in any of the groups. Yet, tabulated scatter
plots of NE for correct items against NE for nominally incorrect
items (center column in Figure 5) show that the top row (i.e.,
endorsing the two correct items) is relatively more populated
than the second row (i.e., endorsing only one of the correct
items) formaster students. Although this difference indicates that
master students depart from the pattern displayed by unknowing
respondents, master students’ data are still contaminated by
uninformed responses that they had been forced to give.
The second pass aimed at gathering information to remove
uninformed responses (if any) for a proper assessment of
misinformation. It is worth pointing out first that 18 (12.5%)
of the 144 master students who responded on the second pass
declared that they would rather not have responded true/false to
any of the eight items whereas only 15 (10.4%) declared that they
had given informed responses to all items. A meaningful amount
of (self-declared) nescience thus exists among master students.

The right panel in the bottom row of Figure 5 shows
proportion endorsed using only informed responses. Note that
the number of informed responses for each item (numerals along
the top of the frame) was remarkably low compared to 158
responses per item used in the leftmost panel, although those
counts should be compared to 144 (i.e., the number of students
who responded on the second pass). It is remarkable that item 3
was tagged in the second pass by 87 respondents (60.4%), which
is not surprising in retrospect: As discussed earlier, item 3 is
correct for reasons unrelated to CIs and, hence, a knowledgeable
respondent is put to face the dilemma between endorsing a
correct item and not endorsing it because its correctness is
not logically linked to CIs. At the other end, item 5 (another
nominally incorrect item whose ambiguous wording permits an
interpretation that is correct) was tagged by only 29 respondents
(20.1%) in the second pass. Interestingly, removal of uninformed
responses results in endorsement rates that are uniformly higher
(compare with the left panel in the bottom row of Figure 5), again
with no noticeable difference between the nominally incorrect
items 1–6 and the correct items 7 and 8.

Figure 6 shows the results of an analysis of informed
responses that leads to estimates of the beta distributions
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FIGURE 5 | Overall results for first-year students (top row) and master students (bottom row). Left column: Proportion of students endorsing each of the

eight items on the questionnaire. Center column: Tabulated scatter plot of the number of correct items (items 7 and 8) endorsed against the number of incorrect

items (items 1–6) endorsed. Right column (for master students only): Proportion of students endorsing each item after removing responses that had been marked

during the second pass as uninformed. Numerals along the top of the frame indicate the raw numbers of responses on which these proportions are based.

of probability of endorsing. Because this analysis requires
computing NE anew for each respondent on each type of item
once uninformed responses are treated as omissions, the sample
splits into different subsamples according to how many items
each master student actually answered (NA; between 1 and 6 for
nominally incorrect items and between 1 and 2 for correct items,
as students declaring that none of their responses were informed
do not provide data for this analysis). The top part of Figure 6
tabulates the distribution of NE in each of the subsamples defined
on NA (rows) for nominally incorrect items (left panel) and
correct items (right panel). The applicable beta-binomial model
varies with NA, but its underlying beta distribution of probability
of endorsing should be unique for all NA for each item type.
We thus soughtmaximum-likelihood estimates of the parameters
of the beta distribution jointly across all applicable NA, with
the results shown in the bottom panel of Figure 6. Size-0.05
goodness-of-fit tests did not reject the resultant beta-binomial
model for any of the two groups of items (nominally incorrect
items: G2 = 15.07, p = 0.718 with 19 degrees of freedom; correct
items: G2 = 0.37, p = 0.545 with 1 degree of freedom).

The beta distribution for correct items (blue curve in the
bottom panel of Figure 6) indicates proper interpretation of CIs
in comparison with what this distribution was when uninformed
responses were also included (compare with the gray curve in
the bottom panel of Figure 4), but the distribution for nominally
incorrect items (red curve in the bottom panel of Figure 6) also
shifts upward in comparison to what it was with uninformed
responses (compare with the gray curve in the bottom panel of
Figure 3). This may seem to reveal confusion (i.e., endorsing

correct and incorrect interpretations alike), but it is perhaps
more fitting to see it as yet another sign that knowledgeable
respondents disambiguate nominally incorrect items into correct
statements that they endorse.

DISCUSSION

Our study provided data opposing Hoekstra et al.’s (2014)
conclusion of a robust misinterpretation of CIs. First-year
students are incognizant of CIs and their analogous endorsement
distributions for incorrect and correct items indicate that their
responses do not reflect misinterpretation but mere willingness
to endorse, a response bias that cannot be identified when items
are of the same type (all true or all false) and responding to all
items is mandatory. In contrast, master students showed different
endorsement patterns for correct and nominally incorrect items,
ruling out a prevalent role of response bias even in the presence of
forced responses. Although master students endorsed nominally
incorrect items more often than might be expected, the beta
distribution of their probability of endorsing correct items
(gray curve in the bottom panel of Figure 4) has its mass
shifted upward with respect to the corresponding distribution
for nominally incorrect items (gray curve in the right panel of
Figure 3). Yet, uninformed responses given in compliance with
the instructions to answer all items necessarily contaminated
these results; when uninformed responses were removed, the
evidence of endorsement of correct interpretations of CIs pops
out more clearly (blue curve in the bottom panel of Figure 6),
although it coexists with evidence of endorsement of nominally
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FIGURE 6 | Analysis of informed responses given by master students.

Top: Tabulated distributions of the number of items endorsed (NE) for each

subsample defined by the number of items answered (NA). Tables are

separately provided for nominally incorrect items (left panel) and correct

items (right panel). (Bottom): Estimated beta distributions of the probability

of endorsing nominally incorrect items (red curve) and correct items (blue

curve), with parameters printed in the inset.

incorrect interpretations (red curve in the same panel). The
conclusion thatmaster students endorse incorrect interpretations
of CIs is unwarranted because the ambiguity of some of the
nominally incorrect statements may have been resolved in a way
that turns them into correct statements.

Questionnaires are not loyal and benevolent. They also
do not necessarily gather data that can be unequivocally
interpreted. Questionnaires with true/false items of only one
type (whether all true or all false) do not permit assessing
knowledge and misinformation independently: One of them is
simply inferred by negation of the other. Furthermore, when
administered with instructions to answer all items, uninformed
responses interpreted at face value distort the resultant picture.
Results reported in our Figure 4 (for forced responses) and our
Figure 6 (for informed responses) reveal that Hoekstra et al.
(2014) would surely have arrived at the opposite conclusion
if they had included only correct statements among their
items: relatively high endorsement rates, presumably indicative
of correct interpretation of CIs even by unknowing first-year
students.

Nevertheless, it is far from clear that passive endorsement of
incorrect statements about a CI in a questionnaire reflects active
misinterpretation or, analogously, that passive endorsement of
correct statements reflects proper interpretation, even when
omissions are allowed. We mentioned in the Introduction that
scholars’ interpretation of CIs manifests more reliably in their
active descriptions to the effect or by analysis of reporting

practices. Collecting such material is painstakingly slow, and
interpreting verbiage to decipher what each respondent really
meant is not without difficulties, but some attempts in that
direction have been made (e.g., Cumming et al., 2004; Belia
et al., 2005). In any case, inferring misinterpretation from such
descriptions is questionable even in what seems to be the clearest
of cases, illustrated next.

Recall that the average NE reported by Hoekstra et al. (2014)
for first-year students, master students, and researchers was 3.51,
3.24, and 3.45, respectively. Miller and Ulrich (2016, p. 124)
expressed this result as “students and researchers alike endorsed
more than half of these statements as true.” This assertion
only carries the incorrect meaning that each student and each
researcher endorsed four or more statements. If such were the
case, each mean would have exceeded 4.0, but notice also in the
top row of Figure 2 that large numbers of respondents endorsed
three or fewer statements. If we could take that producing
an incorrect statement reflects misinterpretation, should not
we conclude that Miller and Ulrich misinterpret the mean?
Furthermore, given that their assertion appears to have gone
unquestioned during the review process, should not we conclude
also that such “tacit endorsement” reveals that the mean is
robustly misinterpreted by all the reviewers of that paper and
by all the colleagues who had reportedly read the manuscript
outside the review process? Too long a shot. Most likely, this
is just an instance of an unfortunate (active) wording on the
part of Miller and Ulrich that readers and reviewers (passively)
endorsed, resulting in an error that now graces the pages of
a reputable journal. Since we understand this as an excusable
mistake, on what basis can we positively infer misinterpretation
in other cases? As this example shows, misinterpretation cannot
be unequivocally inferred given the vagueness and ambiguities
inherent to the natural language in which statements about CIs
are expressed, and given also the habit of using for that purpose
ready-made expressions that are admittedly unfortunate.

CONCLUSION

Our replication of Hoekstra et al.’s (2014) study involved an
extension with two correct items added to the questionnaire.
This allowed us to identify that first-year students do not
misinterpret CIs, not only because they had never heard of CIs
but, more importantly, because their forced responses reflect
the same willingness to endorse correct and nominally incorrect
statements. This result with first-year students strengthens the
confidence that different patterns of endorsement of correct
and nominally incorrect items on an uncalibrated questionnaire
inform of interpretations of CIs. Master students were more
prone to endorsing correct than nominally incorrect statements
under the forced-response format, and removal of uninformed
responses resulted in a larger imbalance in favor of correct
statements. The second pass of the questionnaire also revealed
that incognizance of CIs (not to be confused withmisinformation
about them) is relatively prevalent among master students, as
revealed by the fact that 12.5% of them marked all items
on the second pass. Master students’ informed responses still
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displayed non-negligible endorsement of nominally incorrect
statements, but this may be a spurious outcome: Three of the
nominally incorrect statements are sufficiently ambiguous to
permit knowledgeable respondents to interpret them in amanner
that endorsement reflects instead correct interpretation of CIs.

Unlike first-year students’ responding essentially at random or
according to how the wording of each statement sounds to them,
master students’ informed responses convey the effect of the
statistical education that they had received. Our results show that
such education was relatively efficacious in that they were more
prone to endorsing correct than incorrect interpretations of a CI,
and also on consideration that theymay have endorsed nominally
incorrect statements for a reason that indeed reveals proper
interpretation. Our results also indicate a relative prevalence of
incognizance of CIs on the part of master students. Identification
of these three different states (incognizance, correct information,
and misinformation) and quantification of their prevalence are
essential for an assessment of the efficacy of statistical education
and for the implementation of corrective measures (e.g., a
revision of teaching methods to place more emphasis on the
correct interpretation of CIs and the proper ways of wording it).
The use of unbiased questionnaires is essential for this purpose,
as is an adequate analysis of the data gathered with them.

Our results for a sample of students from a single institution
show that misinterpretation of CIs is not as prevalent and
widespread as Hoekstra et al. (2014) purported it to be, but this
surely varies across institutions according to how statistics is
taught in them. In the current context of statistical reform, giving

today’s students (i.e., tomorrow’s researchers) proper education
on CIs will surely be more efficacious than implementing
remedial measures later. Training along the lines of our initial
discussion about where CIs come from, how they are interpreted,
and how such interpretations can be expressed in statements
that unambiguously carry the proper meaning should be easy to
implement in inferential statistics courses.
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